DialectConversion.cpp
108 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
/// Recursively collect all of the operations to convert from within 'region'.
/// If 'target' is nonnull, operations that are recursively legal have their
/// regions pre-filtered to avoid considering them for legalization.
static LogicalResult
computeConversionSet(iterator_range<Region::iterator> region,
Location regionLoc, std::vector<Operation *> &toConvert,
ConversionTarget *target = nullptr) {
if (llvm::empty(region))
return success();
// Traverse starting from the entry block.
SmallVector<Block *, 16> worklist(1, &*region.begin());
DenseSet<Block *> visitedBlocks;
visitedBlocks.insert(worklist.front());
while (!worklist.empty()) {
Block *block = worklist.pop_back_val();
// Compute the conversion set of each of the nested operations.
for (Operation &op : *block) {
toConvert.emplace_back(&op);
// Don't check this operation's children for conversion if the operation
// is recursively legal.
auto legalityInfo = target ? target->isLegal(&op)
: Optional<ConversionTarget::LegalOpDetails>();
if (legalityInfo && legalityInfo->isRecursivelyLegal)
continue;
for (auto ®ion : op.getRegions()) {
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
toConvert, target)))
return failure();
}
}
// Recurse to children that haven't been visited.
for (Block *succ : block->getSuccessors())
if (visitedBlocks.insert(succ).second)
worklist.push_back(succ);
}
// Check that all blocks in the region were visited.
if (llvm::any_of(llvm::drop_begin(region, 1),
[&](Block &block) { return !visitedBlocks.count(&block); }))
return emitError(regionLoc, "unreachable blocks were not converted");
return success();
}
/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt,
Args &&... args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> SUCCESS";
if (!fmt.empty())
os.getOStream() << " : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
os.getOStream() << "\n";
});
}
/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt,
Args &&... args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> FAILURE : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
<< "\n";
});
}
//===----------------------------------------------------------------------===//
// ConversionValueMapping
//===----------------------------------------------------------------------===//
namespace {
/// This class wraps a BlockAndValueMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value. If `desiredType` is
/// non-null, returns the most recently mapped value with that type. If an
/// operand of that type does not exist, defaults to normal behavior.
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
/// Lookup a mapped value within the map, or return null if a mapping does not
/// exist. If a mapping exists, this follows the same behavior of
/// `lookupOrDefault`.
Value lookupOrNull(Value from) const;
/// Map a value to the one provided.
void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
/// Drop the last mapping for the given value.
void erase(Value value) { mapping.erase(value); }
private:
/// Current value mappings.
BlockAndValueMapping mapping;
};
} // end anonymous namespace
Value ConversionValueMapping::lookupOrDefault(Value from,
Type desiredType) const {
// If there was no desired type, simply find the leaf value.
if (!desiredType) {
// If this value had a valid mapping, unmap that value as well in the case
// that it was also replaced.
while (auto mappedValue = mapping.lookupOrNull(from))
from = mappedValue;
return from;
}
// Otherwise, try to find the deepest value that has the desired type.
Value desiredValue;
do {
if (from.getType() == desiredType)
desiredValue = from;
Value mappedValue = mapping.lookupOrNull(from);
if (!mappedValue)
break;
from = mappedValue;
} while (true);
// If the desired value was found use it, otherwise default to the leaf value.
return desiredValue ? desiredValue : from;
}
Value ConversionValueMapping::lookupOrNull(Value from) const {
Value result = lookupOrDefault(from);
return result == from ? nullptr : result;
}
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by creating a new block that contains the new legal
/// types and extracting the block that contains the old illegal types to allow
/// for undoing pending rewrites in the case of failure.
struct ArgConverter {
ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}
/// This structure contains the information pertaining to an argument that has
/// been converted.
struct ConvertedArgInfo {
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
Value castValue = nullptr)
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
/// The start index of in the new argument list that contains arguments that
/// replace the original.
unsigned newArgIdx;
/// The number of arguments that replaced the original argument.
unsigned newArgSize;
/// The cast value that was created to cast from the new arguments to the
/// old. This only used if 'newArgSize' > 1.
Value castValue;
};
/// This structure contains information pertaining to a block that has had its
/// signature converted.
struct ConvertedBlockInfo {
ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
: origBlock(origBlock), converter(&converter) {}
/// The original block that was requested to have its signature converted.
Block *origBlock;
/// The conversion information for each of the arguments. The information is
/// None if the argument was dropped during conversion.
SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
/// The type converter used to convert the arguments.
TypeConverter *converter;
};
/// Return if the signature of the given block has already been converted.
bool hasBeenConverted(Block *block) const {
return conversionInfo.count(block) || convertedBlocks.count(block);
}
/// Set the type converter to use for the given region.
void setConverter(Region *region, TypeConverter *typeConverter) {
assert(typeConverter && "expected valid type converter");
regionToConverter[region] = typeConverter;
}
/// Return the type converter to use for the given region, or null if there
/// isn't one.
TypeConverter *getConverter(Region *region) {
return regionToConverter.lookup(region);
}
//===--------------------------------------------------------------------===//
// Rewrite Application
//===--------------------------------------------------------------------===//
/// Erase any rewrites registered for the blocks within the given operation
/// which is about to be removed. This merely drops the rewrites without
/// undoing them.
void notifyOpRemoved(Operation *op);
/// Cleanup and undo any generated conversions for the arguments of block.
/// This method replaces the new block with the original, reverting the IR to
/// its original state.
void discardRewrites(Block *block);
/// Fully replace uses of the old arguments with the new.
void applyRewrites(ConversionValueMapping &mapping);
/// Materialize any necessary conversions for converted arguments that have
/// live users, using the provided `findLiveUser` to search for a user that
/// survives the conversion process.
LogicalResult
materializeLiveConversions(ConversionValueMapping &mapping,
OpBuilder &builder,
function_ref<Operation *(Value)> findLiveUser);
//===--------------------------------------------------------------------===//
// Conversion
//===--------------------------------------------------------------------===//
/// Attempt to convert the signature of the given block, if successful a new
/// block is returned containing the new arguments. Returns `block` if it did
/// not require conversion.
FailureOr<Block *> convertSignature(Block *block, TypeConverter &converter,
ConversionValueMapping &mapping);
/// Apply the given signature conversion on the given block. The new block
/// containing the updated signature is returned. If no conversions were
/// necessary, e.g. if the block has no arguments, `block` is returned.
/// `converter` is used to generate any necessary cast operations that
/// translate between the origin argument types and those specified in the
/// signature conversion.
Block *applySignatureConversion(
Block *block, TypeConverter &converter,
TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping);
/// Insert a new conversion into the cache.
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
/// A collection of blocks that have had their arguments converted. This is a
/// map from the new replacement block, back to the original block.
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
/// The set of original blocks that were converted.
DenseSet<Block *> convertedBlocks;
/// A mapping from valid regions, to those containing the original blocks of a
/// conversion.
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
/// A mapping of regions to type converters that should be used when
/// converting the arguments of blocks within that region.
DenseMap<Region *, TypeConverter *> regionToConverter;
/// The pattern rewriter to use when materializing conversions.
PatternRewriter &rewriter;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Rewrite Application
void ArgConverter::notifyOpRemoved(Operation *op) {
if (conversionInfo.empty())
return;
for (Region ®ion : op->getRegions()) {
for (Block &block : region) {
// Drop any rewrites from within.
for (Operation &nestedOp : block)
if (nestedOp.getNumRegions())
notifyOpRemoved(&nestedOp);
// Check if this block was converted.
auto it = conversionInfo.find(&block);
if (it == conversionInfo.end())
continue;
// Drop all uses of the original arguments and delete the original block.
