Shape.cpp
33.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
//===- Shape.cpp - MLIR Shape Operations ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::shape;
namespace {
#include "ShapeCanonicalization.inc"
}
RankedTensorType shape::getExtentTensorType(MLIRContext *ctx) {
return RankedTensorType::get({ShapedType::kDynamicSize}, IndexType::get(ctx));
}
static bool isErrorPropagationPossible(TypeRange operandTypes) {
for (Type ty : operandTypes)
if (ty.isa<SizeType>() || ty.isa<ShapeType>() || ty.isa<ValueShapeType>())
return true;
return false;
}
static LogicalResult verifySizeOrIndexOp(Operation *op) {
assert(op != nullptr && op->getNumResults() == 1);
Type resultTy = op->getResultTypes().front();
if (isErrorPropagationPossible(op->getOperandTypes())) {
if (!resultTy.isa<SizeType>())
return op->emitOpError()
<< "if at least one of the operands can hold error values then "
"the result must be of type `size` to propagate them";
}
return success();
}
static LogicalResult verifyShapeOrExtentTensorOp(Operation *op) {
assert(op != nullptr && op->getNumResults() == 1);
Type resultTy = op->getResultTypes().front();
if (isErrorPropagationPossible(op->getOperandTypes())) {
if (!resultTy.isa<ShapeType>())
return op->emitOpError()
<< "if at least one of the operands can hold error values then "
"the result must be of type `shape` to propagate them";
}
return success();
}
//===----------------------------------------------------------------------===//
// InlinerInterface
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for inlining shape dialect ops.
struct ShapeInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
// Returns true if the given region 'src' can be inlined into the region
// 'dest' that is attached to an operation registered to the current dialect.
bool isLegalToInline(Region *dest, Region *src,
BlockAndValueMapping &) const final {
return true;
}
// Returns true if the given operation 'op', that is registered to this
// dialect, can be inlined into the region 'dest' that is attached to an
// operation registered to the current dialect.
bool isLegalToInline(Operation *op, Region *dest,
BlockAndValueMapping &) const final {
return true;
}
};
} // namespace
void ShapeDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
>();
addTypes<ComponentType, ElementType, ShapeType, SizeType, ValueShapeType,
WitnessType>();
addInterfaces<ShapeInlinerInterface>();
// Allow unknown operations during prototyping and testing. As the dialect is
// still evolving it makes it simple to start with an unregistered ops and
// try different variants before actually defining the op.
allowUnknownOperations();
}
Operation *ShapeDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (type.isa<ShapeType>() ||
type == getExtentTensorType(builder.getContext()))
return builder.create<ConstShapeOp>(loc, type,
value.cast<DenseIntElementsAttr>());
if (type.isa<SizeType>())
return builder.create<ConstSizeOp>(loc, type, value.cast<IntegerAttr>());
if (type.isa<WitnessType>())
return builder.create<ConstWitnessOp>(loc, type, value.cast<BoolAttr>());
if (type.isa<IndexType>())
return builder.create<ConstantOp>(loc, type, value);
return nullptr;
}
/// Parse a type registered to this dialect.
Type ShapeDialect::parseType(DialectAsmParser &parser) const {
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
if (keyword == "component")
return ComponentType::get(getContext());
if (keyword == "element")
return ElementType::get(getContext());
if (keyword == "shape")
return ShapeType::get(getContext());
if (keyword == "size")
return SizeType::get(getContext());
if (keyword == "value_shape")
return ValueShapeType::get(getContext());
if (keyword == "witness")
return WitnessType::get(getContext());
parser.emitError(parser.getNameLoc(), "unknown shape type: ") << keyword;
return Type();
}
/// Print a type registered to this dialect.
void ShapeDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<ComponentType>([&](Type) { os << "component"; })
.Case<ElementType>([&](Type) { os << "element"; })
.Case<ShapeType>([&](Type) { os << "shape"; })
.Case<SizeType>([&](Type) { os << "size"; })
.Case<ValueShapeType>([&](Type) { os << "value_shape"; })
.Case<WitnessType>([&](Type) { os << "witness"; })
.Default([](Type) { llvm_unreachable("unexpected 'shape' type kind"); });
}
//===----------------------------------------------------------------------===//
// AnyOp
//===----------------------------------------------------------------------===//
// TODO: Canonicalization should be implemented for shapes that can be
// determined through mixtures of the known dimensions of the inputs.