Block *origBlock = it->second.origBlock;
for (BlockArgument arg : origBlock->getArguments())
arg.dropAllUses();
conversionInfo.erase(it);
}
}
}
void ArgConverter::discardRewrites(Block *block) {
auto it = conversionInfo.find(block);
if (it == conversionInfo.end())
return;
Block *origBlock = it->second.origBlock;
// Drop all uses of the new block arguments and replace uses of the new block.
for (int i = block->getNumArguments() - 1; i >= 0; --i)
block->getArgument(i).dropAllUses();
block->replaceAllUsesWith(origBlock);
// Move the operations back the original block and the delete the new block.
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
origBlock->moveBefore(block);
block->erase();
convertedBlocks.erase(origBlock);
conversionInfo.erase(it);
}
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
for (auto &info : conversionInfo) {
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
BlockArgument origArg = origBlock->getArgument(i);
// Handle the case of a 1->0 value mapping.
if (!argInfo) {
if (Value newArg = mapping.lookupOrNull(origArg))
origArg.replaceAllUsesWith(newArg);
continue;
}
// Otherwise this is a 1->1+ value mapping.
Value castValue = argInfo->castValue;
assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
// If the argument is still used, replace it with the generated cast.
if (!origArg.use_empty())
origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
// If all users of the cast were removed, we can drop it. Otherwise, keep
// the operation alive and let the user handle any remaining usages.
if (castValue.use_empty() && castValue.getDefiningOp())
castValue.getDefiningOp()->erase();
}
}
}
LogicalResult ArgConverter::materializeLiveConversions(
ConversionValueMapping &mapping, OpBuilder &builder,
function_ref<Operation *(Value)> findLiveUser) {
for (auto &info : conversionInfo) {
Block *newBlock = info.first;
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
// FIXME: We should run the below checks even if the type conversion was
// 1->N, but a lot of existing lowering rely on the block argument being
// blindly replaced. Those usages should be updated, and this if should be
// removed.
if (blockInfo.argInfo[i])
continue;
// If the type of this argument changed and the argument is still live, we
// need to materialize a conversion.
BlockArgument origArg = origBlock->getArgument(i);
auto argReplacementValue = mapping.lookupOrDefault(origArg);
bool isDroppedArg = argReplacementValue == origArg;
if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
continue;
Operation *liveUser = findLiveUser(origArg);
if (!liveUser)
continue;
if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
rewriter.setInsertionPointAfter(result.getOwner());
else
rewriter.setInsertionPointToStart(newBlock);
Value newArg = blockInfo.converter->materializeSourceConversion(
rewriter, origArg.getLoc(), origArg.getType(),
isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
if (!newArg) {
InFlightDiagnostic diag =
emitError(origArg.getLoc())
<< "failed to materialize conversion for block argument #" << i
<< " that remained live after conversion, type was "
<< origArg.getType();
if (!isDroppedArg)
diag << ", with target type " << argReplacementValue.getType();
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
}
mapping.map(origArg, newArg);
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Conversion
FailureOr<Block *>
ArgConverter::convertSignature(Block *block, TypeConverter &converter,
ConversionValueMapping &mapping) {
// Check if the block was already converted. If the block is detached,
// conservatively assume it is going to be deleted.
if (hasBeenConverted(block) || !block->getParent())
return block;
// Try to convert the signature for the block with the provided converter.
if (auto conversion = converter.convertBlockSignature(block))
return applySignatureConversion(block, converter, *conversion, mapping);
return failure();
}
Block *ArgConverter::applySignatureConversion(
Block *block, TypeConverter &converter,
TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping) {
// If no arguments are being changed or added, there is nothing to do.
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (origArgCount == 0 && convertedTypes.empty())
return block;
// Split the block at the beginning to get a new block to use for the updated
// signature.
Block *newBlock = block->splitBlock(block->begin());
block->replaceAllUsesWith(newBlock);
SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
ArrayRef<Value> newArgs(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
ConvertedBlockInfo info(block, converter);
info.argInfo.resize(origArgCount);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(newBlock);
for (unsigned i = 0; i != origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap)
continue;
BlockArgument origArg = block->getArgument(i);
// If inputMap->replacementValue is not nullptr, then the argument is
// dropped and a replacement value is provided to be the remappedValue.
if (inputMap->replacementValue) {
assert(inputMap->size == 0 &&
"invalid to provide a replacement value when the argument isn't "
"dropped");
mapping.map(origArg, inputMap->replacementValue);
continue;
}
// Otherwise, this is a 1->1+ mapping. Call into the provided type converter
// to pack the new values. For 1->1 mappings, if there is no materialization
// provided, use the argument directly instead.
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
Value newArg = converter.materializeArgumentConversion(
rewriter, origArg.getLoc(), origArg.getType(), replArgs);
if (!newArg) {
assert(replArgs.size() == 1 &&
"couldn't materialize the result of 1->N conversion");
newArg = replArgs.front();
}
mapping.map(origArg, newArg);
info.argInfo[i] =
ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
}
// Remove the original block from the region and return the new one.
insertConversion(newBlock, std::move(info));
return newBlock;
}
void ArgConverter::insertConversion(Block *newBlock,
ConvertedBlockInfo &&info) {
// Get a region to insert the old block.
Region *region = newBlock->getParent();
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
if (!mappedRegion)
mappedRegion = std::make_unique<Region>(region->getParentOp());
// Move the original block to the mapped region and emplace the conversion.
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
info.origBlock->getIterator());
convertedBlocks.insert(info.origBlock);
conversionInfo.insert({newBlock, std::move(info)});
}
//===----------------------------------------------------------------------===//
// Rewriter and Transation State
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOps, unsigned numReplacements,
unsigned numArgReplacements, unsigned numBlockActions,
unsigned numIgnoredOperations, unsigned numRootUpdates)
: numCreatedOps(numCreatedOps), numReplacements(numReplacements),
numArgReplacements(numArgReplacements),
numBlockActions(numBlockActions),
numIgnoredOperations(numIgnoredOperations),
numRootUpdates(numRootUpdates) {}
/// The current number of created operations.
unsigned numCreatedOps;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of argument replacements queued.
unsigned numArgReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
/// The current number of ignored operations.
unsigned numIgnoredOperations;
/// The current number of operations that were updated in place.
unsigned numRootUpdates;
};
/// The state of an operation that was updated by a pattern in-place. This
/// contains all of the necessary information to reconstruct an operation that
/// was updated in place.
class OperationTransactionState {
public:
OperationTransactionState() = default;
OperationTransactionState(Operation *op)
: op(op), loc(op->getLoc()), attrs(op->getMutableAttrDict()),
operands(op->operand_begin(), op->operand_end()),
successors(op->successor_begin(), op->successor_end()) {}
/// Discard the transaction state and reset the state of the original
/// operation.
void resetOperation() const {
op->setLoc(loc);
op->setAttrs(attrs);
op->setOperands(operands);
for (auto it : llvm::enumerate(successors))
op->setSuccessor(it.value(), it.index());
}
/// Return the original operation of this state.
Operation *getOperation() const { return op; }
private:
Operation *op;
LocationAttr loc;
MutableDictionaryAttr attrs;
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
};
/// This class represents one requested operation replacement via 'replaceOp' or
/// 'eraseOp`.
struct OpReplacement {
OpReplacement() = default;
OpReplacement(TypeConverter *converter) : converter(converter) {}
/// An optional type converter that can be used to materialize conversions
/// between the new and old values if necessary.
TypeConverter *converter = nullptr;
};
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind {
Create,
Erase,
Merge,
Move,
Split,
TypeConversion
};
/// Original position of the given block in its parent region. During undo
/// actions, the block needs to be placed after `insertAfterBlock`.
struct BlockPosition {
Region *region;
Block *insertAfterBlock;
};
/// Information needed to undo the merge actions.