OpFoldResult AnyOp::fold(ArrayRef<Attribute> operands) {
// Only the last operand is checked because AnyOp is commutative.
if (operands.back())
return operands.back();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AssumingOp
//===----------------------------------------------------------------------===//
static ParseResult parseAssumingOp(OpAsmParser &parser,
OperationState &result) {
result.regions.reserve(1);
Region *doRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, builder.getType<WitnessType>(),
result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the region and add a terminator if elided.
if (parser.parseRegion(*doRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
AssumingOp::ensureTerminator(*doRegion, parser.getBuilder(), result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, AssumingOp op) {
bool yieldsResults = !op.results().empty();
p << AssumingOp::getOperationName() << " " << op.witness();
if (yieldsResults) {
p << " -> (" << op.getResultTypes() << ")";
}
p.printRegion(op.doRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/yieldsResults);
p.printOptionalAttrDict(op.getAttrs());
}
namespace {
// Removes AssumingOp with a passing witness and inlines the region.
struct AssumingWithTrue : public OpRewritePattern<AssumingOp> {
using OpRewritePattern<AssumingOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AssumingOp op,
PatternRewriter &rewriter) const override {
auto witness = op.witness().getDefiningOp<ConstWitnessOp>();
if (!witness || !witness.passingAttr())
return failure();
AssumingOp::inlineRegionIntoParent(op, rewriter);
return success();
}
};
} // namespace
void AssumingOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
MLIRContext *context) {
// If taking a passing witness, inline region.
patterns.insert<AssumingWithTrue>(context);
}
// See RegionBranchOpInterface in Interfaces/ControlFlowInterfaces.td
void AssumingOp::getSuccessorRegions(
Optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
// AssumingOp has unconditional control flow into the region and back to the
// parent, so return the correct RegionSuccessor purely based on the index
// being None or 0.
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
regions.push_back(RegionSuccessor(&doRegion()));
}
void AssumingOp::inlineRegionIntoParent(AssumingOp &op,
PatternRewriter &rewriter) {
auto *blockBeforeAssuming = rewriter.getInsertionBlock();
auto *assumingBlock = op.getBody();
auto initPosition = rewriter.getInsertionPoint();
auto *blockAfterAssuming =
rewriter.splitBlock(blockBeforeAssuming, initPosition);
// Remove the AssumingOp and AssumingYieldOp.
auto &yieldOp = assumingBlock->back();
rewriter.inlineRegionBefore(op.doRegion(), blockAfterAssuming);
rewriter.replaceOp(op, yieldOp.getOperands());
rewriter.eraseOp(&yieldOp);
// Merge blocks together as there was no branching behavior from the
// AssumingOp.
rewriter.mergeBlocks(assumingBlock, blockBeforeAssuming);
rewriter.mergeBlocks(blockAfterAssuming, blockBeforeAssuming);
}
//===----------------------------------------------------------------------===//
// AssumingAllOp
//===----------------------------------------------------------------------===//
OpFoldResult AssumingAllOp::fold(ArrayRef<Attribute> operands) {
// Iterate in reverse to first handle all constant operands. They are
// guaranteed to be the tail of the inputs because this is commutative.
for (int idx = operands.size() - 1; idx >= 0; idx--) {
Attribute a = operands[idx];
// Cannot fold if any inputs are not constant;
if (!a)
return nullptr;
// We do not need to keep statically known values after handling them in
// this method.