/// - the source block, and
/// - the Operation that was the last operation in the dest block before the
/// merge (could be null if the dest block was empty).
struct MergeInfo {
Block *sourceBlock;
Operation *destBlockLastInst;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
static BlockAction getCreate(Block *block) {
return {BlockActionKind::Create, block, {}};
}
static BlockAction getErase(Block *block, BlockPosition originalPosition) {
return {BlockActionKind::Erase, block, {originalPosition}};
}
static BlockAction getMerge(Block *block, Block *sourceBlock) {
BlockAction action{BlockActionKind::Merge, block, {}};
action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
return action;
}
static BlockAction getMove(Block *block, BlockPosition originalPosition) {
return {BlockActionKind::Move, block, {originalPosition}};
}
static BlockAction getSplit(Block *block, Block *originalBlock) {
BlockAction action{BlockActionKind::Split, block, {}};
action.originalBlock = originalBlock;
return action;
}
static BlockAction getTypeConversion(Block *block) {
return BlockAction{BlockActionKind::TypeConversion, block, {}};
}
// The action kind.
BlockActionKind kind;
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
// contains a pointer to the region that originally contained the block as
// well as the position of the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
// In use if kind == BlockActionKind::Merge, and contains the information
// needed to undo the merge.
MergeInfo mergeInfo;
};
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl {
ConversionPatternRewriterImpl(PatternRewriter &rewriter)
: argConverter(rewriter) {}
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
//===--------------------------------------------------------------------===//
// State Management
//===--------------------------------------------------------------------===//
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Erase any blocks that were unlinked from their regions and stored in block
/// actions.
void eraseDanglingBlocks();
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0);
/// Remap the given operands to those with potentially different types. The
/// provided type converter is used to ensure that the remapped types are
/// legal. Returns success if the operands could be remapped, failure
/// otherwise.
LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
TypeConverter *converter,
Operation::operand_range operands,
SmallVectorImpl<Value> &remapped);
/// Returns true if the given operation is ignored, and does not need to be
/// converted.
bool isOpIgnored(Operation *op) const;
/// Recursively marks the nested operations under 'op' as ignored. This
/// removes them from being considered for legalization.
void markNestedOpsIgnored(Operation *op);
//===--------------------------------------------------------------------===//
// Type Conversion
//===--------------------------------------------------------------------===//
/// Convert the signature of the given block.
FailureOr<Block *> convertBlockSignature(
Block *block, TypeConverter &converter,
TypeConverter::SignatureConversion *conversion = nullptr);
/// Apply a signature conversion on the given region.
Block *
applySignatureConversion(Region *region,
TypeConverter::SignatureConversion &conversion);
/// Convert the types of block arguments within the given region.
FailureOr<Block *>
convertRegionTypes(Region *region, TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion);
//===--------------------------------------------------------------------===//
// Rewriter Notification Hooks
//===--------------------------------------------------------------------===//
/// PatternRewriter hook for replacing the results of an operation.
void notifyOpReplaced(Operation *op, ValueRange newValues);
/// Notifies that a block is about to be erased.
void notifyBlockIsBeingErased(Block *block);
/// Notifies that a block was created.
void notifyCreatedBlock(Block *block);
/// Notifies that a block was split.
void notifySplitBlock(Block *block, Block *continuation);
/// Notifies that `block` is being merged with `srcBlock`.
void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
/// Notifies that the blocks of a region are about to be moved.
void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent,
Region::iterator before);
/// Notifies that the blocks of a region were cloned into another.
void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
Location origRegionLoc);
/// Notifies that a pattern match failed for the given reason.
LogicalResult
notifyMatchFailure(Location loc,
function_ref<void(Diagnostic &)> reasonCallback);
//===--------------------------------------------------------------------===//
// State
//===--------------------------------------------------------------------===//
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
std::vector<Operation *> createdOps;
/// Ordered map of requested operation replacements.
llvm::MapVector<Operation *, OpReplacement> replacements;
/// Ordered vector of any requested block argument replacements.
SmallVector<BlockArgument, 4> argReplacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
/// A set of operations that should no longer be considered for legalization,
/// but were not directly replace/erased/etc. by a pattern. These are
/// generally child operations of other operations who were
/// replaced/erased/etc. This is not meant to be an exhaustive list of all
/// operations, but the minimal set that can be used to detect if a given
/// operation should be `ignored`. For example, we may add the operations that
/// define non-empty regions to the set, but not any of the others. This
/// simplifies the amount of memory needed as we can query if the parent
/// operation was ignored.
llvm::SetVector<Operation *> ignoredOps;
/// A transaction state for each of operations that were updated in-place.
SmallVector<OperationTransactionState, 4> rootUpdates;
/// A vector of indices into `replacements` of operations that were replaced
/// with values with different result types than the original operation, e.g.
/// 1->N conversion of some kind.
SmallVector<unsigned, 4> operationsWithChangedResults;
/// A default type converter, used when block conversions do not have one
/// explicitly provided.
TypeConverter defaultTypeConverter;
/// The current conversion pattern that is being rewritten, or nullptr if
/// called from outside of a conversion pattern rewrite.
const ConversionPattern *currentConversionPattern = nullptr;
#ifndef NDEBUG
/// A set of operations that have pending updates. This tracking isn't
/// strictly necessary, and is thus only active during debug builds for extra
/// verification.
SmallPtrSet<Operation *, 1> pendingRootUpdates;
/// A logger used to emit diagnostics during the conversion process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // end namespace detail
} // end namespace mlir
/// Detach any operations nested in the given operation from their parent
/// blocks, and erase the given operation. This can be used when the nested
/// operations are scheduled for erasure themselves, so deleting the regions of
/// the given operation together with their content would result in double-free.
/// This happens, for example, when rolling back op creation in the reverse
/// order and if the nested ops were created before the parent op. This function
/// does not need to collect nested ops recursively because it is expected to
/// also be called for each nested op when it is about to be deleted.
static void detachNestedAndErase(Operation *op) {
for (Region ®ion : op->getRegions()) {
for (Block &block : region.getBlocks()) {
while (!block.getOperations().empty())
block.getOperations().remove(block.getOperations().begin());
block.dropAllDefinedValueUses();
}
}
op->erase();
}
void ConversionPatternRewriterImpl::discardRewrites() {
// Reset any operations that were updated in place.
for (auto &state : rootUpdates)
state.resetOperation();
undoBlockActions();
// Remove any newly created ops.
for (auto *op : llvm::reverse(createdOps))
detachNestedAndErase(op);
}
void ConversionPatternRewriterImpl::applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (OpResult result : repl.first->getResults())
if (Value newValue = mapping.lookupOrNull(result))
result.replaceAllUsesWith(newValue);
// If this operation defines any regions, drop any pending argument
// rewrites.
if (repl.first->getNumRegions())
argConverter.notifyOpRemoved(repl.first);
}
// Apply all of the requested argument replacements.
for (BlockArgument arg : argReplacements) {
Value repl = mapping.lookupOrDefault(arg);
if (repl.isa<BlockArgument>()) {
arg.replaceAllUsesWith(repl);
continue;
}
// If the replacement value is an operation, we check to make sure that we
// don't replace uses that are within the parent operation of the
// replacement value.
Operation *replOp = repl.cast<OpResult>().getOwner();
Block *replBlock = replOp->getBlock();
arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
Operation *user = operand.getOwner();
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
});
}
// In a second pass, erase all of the replaced operations in reverse. This
// allows processing nested operations before their parent region is
// destroyed.
for (auto &repl : llvm::reverse(replacements))
repl.first->erase();
argConverter.applyRewrites(mapping);
// Now that the ops have been erased, also erase dangling blocks.
eraseDanglingBlocks();
}
//===----------------------------------------------------------------------===//
// State Management
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(createdOps.size(), replacements.size(),
argReplacements.size(), blockActions.size(),
ignoredOps.size(), rootUpdates.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Reset any operations that were updated in place.
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
rootUpdates[i].resetOperation();
rootUpdates.resize(state.numRootUpdates);
// Reset any replaced arguments.
for (BlockArgument replacedArg :
llvm::drop_begin(argReplacements, state.numArgReplacements))
mapping.erase(replacedArg);
argReplacements.resize(state.numArgReplacements);
// Undo any block actions.
undoBlockActions(state.numBlockActions);
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto result : repl.first->getResults())
mapping.erase(result);
while (replacements.size() != state.numReplacements)
replacements.pop_back();
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOps) {
detachNestedAndErase(createdOps.back());
createdOps.pop_back();
}
// Pop all of the recorded ignored operations that are no longer valid.
while (ignoredOps.size() != state.numIgnoredOperations)
ignoredOps.pop_back();
// Reset operations with changed results.
while (!operationsWithChangedResults.empty() &&
operationsWithChangedResults.back() >= state.numReplacements)
operationsWithChangedResults.pop_back();
}
void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
for (auto &action : blockActions)
if (action.kind == BlockActionKind::Erase)
delete action.block;
}
void ConversionPatternRewriterImpl::undoBlockActions(
unsigned numActionsToKeep) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Delete the created block.
case BlockActionKind::Create: {
// Unlink all of the operations within this block, they will be deleted
// separately.
auto &blockOps = action.block->getOperations();
while (!blockOps.empty())
blockOps.remove(blockOps.begin());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Put the block (owned by action) back into its original position.
case BlockActionKind::Erase: {
auto &blockList = action.originalPosition.region->getBlocks();
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
blockList.insert((insertAfterBlock
? std::next(Region::iterator(insertAfterBlock))
: blockList.end()),
action.block);
break;
}
// Split the block at the position which was originally the end of the
// destination block (owned by action), and put the instructions back into
// the block used before the merge.
case BlockActionKind::Merge: {
Block *sourceBlock = action.mergeInfo.sourceBlock;
Block::iterator splitPoint =
(action.mergeInfo.destBlockLastInst
? ++Block::iterator(action.mergeInfo.destBlockLastInst)
: action.block->begin());
sourceBlock->getOperations().splice(sourceBlock->begin(),
action.block->getOperations(),
splitPoint, action.block->end());
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
originalRegion->getBlocks().splice(
(insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
: originalRegion->end()),
action.block->getParent()->getBlocks(), action.block);
break;
}
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Undo the type conversion.
case BlockActionKind::TypeConversion: {
argConverter.discardRewrites(action.block);
break;
}
}
}
blockActions.resize(numActionsToKeep);
}
LogicalResult ConversionPatternRewriterImpl::remapValues(
Location loc, PatternRewriter &rewriter, TypeConverter *converter,
Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
remapped.reserve(llvm::size(operands));
SmallVector<Type, 1> legalTypes;
for (auto it : llvm::enumerate(operands)) {
Value operand = it.value();
Type origType = operand.getType();
// If a converter was provided, get the desired legal types for this
// operand.
Type desiredType;
if (converter) {
// If there is no legal conversion, fail to match this pattern.
legalTypes.clear();
if (failed(converter->convertType(origType, legalTypes))) {
return notifyMatchFailure(loc, [=](Diagnostic &diag) {
diag << "unable to convert type for operand #" << it.index()
<< ", type was " << origType;
});
}
// TODO: There currently isn't any mechanism to do 1->N type conversion
// via the PatternRewriter replacement API, so for now we just ignore it.
if (legalTypes.size() == 1)
desiredType = legalTypes.front();
} else {
// TODO: What we should do here is just set `desiredType` to `origType`
// and then handle the necessary type conversions after the conversion
// process has finished. Unfortunately a lot of patterns currently rely on
// receiving the new operands even if the types change, so we keep the
// original behavior here for now until all of the patterns relying on
// this get updated.
}
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
// Handle the case where the conversion was 1->1 and the new operand type
// isn't legal.
Type newOperandType = newOperand.getType();
if (converter && desiredType && newOperandType != desiredType) {
// Attempt to materialize a conversion for this new value.
newOperand = converter->materializeTargetConversion(
rewriter, loc, desiredType, newOperand);
if (!newOperand) {
return notifyMatchFailure(loc, [=](Diagnostic &diag) {
diag << "unable to materialize a conversion for "
"operand #"
<< it.index() << ", from " << newOperandType << " to "
<< desiredType;
});
}
}
remapped.push_back(newOperand);
}
return success();
}
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
// Check to see if this operation was replaced or its parent ignored.
return replacements.count(op) || ignoredOps.count(op->getParentOp());
}
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
// Walk this operation and collect nested operations that define non-empty
// regions. We mark such operations as 'ignored' so that we know we don't have
// to convert them, or their nested ops.
if (op->getNumRegions() == 0)
return;
op->walk([&](Operation *op) {
if (llvm::any_of(op->getRegions(),
[](Region ®ion) { return !region.empty(); }))
ignoredOps.insert(op);
});
}
//===----------------------------------------------------------------------===//
// Type Conversion
FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
Block *block, TypeConverter &converter,
TypeConverter::SignatureConversion *conversion) {
FailureOr<Block *> result =
conversion ? argConverter.applySignatureConversion(block, converter,
*conversion, mapping)
: argConverter.convertSignature(block, converter, mapping);
if (Block *newBlock = result.getValue()) {
if (newBlock != block)
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
}
return result;
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion) {
if (!region->empty()) {
return *convertBlockSignature(®ion->front(), defaultTypeConverter,
&conversion);
}
return nullptr;
}
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
Region *region, TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
argConverter.setConverter(region, &converter);
if (region->empty())
return nullptr;
// Convert the arguments of each block within the region.
FailureOr<Block *> newEntry =
convertBlockSignature(®ion->front(), converter, entryConversion);
for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1)))
if (failed(convertBlockSignature(&block, converter)))
return failure();
return newEntry;
}
//===----------------------------------------------------------------------===//
// Rewriter Notification Hooks
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
ValueRange newValues) {
assert(newValues.size() == op->getNumResults());
assert(!replacements.count(op) && "operation was already replaced");
// Track if any of the results changed, e.g. erased and replaced with null.
bool resultChanged = false;
// Create mappings for each of the new result values.
Value newValue, result;
for (auto it : llvm::zip(newValues, op->getResults())) {
std::tie(newValue, result) = it;
if (!newValue) {
resultChanged = true;
continue;
}
// Remap, and check for any result type changes.
mapping.map(result, newValue);
resultChanged |= (newValue.getType() != result.getType());
}
if (resultChanged)
operationsWithChangedResults.push_back(replacements.size());
// Record the requested operation replacement.
TypeConverter *converter = nullptr;
if (currentConversionPattern)
converter = currentConversionPattern->getTypeConverter();
replacements.insert(std::make_pair(op, OpReplacement(converter)));
// Mark this operation as recursively ignored so that we don't need to
// convert any nested operations.
markNestedOpsIgnored(op);
}
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
Region *region = block->getParent();
Block *origPrevBlock = block->getPrevNode();
blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
}
void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
blockActions.push_back(BlockAction::getCreate(block));
}
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
Block *continuation) {
blockActions.push_back(BlockAction::getSplit(continuation, block));
}
void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
Block *srcBlock) {
blockActions.push_back(BlockAction::getMerge(block, srcBlock));
}
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
Region ®ion, Region &parent, Region::iterator before) {
Block *origPrevBlock = nullptr;
for (auto &pair : llvm::enumerate(region)) {
Block &block = pair.value();
blockActions.push_back(
BlockAction::getMove(&block, {®ion, origPrevBlock}));
origPrevBlock = █
}
}
void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
for (Block &block : blocks)
blockActions.push_back(BlockAction::getCreate(&block));
// Compute the conversion set for the inlined region.
auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
// This original region has already had its conversion set computed, so there
// shouldn't be any new failures.
(void)result;
assert(succeeded(result) && "expected region to have no unreachable blocks");
}
LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
LLVM_DEBUG({
Diagnostic diag(loc, DiagnosticSeverity::Remark);
reasonCallback(diag);
logger.startLine() << "** Failure : " << diag.str() << "\n";
});
return failure();
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(*this)) {}
ConversionPatternRewriter::~ConversionPatternRewriter() {}
/// PatternRewriter hook for replacing the results of an operation.