getOperation()->eraseOperand(idx);
// Always false if any input is statically known false
if (!a.cast<BoolAttr>().getValue())
return a;
}
// If this is reached, all inputs were statically known passing.
return BoolAttr::get(true, getContext());
}
static LogicalResult verify(AssumingAllOp op) {
// Ensure that AssumingAllOp contains at least one operand
if (op.getNumOperands() == 0)
return op.emitOpError("no operands specified");
return success();
}
//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//
OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
if (!operands[1])
return nullptr;
auto rhsShape = llvm::to_vector<6>(
operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
if (rhsShape.empty())
return lhs();
if (!operands[0])
return nullptr;
auto lhsShape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
if (lhsShape.empty())
return rhs();
SmallVector<int64_t, 6> resultShape;
// If the shapes are not compatible, we can't fold it.
// TODO: Fold to an "error".
if (!OpTrait::util::getBroadcastedShape(lhsShape, rhsShape, resultShape))
return nullptr;
Builder builder(getContext());
return builder.getIndexTensorAttr(resultShape);
}
//===----------------------------------------------------------------------===//
// ConcatOp
//===----------------------------------------------------------------------===//
OpFoldResult ConcatOp::fold(ArrayRef<Attribute> operands) {
if (!operands[0] || !operands[1])
return nullptr;
auto lhsShape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto rhsShape = llvm::to_vector<6>(
operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
SmallVector<int64_t, 6> resultShape;
resultShape.append(lhsShape.begin(), lhsShape.end());
resultShape.append(rhsShape.begin(), rhsShape.end());
Builder builder(getContext());
return builder.getIndexTensorAttr(resultShape);
}
//===----------------------------------------------------------------------===//
// ConstShapeOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ConstShapeOp &op) {
p << "shape.const_shape ";
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"shape"});
p << "[";
interleaveComma(op.shape().getValues<int64_t>(), p,
[&](int64_t i) { p << i; });
p << "] : ";
p.printType(op.getType());
}
static ParseResult parseConstShapeOp(OpAsmParser &parser,
OperationState &result) {
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
// We piggy-back on ArrayAttr parsing, though we don't internally store the
// shape as an ArrayAttr.
// TODO: Implement custom parser and maybe make syntax a bit more concise.
Attribute extentsRaw;
NamedAttrList dummy;
if (parser.parseAttribute(extentsRaw, "dummy", dummy))
return failure();
auto extentsArray = extentsRaw.dyn_cast<ArrayAttr>();
if (!extentsArray)
return failure();
SmallVector<int64_t, 6> ints;
for (Attribute extent : extentsArray) {
IntegerAttr attr = extent.dyn_cast<IntegerAttr>();
if (!attr)
return failure();
ints.push_back(attr.getInt());
}
Builder &builder = parser.getBuilder();
result.addAttribute("shape", builder.getIndexTensorAttr(ints));
Type resultTy;
if (parser.parseColonType(resultTy))
return failure();
result.types.push_back(resultTy);
return success();
}
OpFoldResult ConstShapeOp::fold(ArrayRef<Attribute>) { return shapeAttr(); }
//===----------------------------------------------------------------------===//
// CstrBroadcastableOp
//===----------------------------------------------------------------------===//
namespace {
// Given an input shape Value, try to obtain the shape's values.
LogicalResult getShapeVec(Value input, SmallVectorImpl<int64_t> &shapeValues) {
if (auto inputOp = input.getDefiningOp<ShapeOfOp>()) {
auto type = inputOp.arg().getType().dyn_cast<ShapedType>();
if (!type.hasRank())
return failure();
shapeValues = llvm::to_vector<6>(type.getShape());
return success();
} else if (auto inputOp = input.getDefiningOp<ConstShapeOp>()) {
shapeValues = llvm::to_vector<6>(inputOp.shape().getValues<int64_t>());
return success();
} else {
return failure();
}
}
} // namespace
void CstrBroadcastableOp::getCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
// Canonicalization patterns have overlap with the considerations during
// folding in case additional shape information is inferred at some point that
// does not result in folding.