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
impl->notifyOpReplaced(op, newValues);
}
/// PatternRewriter hook for erasing a dead operation. The uses of this
/// operation *must* be made dead by the end of the conversion process,
/// otherwise an assert will be issued.
void ConversionPatternRewriter::eraseOp(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
impl->notifyOpReplaced(op, nullRepls);
}
void ConversionPatternRewriter::eraseBlock(Block *block) {
impl->notifyBlockIsBeingErased(block);
// Mark all ops for erasure.
for (Operation &op : *block)
eraseOp(&op);
// Unlink the block from its parent region. The block is kept in the block
// action and will be actually destroyed when rewrites are applied. This
// allows us to keep the operations in the block live and undo the removal by
// re-inserting the block.
block->getParent()->getBlocks().remove(block);
}
Block *ConversionPatternRewriter::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion) {
return impl->applySignatureConversion(region, conversion);
}
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
Region *region, TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
return impl->convertRegionTypes(region, converter, entryConversion);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
Value to) {
LLVM_DEBUG({
Operation *parentOp = from.getOwner()->getParentOp();
impl->logger.startLine() << "** Replace Argument : '" << from
<< "'(in region of '" << parentOp->getName()
<< "'(" << from.getOwner()->getParentOp() << ")\n";
});
impl->argReplacements.push_back(from);
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
/// Return the converted value that replaces 'key'. Return 'key' if there is
/// no such a converted value.
Value ConversionPatternRewriter::getRemappedValue(Value key) {
return impl->mapping.lookupOrDefault(key);
}
/// PatternRewriter hook for creating a new block with the given arguments.
void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
impl->notifyCreatedBlock(block);
}
/// PatternRewriter hook for splitting a block into two parts.
Block *ConversionPatternRewriter::splitBlock(Block *block,
Block::iterator before) {
auto *continuation = PatternRewriter::splitBlock(block, before);
impl->notifySplitBlock(block, continuation);
return continuation;
}
/// PatternRewriter hook for merging a block into another.
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
ValueRange argValues) {
impl->notifyBlocksBeingMerged(dest, source);
assert(llvm::all_of(source->getPredecessors(),
[dest](Block *succ) { return succ == dest; }) &&
"expected 'source' to have no predecessors or only 'dest'");
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
for (auto it : llvm::zip(source->getArguments(), argValues))
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
dest->getOperations().splice(dest->end(), source->getOperations());
eraseBlock(source);
}
/// PatternRewriter hook for moving blocks out of a region.
void ConversionPatternRewriter::inlineRegionBefore(Region ®ion,
Region &parent,
Region::iterator before) {
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
PatternRewriter::inlineRegionBefore(region, parent, before);
}
/// PatternRewriter hook for cloning blocks of one region into another.
void ConversionPatternRewriter::cloneRegionBefore(
Region ®ion, Region &parent, Region::iterator before,
BlockAndValueMapping &mapping) {
if (region.empty())
return;
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
// Collect the range of the cloned blocks.
auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator();
auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
}
/// PatternRewriter hook for creating a new operation.
void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Insert : '" << op->getName() << "'(" << op << ")\n";
});
impl->createdOps.push_back(op);
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
#ifndef NDEBUG
impl->pendingRootUpdates.insert(op);
#endif
impl->rootUpdates.emplace_back(op);
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
// There is nothing to do here, we only need to track the operation at the
// start of the update.
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
// Erase the last update for this operation.
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
auto &rootUpdates = impl->rootUpdates;
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
}
/// PatternRewriter hook for notifying match failure reasons.
LogicalResult ConversionPatternRewriter::notifyMatchFailure(
Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
}
/// Return a reference to the internal implementation.
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
/// Attempt to match and rewrite the IR root at the specified operation.
LogicalResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
auto &rewriterImpl = dialectRewriter.getImpl();
// Track the current conversion pattern in the rewriter.
assert(!rewriterImpl.currentConversionPattern &&
"already inside of a pattern rewrite");
llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
rewriterImpl.currentConversionPattern, this);
// Remap the operands of the operation.
SmallVector<Value, 4> operands;
if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
getTypeConverter(), op->getOperands(),
operands))) {
return failure();
}
return matchAndRewrite(op, operands, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<const RewritePattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(ConversionTarget &targetInfo,
const OwningRewritePatternList &patterns);
/// Returns true if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
/// Returns the conversion target in use by the legalizer.
ConversionTarget &getTarget() { return target; }
private:
/// Attempt to legalize the given operation by folding it.
LogicalResult legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter);
/// Attempt to legalize the given operation by applying a pattern. Returns
/// success if the operation was legalized, failure otherwise.
LogicalResult legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter);
/// Return true if the given pattern may be applied to the given operation,
/// false otherwise.
bool canApplyPattern(Operation *op, const RewritePattern &pattern,
ConversionPatternRewriter &rewriter);
/// Legalize the resultant IR after successfully applying the given pattern.
LogicalResult legalizePatternResult(Operation *op,
const RewritePattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState);
/// Legalizes the actions registered during the execution of a pattern.
LogicalResult legalizePatternBlockActions(Operation *op,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
LogicalResult legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
//===--------------------------------------------------------------------===//
// Cost Model
//===--------------------------------------------------------------------===//
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
/// patterns for operations that are not directly legal, but may be
/// transitively legal for the current target given the provided patterns.
void buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the legalization depth when legalizing an operation of the given
/// type.
unsigned computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Apply the conversion cost model to the given set of patterns, and return
/// the smallest legalization depth of any of the patterns. See
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
unsigned applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// The current set of patterns that have been applied.
SmallPtrSet<const RewritePattern *, 8> appliedPatterns;
/// The legalization information provided by the target.
ConversionTarget ⌖
/// The pattern applicator to use for conversions.
PatternApplicator applicator;
};
} // namespace
OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
const OwningRewritePatternList &patterns)
: target(targetInfo), applicator(patterns) {
// The set of patterns that can be applied to illegal operations to transform
// them into legal ones.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
LegalizationPatterns anyOpLegalizerPatterns;
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
}
bool OperationLegalizer::isIllegal(Operation *op) const {
// Check if the target explicitly marked this operation as illegal.
return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
auto &rewriterImpl = rewriter.getImpl();
#endif
LLVM_DEBUG({
auto &os = rewriterImpl.logger;
os.getOStream() << "\n";
os.startLine() << logLineComment;
os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
<< ") {\n";
os.indent();
// If the operation has no regions, just print it here.
if (op->getNumRegions() == 0) {
op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
os.getOStream() << "\n\n";
}
});
// Check if this operation is legal on the target.
if (auto legalityInfo = target.isLegal(op)) {
LLVM_DEBUG({
logSuccess(
rewriterImpl.logger, "operation marked legal by the target{0}",
legalityInfo->isRecursivelyLegal
? "; NOTE: operation is recursively legal; skipping internals"
: "");
rewriterImpl.logger.startLine() << logLineComment;
});
// If this operation is recursively legal, mark its children as ignored so
// that we don't consider them for legalization.
if (legalityInfo->isRecursivelyLegal)
rewriter.getImpl().markNestedOpsIgnored(op);
return success();
}
// Check to see if the operation is ignored and doesn't need to be converted.
if (rewriter.getImpl().isOpIgnored(op)) {
LLVM_DEBUG({
logSuccess(rewriterImpl.logger,
"operation marked 'ignored' during conversion");
rewriterImpl.logger.startLine() << logLineComment;
});
return success();
}
// If the operation isn't legal, try to fold it in-place.
// TODO: Should we always try to do this, even if the op is
// already legal?
if (succeeded(legalizeWithFold(op, rewriter))) {
LLVM_DEBUG({
logSuccess(rewriterImpl.logger, "operation was folded");
rewriterImpl.logger.startLine() << logLineComment;
});
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
if (succeeded(legalizeWithPattern(op, rewriter))) {
LLVM_DEBUG({
logSuccess(rewriterImpl.logger, "");
rewriterImpl.logger.startLine() << logLineComment;
});
return success();
}
LLVM_DEBUG({
logFailure(rewriterImpl.logger, "no matched legalization pattern");
rewriterImpl.logger.startLine() << logLineComment;
});
return failure();
}
LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
LLVM_DEBUG({
rewriterImpl.logger.startLine() << "* Fold {\n";
rewriterImpl.logger.indent();
});
// Try to fold the operation.
SmallVector<Value, 2> replacementValues;
rewriter.setInsertionPoint(op);
if (failed(rewriter.tryFold(op, replacementValues))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
return failure();
}
// Insert a replacement for 'op' with the folded replacement values.
rewriter.replaceOp(op, replacementValues);
// Recursively legalize any new constant operations.
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
i != e; ++i) {
Operation *cstOp = rewriterImpl.createdOps[i];
if (failed(legalize(cstOp, rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"generated constant '{0}' was illegal",
cstOp->getName()));
rewriterImpl.resetState(curState);
return failure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
return success();
}
LogicalResult
OperationLegalizer::legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
// Functor that returns if the given pattern may be applied.
auto canApply = [&](const RewritePattern &pattern) {
return canApplyPattern(op, pattern, rewriter);
};
// Functor that cleans up the rewriter state after a pattern failed to match.
RewriterState curState = rewriterImpl.getCurrentState();
auto onFailure = [&](const RewritePattern &pattern) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
rewriterImpl.resetState(curState);
appliedPatterns.erase(&pattern);
};
// Functor that performs additional legalization when a pattern is
// successfully applied.
auto onSuccess = [&](const RewritePattern &pattern) {
auto result = legalizePatternResult(op, pattern, rewriter, curState);
appliedPatterns.erase(&pattern);
if (failed(result))
rewriterImpl.resetState(curState);
return result;
};
// Try to match and rewrite a pattern on this operation.
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
onSuccess);
}
bool OperationLegalizer::canApplyPattern(Operation *op,
const RewritePattern &pattern,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG({
auto &os = rewriter.getImpl().logger;
os.getOStream() << "\n";
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
os.getOStream() << ")' {\n";
os.indent();
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack if it is not known to be safe.
if (!pattern.hasBoundedRewriteRecursion() &&
!appliedPatterns.insert(&pattern).second) {
LLVM_DEBUG(
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
return false;
}
return true;
}
LogicalResult OperationLegalizer::legalizePatternResult(
Operation *op, const RewritePattern &pattern,
ConversionPatternRewriter &rewriter, RewriterState &curState) {
auto &impl = rewriter.getImpl();
#ifndef NDEBUG
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
#endif
// Check that the root was either replaced or updated in place.
auto replacedRoot = [&] {
return llvm::any_of(
llvm::drop_begin(impl.replacements, curState.numReplacements),
[op](auto &it) { return it.first == op; });
};
auto updatedRootInPlace = [&] {
return llvm::any_of(
llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
[op](auto &state) { return state.getOperation() == op; });
};
(void)replacedRoot;
(void)updatedRootInPlace;
assert((replacedRoot() || updatedRootInPlace()) &&
"expected pattern to replace the root operation");
// Legalize each of the actions registered during application.
RewriterState newState = impl.getCurrentState();
if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
newState)) ||
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
newState))) {
return failure();
}
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
return success();
}
LogicalResult OperationLegalizer::legalizePatternBlockActions(
Operation *op, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl, RewriterState &state,
RewriterState &newState) {
SmallPtrSet<Operation *, 16> operationsToIgnore;
// If the pattern moved or created any blocks, make sure the types of block
// arguments get legalized.
for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
++i) {
auto &action = impl.blockActions[i];
if (action.kind == BlockActionKind::TypeConversion ||
action.kind == BlockActionKind::Erase)
continue;
// Only check blocks outside of the current operation.
Operation *parentOp = action.block->getParentOp();
if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
continue;
// If the region of the block has a type converter, try to convert the block
// directly.
if (auto *converter =
impl.argConverter.getConverter(action.block->getParent())) {
if (failed(impl.convertBlockSignature(action.block, *converter))) {
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
"block"));
return failure();
}
continue;
}
// Otherwise, check that this operation isn't one generated by this pattern.
// This is because we will attempt to legalize the parent operation, and
// blocks in regions created by this pattern will already be legalized later
// on. If we haven't built the set yet, build it now.
if (operationsToIgnore.empty()) {
auto createdOps = ArrayRef<Operation *>(impl.createdOps)
.drop_front(state.numCreatedOps);
operationsToIgnore.insert(createdOps.begin(), createdOps.end());
}
// If this operation should be considered for re-legalization, try it.
if (operationsToIgnore.insert(parentOp).second &&
failed(legalize(parentOp, rewriter))) {
LLVM_DEBUG(logFailure(
impl.logger, "operation '{0}'({1}) became illegal after block action",
parentOp->getName(), parentOp));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
Operation *op = impl.createdOps[i];
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"generated operation '{0}'({1}) was illegal",
op->getName(), op));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
Operation *op = impl.rootUpdates[i].getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"operation updated in-place '{0}' was illegal",
op->getName()));
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Cost Model
void OperationLegalizer::buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<const RewritePattern *, 2>>
invalidPatterns;
// A worklist of patterns to consider for legality.
llvm::SetVector<const RewritePattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
applicator.walkAllPatterns([&](const RewritePattern &pattern) {
Optional<OperationName> root = pattern.getRootKind();
// If the pattern has no specific root, we can't analyze the relationship
// between the root op and generated operations. Given that, add all such
// patterns to the legalization set.
if (!root) {
anyOpLegalizerPatterns.push_back(&pattern);
return;
}
// Skip operations that are always known to be legal.
if (target.getOpAction(*root) == LegalizationAction::Legal)
return;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[*root].insert(&pattern);
for (auto op : pattern.getGeneratedOps())
parentOps[op].insert(*root);
// Add this pattern to the worklist.
patternWorklist.insert(&pattern);
});
// If there are any patterns that don't have a specific root kind, we can't
// make direct assumptions about what operations will never be legalized.
// Note: Technically we could, but it would require an analysis that may
// recurse into itself. It would be better to perform this kind of filtering
// at a higher level than here anyways.
if (!anyOpLegalizerPatterns.empty()) {
for (const RewritePattern *pattern : patternWorklist)
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
return;
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
Optional<LegalizationAction> action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
invalidPatterns[*pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[*pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minOpPatternDepth;
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minOpPatternDepth.count(opIt.first))
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
legalizerPatterns);
// Apply the cost model to the patterns that can match any operation. Those
// with a specific operation type are already resolved when computing the op
// legalization depth.
if (!anyOpLegalizerPatterns.empty())
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
legalizerPatterns);
// Apply a cost model to the pattern applicator. We order patterns first by
// depth then benefit. `legalizerPatterns` contains per-op patterns by
// decreasing benefit.
applicator.applyCostModel([&](const RewritePattern &p) {
ArrayRef<const RewritePattern *> orderedPatternList;
if (Optional<OperationName> rootName = p.getRootKind())
orderedPatternList = legalizerPatterns[*rootName];
else
orderedPatternList = anyOpLegalizerPatterns;
// If the pattern is not found, then it was removed and cannot be matched.
auto it = llvm::find(orderedPatternList, &p);
if (it == orderedPatternList.end())
return PatternBenefit::impossibleToMatch();
// Patterns found earlier in the list have higher benefit.
return PatternBenefit(std::distance(it, orderedPatternList.end()));
});
}
unsigned OperationLegalizer::computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// Check for existing depth.
auto depthIt = minOpPatternDepth.find(op);
if (depthIt != minOpPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
// Apply the cost model to the operation patterns, and update the minimum
// depth.
unsigned minDepth = applyCostModelToPatterns(
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
minOpPatternDepth[op] = minDepth;
return minDepth;
}
unsigned OperationLegalizer::applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern within the set.