patterns.insert<CstrBroadcastableEqOps>(context);
}
OpFoldResult CstrBroadcastableOp::fold(ArrayRef<Attribute> operands) {
// Both operands are not needed if one is a scalar.
if (operands[0] &&
operands[0].cast<DenseIntElementsAttr>().getNumElements() == 0)
return BoolAttr::get(true, getContext());
if (operands[1] &&
operands[1].cast<DenseIntElementsAttr>().getNumElements() == 0)
return BoolAttr::get(true, getContext());
if (operands[0] && operands[1]) {
auto lhsShape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto rhsShape = llvm::to_vector<6>(
operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
SmallVector<int64_t, 6> resultShape;
if (OpTrait::util::staticallyKnownBroadcastable(lhsShape, rhsShape))
return BoolAttr::get(true, getContext());
}
// Lastly, see if folding can be completed based on what constraints are known
// on the input shapes.
SmallVector<int64_t, 6> lhsShape, rhsShape;
if (failed(getShapeVec(lhs(), lhsShape)))
return nullptr;
if (failed(getShapeVec(rhs(), rhsShape)))
return nullptr;
if (OpTrait::util::staticallyKnownBroadcastable(lhsShape, rhsShape))
return BoolAttr::get(true, getContext());
// Because a failing witness result here represents an eventual assertion
// failure, we do not replace it with a constant witness.
return nullptr;
}
//===----------------------------------------------------------------------===//
// CstrEqOp
//===----------------------------------------------------------------------===//
void CstrEqOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
MLIRContext *context) {
// If inputs are equal, return passing witness
patterns.insert<CstrEqEqOps>(context);
}
OpFoldResult CstrEqOp::fold(ArrayRef<Attribute> operands) {
if (llvm::all_of(operands,
[&](Attribute a) { return a && a == operands[0]; }))
return BoolAttr::get(true, getContext());
// Because a failing witness result here represents an eventual assertion
// failure, we do not try to replace it with a constant witness. Similarly, we
// cannot if there are any non-const inputs.
return nullptr;
}
//===----------------------------------------------------------------------===//
// ConstSizeOp
//===----------------------------------------------------------------------===//
void ConstSizeOp::build(OpBuilder &builder, OperationState &result,
int64_t value) {
build(builder, result, builder.getIndexAttr(value));
}
OpFoldResult ConstSizeOp::fold(ArrayRef<Attribute>) { return valueAttr(); }
void ConstSizeOp::getAsmResultNames(
llvm::function_ref<void(Value, StringRef)> setNameFn) {
SmallString<4> buffer;
llvm::raw_svector_ostream os(buffer);
os << "c" << value();
setNameFn(getResult(), os.str());
}
//===----------------------------------------------------------------------===//
// ConstWitnessOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstWitnessOp::fold(ArrayRef<Attribute>) { return passingAttr(); }
//===----------------------------------------------------------------------===//
// CstrRequireOp
//===----------------------------------------------------------------------===//
OpFoldResult CstrRequireOp::fold(ArrayRef<Attribute> operands) {
return operands[0];
}
//===----------------------------------------------------------------------===//
// ShapeEqOp
//===----------------------------------------------------------------------===//
OpFoldResult ShapeEqOp::fold(ArrayRef<Attribute> operands) {
auto lhs = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
if (lhs == nullptr)
return {};
auto rhs = operands[1].dyn_cast_or_null<DenseIntElementsAttr>();
if (rhs == nullptr)
return {};
return BoolAttr::get(lhs == rhs, getContext());
}
//===----------------------------------------------------------------------===//
// IndexToSizeOp
//===----------------------------------------------------------------------===//
OpFoldResult IndexToSizeOp::fold(ArrayRef<Attribute> operands) {
// Constant values of both types, `shape.size` and `index`, are represented as
// `IntegerAttr`s which makes constant folding simple.