SmallVector<std::pair<const RewritePattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(patterns.size());
for (const RewritePattern *pattern : patterns) {
unsigned depth = 0;
for (auto generatedOp : pattern->getGeneratedOps()) {
unsigned generatedOpDepth = computeOpLegalizationDepth(
generatedOp, minOpPatternDepth, legalizerPatterns);
depth = std::max(depth, generatedOpDepth + 1);
}
patternsByDepth.emplace_back(pattern, depth);
// Update the minimum depth of the pattern list.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
llvm::array_pod_sort(
patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<const RewritePattern *, unsigned> *lhs,
const std::pair<const RewritePattern *, unsigned> *rhs) {
// First sort by the smaller pattern legalization depth.
if (lhs->second != rhs->second)
return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
&rhs->second);
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs->first->getBenefit();
auto rhsBenefit = rhs->first->getBenefit();
return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
&lhsBenefit);
});
// Update the legalization pattern to use the new sorted list.
patterns.clear();
for (auto &patternIt : patternsByDepth)
patterns.push_back(patternIt.first);
return minDepth;
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
// In this mode, the conversion will ignore failed conversions to allow
// illegal operations to co-exist in the IR.
Partial,
// In this mode, all operations must be legal for the given target for the
// conversion to succeed.
Full,
// In this mode, operations are analyzed for legality. No actual rewrites are
// applied to the operations on success.
Analysis,
};
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(ConversionTarget &target,
const OwningRewritePatternList &patterns,
OpConversionMode mode,
DenseSet<Operation *> *trackedOps = nullptr)
: opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
/// Converts the given operations to the conversion target.
LogicalResult convertOperations(ArrayRef<Operation *> ops);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// This method is called after the conversion process to legalize any
/// remaining artifacts and complete the conversion.
LogicalResult finalize(ConversionPatternRewriter &rewriter);
/// Legalize the types of converted block arguments.
LogicalResult
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize an operation result that was marked as "erased".
LogicalResult
legalizeErasedResult(Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize an operation result that was replaced with a value of a different
/// type.
LogicalResult
legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
TypeConverter *replConverter,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl);
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
/// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
/// this is populated with ops found to be legalizable to the target.
/// When mode == OpConversionMode::Partial, this is populated with ops found
/// *not* to be legalizable to the target.
DenseSet<Operation *> *trackedOps;
};
} // end anonymous namespace
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
// Partial conversions allow conversions to fail iff the operation was not
// explicitly marked as illegal. If the user provided a nonlegalizableOps
// set, non-legalizable ops are included.
if (mode == OpConversionMode::Partial) {
if (opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
if (trackedOps)
trackedOps->insert(op);
}
} else if (mode == OpConversionMode::Analysis) {
// Analysis conversions don't fail if any operations fail to legalize,
// they are only interested in the operations that were successfully
// legalized.
trackedOps->insert(op);
}
return success();
}
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
if (ops.empty())
return success();
ConversionTarget &target = opLegalizer.getTarget();
// Compute the set of operations and blocks to convert.
std::vector<Operation *> toConvert;
for (auto *op : ops) {
toConvert.emplace_back(op);
for (auto ®ion : op->getRegions())
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
toConvert, &target)))
return failure();
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext());
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriterImpl.discardRewrites(), failure();
// Now that all of the operations have been converted, finalize the conversion
// process to ensure any lingering conversion artifacts are cleaned up and
// legalized.
if (failed(finalize(rewriter)))
return rewriterImpl.discardRewrites(), failure();
// After a successful conversion, apply rewrites if this is not an analysis
// conversion.
if (mode == OpConversionMode::Analysis)
rewriterImpl.discardRewrites();
else
rewriterImpl.applyRewrites();
return success();
}
LogicalResult
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
// Legalize converted block arguments.
if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
return failure();
// Process requested operation replacements.
for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
i != e; ++i) {
unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
for (OpResult result : repl.first->getResults()) {
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
if (!newValue) {
if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
return failure();
continue;
}
// Otherwise, check to see if the type of the result changed.
if (result.getType() == newValue.getType())
continue;
// Legalize this result.
rewriter.setInsertionPoint(repl.first);
if (failed(legalizeChangedResultType(repl.first, result, newValue,
repl.second.converter, rewriter,
rewriterImpl)))
return failure();
// Update the end iterator for this loop in the case it was updated
// when legalizing generated conversion operations.
e = rewriterImpl.operationsWithChangedResults.size();
}
}
return success();
}
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl) {
// Functor used to check if all users of a value will be dead after
// conversion.
auto findLiveUser = [&](Value val) {
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
};
// Materialize any necessary conversions for converted block arguments that
// are still live.
size_t numCreatedOps = rewriterImpl.createdOps.size();
if (failed(rewriterImpl.argConverter.materializeLiveConversions(
rewriterImpl.mapping, rewriter, findLiveUser)))
return failure();
// Legalize any newly created operations during argument materialization.
for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
return rewriterImpl.createdOps[i]->emitError()
<< "failed to legalize conversion operation generated for block "
"argument that remained live after conversion";
}
}
return success();
}
LogicalResult OperationConverter::legalizeErasedResult(
Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl) {
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != result.user_end()) {
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
<< op->getName() << "' marked as erased";
diag.attachNote(liveUserIt->getLoc())
<< "found live user of result #" << result.getResultNumber() << ": "
<< *liveUserIt;
return failure();
}
return success();
}
LogicalResult OperationConverter::legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl) {
// Walk the users of this value to see if there are any live users that
// weren't replaced during conversion.
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt == result.user_end())
return success();
// If the replacement has a type converter, attempt to materialize a
// conversion back to the original type.
if (!replConverter) {
// TODO: We should emit an error here, similarly to the case where the
// result is replaced with null. Unfortunately a lot of existing
// patterns rely on this behavior, so until those patterns are updated
// we keep the legacy behavior here of just forwarding the new value.
return success();
}
// Track the number of created operations so that new ones can be legalized.
size_t numCreatedOps = rewriterImpl.createdOps.size();
// Materialize a conversion for this live result value.
Type resultType = result.getType();
Value convertedValue = replConverter->materializeSourceConversion(
rewriter, op->getLoc(), resultType, newValue);
if (!convertedValue) {
InFlightDiagnostic diag = op->emitError()
<< "failed to materialize conversion for result #"
<< result.getResultNumber() << " of operation '"
<< op->getName()
<< "' that remained live after conversion";
diag.attachNote(liveUserIt->getLoc())
<< "see existing live user here: " << *liveUserIt;
return failure();
}
// Legalize all of the newly created conversion operations.
for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
return op->emitError("failed to legalize conversion operation generated ")
<< "for result #" << result.getResultNumber() << " of operation '"
<< op->getName() << "' that remained live after conversion";
}
}
rewriterImpl.mapping.map(result, convertedValue);
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
/// Remap an input of the original signature with a new set of types. The
/// new types are appended to the new signature conversion.
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
/// Append new input types to the signature conversion, this should only be
/// used if the new types are not intended to remap an existing input.
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
/// Remap an input of the original signature with a range of types in the
/// new signature.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] =
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}
/// Remap an input of the original signature to another `replacementValue`
/// value. This would make the signature converter drop this argument.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
Value replacementValue) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
remappedInputs[origInputNo] =
InputMapping{origInputNo, /*size=*/0, replacementValue};
}
/// This hooks allows for converting a type.