if (Attribute arg = operands[0])
return arg;
return {};
}
void IndexToSizeOp::getCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<SizeToIndexToSizeCanonicalization>(context);
}
//===----------------------------------------------------------------------===//
// FromExtentsOp
//===----------------------------------------------------------------------===//
OpFoldResult FromExtentsOp::fold(ArrayRef<Attribute> operands) {
if (llvm::any_of(operands, [](Attribute a) { return !a; }))
return nullptr;
SmallVector<int64_t, 6> extents;
for (auto attr : operands)
extents.push_back(attr.cast<IntegerAttr>().getInt());
Builder builder(getContext());
return builder.getIndexTensorAttr(extents);
}
//===----------------------------------------------------------------------===//
// GetExtentOp
//===----------------------------------------------------------------------===//
Optional<int64_t> GetExtentOp::getConstantDim() {
if (auto constSizeOp = dim().getDefiningOp<ConstSizeOp>())
return constSizeOp.value().getLimitedValue();
if (auto constantOp = dim().getDefiningOp<ConstantOp>())
return constantOp.value().cast<IntegerAttr>().getInt();
return llvm::None;
}
OpFoldResult GetExtentOp::fold(ArrayRef<Attribute> operands) {
auto elements = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
if (!elements)
return nullptr;
Optional<int64_t> dim = getConstantDim();
if (!dim.hasValue())
return nullptr;
if (dim.getValue() >= elements.getNumElements())
return nullptr;
return elements.getValue({(uint64_t)dim.getValue()});
}
void GetExtentOp::build(OpBuilder &builder, OperationState &result, Value shape,
int64_t dim) {
auto loc = result.location;
auto dimAttr = builder.getIndexAttr(dim);
if (shape.getType().isa<ShapeType>()) {
Value dim = builder.create<ConstSizeOp>(loc, dimAttr);
build(builder, result, builder.getType<SizeType>(), shape, dim);
} else {
Value dim =
builder.create<ConstantOp>(loc, builder.getIndexType(), dimAttr);
build(builder, result, builder.getIndexType(), shape, dim);
}
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
OpFoldResult shape::RankOp::fold(ArrayRef<Attribute> operands) {
auto shape = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
if (!shape)
return {};
int64_t rank = shape.getNumElements();
Builder builder(getContext());
return builder.getIndexAttr(rank);
}
/// Evaluate the `rank` operation for shapes of ranked tensors at compile time.
/// Constant folding fails in cases where only the rank is constant, not the
/// shape itself.
/// This canonicalization matches `shape.rank(shape.shape_of(%ranked_tensor))`.
///
/// Example:
///
/// %shape = shape.shape_of %ranked_tensor : tensor<1x2x?xf32>
/// %rank = shape.rank %shape
///
/// becomes
///
/// %rank = shape.const_size 3
namespace {
struct RankShapeOfCanonicalizationPattern
: public OpRewritePattern<shape::RankOp> {
using OpRewritePattern<shape::RankOp>::OpRewritePattern;
LogicalResult matchAndRewrite(shape::RankOp op,
PatternRewriter &rewriter) const override {
auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>();
if (!shapeOfOp)
return failure();
auto rankedTensorType =
shapeOfOp.arg().getType().dyn_cast<RankedTensorType>();
if (!rankedTensorType)
return failure();
int64_t rank = rankedTensorType.getRank();
if (op.getType().isa<IndexType>()) {
rewriter.replaceOpWithNewOp<ConstantIndexOp>(op.getOperation(), rank);
} else if (op.getType().isa<shape::SizeType>()) {
rewriter.replaceOpWithNewOp<shape::ConstSizeOp>(op.getOperation(), rank);
} else {
return failure();
}
return success();
}
};
} // namespace
void shape::RankOp::getCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<RankShapeOfCanonicalizationPattern>(context);
}
//===----------------------------------------------------------------------===//
// NumElementsOp
//===----------------------------------------------------------------------===//
OpFoldResult NumElementsOp::fold(ArrayRef<Attribute> operands) {
// Fold only when argument constant.
Attribute shape = operands[0];
if (!shape)
return {};
APInt product(64, 1);
for (auto value : shape.cast<DenseIntElementsAttr>())
product *= value;
Builder builder(getContext());
return builder.getIndexAttr(product.getLimitedValue());
}
void NumElementsOp::build(OpBuilder &builder, OperationState &result,
Value shape) {
if (shape.getType().isa<ShapedType>()) {
auto type = builder.getIndexType();
return build(builder, result, type, shape);
}
auto type = SizeType::get(builder.getContext());
return build(builder, result, type, shape);
}
//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//
OpFoldResult MulOp::fold(ArrayRef<Attribute> operands) {
auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return nullptr;
auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return nullptr;
APInt folded = lhs.getValue() * rhs.getValue();
Type indexTy = IndexType::get(getContext());
return IntegerAttr::get(indexTy, folded);
}
//===----------------------------------------------------------------------===//
// ShapeOfOp
//===----------------------------------------------------------------------===//
OpFoldResult ShapeOfOp::fold(ArrayRef<Attribute>) {
auto type = getOperand().getType().dyn_cast<ShapedType>();
if (!type || !type.hasStaticShape())
return nullptr;
Builder builder(getContext());
return builder.getIndexTensorAttr(type.getShape());
}
void ShapeOfOp::build(OpBuilder &builder, OperationState &result, Value arg) {
Type type = arg.getType().isa<ShapedType>()
? (Type)getExtentTensorType(builder.getContext())
: (Type)builder.getType<ShapeType>();
return ShapeOfOp::build(builder, result, type, arg);
}
namespace {
struct ShapeOfWithTensor : public OpRewritePattern<shape::ShapeOfOp> {
using OpRewritePattern<shape::ShapeOfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(shape::ShapeOfOp op,
PatternRewriter &rewriter) const override {
if (!op.arg().getType().isa<ShapedType>())
return failure();
if (op.getType().isa<ShapedType>())
return failure();
rewriter.replaceOpWithNewOp<shape::ShapeOfOp>(op.getOperation(), op.arg());
return success();
}
};
} // namespace
void ShapeOfOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
MLIRContext *context) {
patterns.insert<ShapeOfWithTensor>(context);
}
//===----------------------------------------------------------------------===//
// SizeToIndexOp
//===----------------------------------------------------------------------===//
OpFoldResult SizeToIndexOp::fold(ArrayRef<Attribute> operands) {
// Constant values of both types, `shape.size` and `index`, are represented as
// `IntegerAttr`s which makes constant folding simple.
if (Attribute arg = operands[0])
return arg;
return impl::foldCastOp(*this);
}
void SizeToIndexOp::getCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<IndexToSizeToIndexCanonicalization>(context);
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(shape::YieldOp op) {
auto *parentOp = op.getParentOp();
auto results = parentOp->getResults();
auto operands = op.getOperands();
if (parentOp->getNumResults() != op.getNumOperands())
return op.emitOpError() << "number of operands does not match number of "
"results of its parent";
for (auto e : llvm::zip(results, operands))
if (std::get<0>(e).getType() != std::get<1>(e).getType())
return op.emitOpError()
<< "types mismatch between yield op and its parent";
return success();
}
//===----------------------------------------------------------------------===//
// SplitAtOp
//===----------------------------------------------------------------------===//
LogicalResult SplitAtOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
if (!operands[0] || !operands[1])
return failure();
auto shapeVec = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto shape = llvm::makeArrayRef(shapeVec);
auto splitPoint = operands[1].cast<IntegerAttr>().getInt();
// Verify that the split point is in the correct range.