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) {
auto existingIt = cachedDirectConversions.find(t);
if (existingIt != cachedDirectConversions.end()) {
if (existingIt->second)
results.push_back(existingIt->second);
return success(existingIt->second != nullptr);
}
auto multiIt = cachedMultiConversions.find(t);
if (multiIt != cachedMultiConversions.end()) {
results.append(multiIt->second.begin(), multiIt->second.end());
return success();
}
// Walk the added converters in reverse order to apply the most recently
// registered first.
size_t currentCount = results.size();
for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
if (Optional<LogicalResult> result = converter(t, results)) {
if (!succeeded(*result)) {
cachedDirectConversions.try_emplace(t, nullptr);
return failure();
}
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
if (newTypes.size() == 1)
cachedDirectConversions.try_emplace(t, newTypes.front());
else
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
return success();
}
}
return failure();
}
/// This hook simplifies defining 1-1 type conversions. This function returns
/// the type to convert to on success, and a null type on failure.
Type TypeConverter::convertType(Type t) {
// Use the multi-type result version to convert the type.
SmallVector<Type, 1> results;
if (failed(convertType(t, results)))
return nullptr;
// Check to ensure that only one type was produced.
return results.size() == 1 ? results.front() : nullptr;
}
/// Convert the given set of types, filling 'results' as necessary. This
/// returns failure if the conversion of any of the types fails, success
/// otherwise.
LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types,
SmallVectorImpl<Type> &results) {
for (auto type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
/// Return true if the given type is legal for this type converter, i.e. the
/// type converts to itself.
bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
/// Return true if the given operation has legal operand and result types.
bool TypeConverter::isLegal(Operation *op) {
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
}
/// Return true if the types of block arguments within the region are legal.
bool TypeConverter::isLegal(Region *region) {
return llvm::all_of(*region, [this](Block &block) {
return isLegal(block.getArgumentTypes());
});
}
/// Return true if the inputs and outputs of the given function type are
/// legal.
bool TypeConverter::isSignatureLegal(FunctionType ty) {
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
}
/// This hook allows for converting a specific argument of a signature.
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
SignatureConversion &result,
unsigned origInputOffset) {
for (unsigned i = 0, e = types.size(); i != e; ++i)
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
return failure();
return success();
}
Value TypeConverter::materializeConversion(
MutableArrayRef<MaterializationCallbackFn> materializations,
OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
if (Optional<Value> result = fn(builder, resultType, inputs, loc))
return result.getValue();
return nullptr;
}
/// This function converts the type signature of the given block, by invoking
/// 'convertSignatureArg' for each argument. This function should return a valid
/// conversion for the signature on success, None otherwise.
auto TypeConverter::convertBlockSignature(Block *block)
-> Optional<SignatureConversion> {
SignatureConversion conversion(block->getNumArguments());
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
return llvm::None;
return conversion;
}
/// Create a default conversion pattern that rewrites the type signature of a
/// FuncOp.
namespace {
struct FuncOpSignatureConversion : public OpConversionPattern<FuncOp> {
FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: OpConversionPattern(converter, ctx) {}
/// Hook for derived classes to implement combined matching and rewriting.
LogicalResult
matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
FunctionType type = funcOp.getType();
// Convert the original function types.
TypeConverter::SignatureConversion result(type.getNumInputs());
SmallVector<Type, 1> newResults;
if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter,
&result)))
return failure();
// Update the function signature in-place.
rewriter.updateRootInPlace(funcOp, [&] {
funcOp.setType(FunctionType::get(result.getConvertedTypes(), newResults,
funcOp.getContext()));
});
return success();
}
};
} // end anonymous namespace
void mlir::populateFuncOpTypeConversionPattern(
OwningRewritePatternList &patterns, MLIRContext *ctx,
TypeConverter &converter) {
patterns.insert<FuncOpSignatureConversion>(ctx, converter);
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
/// Register a legality action for the given operation.
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
}
/// Register a legality action for the given dialects.
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
/// Get the legality action for the given operation.
auto ConversionTarget::getOpAction(OperationName op) const
-> Optional<LegalizationAction> {
Optional<LegalizationInfo> info = getOpInfo(op);
return info ? info->action : Optional<LegalizationAction>();
}
/// If the given operation instance is legal on this target, a structure
/// containing legality information is returned. If the operation is not legal,
/// None is returned.
auto ConversionTarget::isLegal(Operation *op) const
-> Optional<LegalOpDetails> {
Optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return llvm::None;
// Returns true if this operation instance is known to be legal.
auto isOpLegal = [&] {
// Handle dynamic legality either with the provided legality function, or
// the default hook on the derived instance.
if (info->action == LegalizationAction::Dynamic)
return info->legalityFn ? (*info->legalityFn)(op)
: isDynamicallyLegal(op);
// Otherwise, the operation is only legal if it was marked 'Legal'.
return info->action == LegalizationAction::Legal;
};
if (!isOpLegal())
return llvm::None;
// This operation is legal, compute any additional legality information.
LegalOpDetails legalityDetails;
if (info->isRecursivelyLegal) {
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
if (legalityFnIt != opRecursiveLegalityFns.end())
legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
else
legalityDetails.isRecursivelyLegal = true;
}
return legalityDetails;
}
/// Set the dynamic legality callback for the given operation.
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action == LegalizationAction::Dynamic &&
"expected operation to already be marked as dynamically legal");
infoIt->second.legalityFn = callback;
}
/// Set the recursive legality callback for the given operation and mark the
/// operation as recursively legal.
void ConversionTarget::markOpRecursivelyLegal(
OperationName name, const DynamicLegalityCallbackFn &callback) {
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action != LegalizationAction::Illegal &&
"expected operation to already be marked as legal");
infoIt->second.isRecursivelyLegal = true;
if (callback)
opRecursiveLegalityFns[name] = callback;
else
opRecursiveLegalityFns.erase(name);
}
/// Set the dynamic legality callback for the given dialects.
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = callback;
}
/// Get the legalization information for the given operation.
auto ConversionTarget::getOpInfo(OperationName op) const
-> Optional<LegalizationInfo> {
// Check for info for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Check for info for the parent dialect.
auto dialectIt = legalDialects.find(op.getDialect());
if (dialectIt != legalDialects.end()) {
Optional<DynamicLegalityCallbackFn> callback;
auto dialectFn = dialectLegalityFns.find(op.getDialect());
if (dialectFn != dialectLegalityFns.end())
callback = dialectFn->second;
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
callback};
}
// Otherwise, check if we mark unknown operations as dynamic.
if (unknownOpsDynamicallyLegal)
return LegalizationInfo{LegalizationAction::Dynamic,
/*isRecursivelyLegal=*/false, unknownLegalityFn};
return llvm::None;
}
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
/// Apply a partial conversion on the given operations and all nested
/// operations. This method converts as many operations to the target as
/// possible, ignoring operations that failed to legalize. This method only
/// returns failure if there ops explicitly marked as illegal.
/// If an `unconvertedOps` set is provided, all operations that are found not
/// to be legalizable to the given `target` are placed within that set. (Note
/// that if there is an op explicitly marked as illegal, the conversion
/// terminates and the `unconvertedOps` set will not necessarily be complete.)
LogicalResult
mlir::applyPartialConversion(ArrayRef<Operation *> ops,
ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> *unconvertedOps) {
OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
unconvertedOps);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> *unconvertedOps) {
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
unconvertedOps);
}
/// Apply a complete conversion on the given operations, and all nested
/// operations. This method will return failure if the conversion of any
/// operation fails.
LogicalResult
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns) {
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns) {
return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
}
/// Apply an analysis conversion on the given operations, and all nested
/// operations. This method analyzes which operations would be successfully
/// converted to the target if a conversion was applied. All operations that
/// were found to be legalizable to the given 'target' are placed within the
/// provided 'convertedOps' set; note that no actual rewrites are applied to the
/// operations on success and only pre-existing operations are added to the set.
LogicalResult
mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> &convertedOps) {
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
&convertedOps);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> &convertedOps) {
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
convertedOps);
}