// TODO: Constant fold to an "error".
int64_t rank = shape.size();
if (!(-rank <= splitPoint && splitPoint <= rank))
return failure();
if (splitPoint < 0)
splitPoint += shape.size();
Builder builder(operands[0].getContext());
results.push_back(builder.getIndexTensorAttr(shape.take_front(splitPoint)));
results.push_back(builder.getIndexTensorAttr(shape.drop_front(splitPoint)));
return success();
}
//===----------------------------------------------------------------------===//
// ToExtentTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult ToExtentTensorOp::fold(ArrayRef<Attribute> operands) {
if (!operands[0])
return impl::foldCastOp(*this);
Builder builder(getContext());
auto shape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto type = RankedTensorType::get({static_cast<int64_t>(shape.size())},
builder.getIndexType());
return DenseIntElementsAttr::get(type, shape);
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::build(OpBuilder &builder, OperationState &result, Value shape,
ValueRange initVals) {
result.addOperands(shape);
result.addOperands(initVals);
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
bodyBlock.addArgument(builder.getIndexType());
Type elementType;
if (auto tensorType = shape.getType().dyn_cast<TensorType>())
elementType = tensorType.getElementType();
else
elementType = SizeType::get(builder.getContext());
bodyBlock.addArgument(elementType);
for (Type initValType : initVals.getTypes()) {
bodyBlock.addArgument(initValType);
result.addTypes(initValType);
}
}
static LogicalResult verify(ReduceOp op) {
// Verify block arg types.
Block &block = op.region().front();
// The block takes index, extent, and aggregated values as arguments.
auto blockArgsCount = op.initVals().size() + 2;
if (block.getNumArguments() != blockArgsCount)
return op.emitOpError() << "ReduceOp body is expected to have "
<< blockArgsCount << " arguments";
// The first block argument is the index and must always be of type `index`.
if (!block.getArgument(0).getType().isa<IndexType>())
return op.emitOpError(
"argument 0 of ReduceOp body is expected to be of IndexType");
// The second block argument is the extent and must be of type `size` or
// `index`, depending on whether the reduce operation is applied to a shape or
// to an extent tensor.
Type extentTy = block.getArgument(1).getType();
if (op.shape().getType().isa<ShapeType>()) {
if (!extentTy.isa<SizeType>())
return op.emitOpError("argument 1 of ReduceOp body is expected to be of "
"SizeType if the ReduceOp operates on a ShapeType");
} else {
if (!extentTy.isa<IndexType>())
return op.emitOpError(
"argument 1 of ReduceOp body is expected to be of IndexType if the "
"ReduceOp operates on an extent tensor");
}
for (auto type : llvm::enumerate(op.initVals()))
if (block.getArgument(type.index() + 2).getType() != type.value().getType())
return op.emitOpError()
<< "type mismatch between argument " << type.index() + 2
<< " of ReduceOp body and initial value " << type.index();
return success();
}
static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
// Parse operands.
SmallVector<OpAsmParser::OperandType, 3> operands;
Type shapeOrExtentTensorType;
if (parser.parseOperandList(operands, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren) ||
parser.parseColonType(shapeOrExtentTensorType) ||
parser.parseOptionalArrowTypeList(result.types))
return failure();
// Resolve operands.
auto initVals = llvm::makeArrayRef(operands).drop_front();
if (parser.resolveOperand(operands.front(), shapeOrExtentTensorType,
result.operands) ||
parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
result.operands))
return failure();
// Parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*args=*/{}, /*argTypes=*/{}))
return failure();
// Parse attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceOp op) {
p << op.getOperationName() << '(' << op.shape() << ", " << op.initVals()
<< ") : " << op.shape().getType();
p.printOptionalArrowTypeList(op.getResultTypes());
p.printRegion(op.region());
p.printOptionalAttrDict(op.getAttrs());
}
#define GET_OP_CLASSES
#include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"