Shape.cpp 33.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
//===- Shape.cpp - MLIR Shape Operations ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Shape/IR/Shape.h"

#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/raw_ostream.h"

using namespace mlir;
using namespace mlir::shape;

namespace {
#include "ShapeCanonicalization.inc"
}

RankedTensorType shape::getExtentTensorType(MLIRContext *ctx) {
  return RankedTensorType::get({ShapedType::kDynamicSize}, IndexType::get(ctx));
}

static bool isErrorPropagationPossible(TypeRange operandTypes) {
  for (Type ty : operandTypes)
    if (ty.isa<SizeType>() || ty.isa<ShapeType>() || ty.isa<ValueShapeType>())
      return true;
  return false;
}

static LogicalResult verifySizeOrIndexOp(Operation *op) {
  assert(op != nullptr && op->getNumResults() == 1);
  Type resultTy = op->getResultTypes().front();
  if (isErrorPropagationPossible(op->getOperandTypes())) {
    if (!resultTy.isa<SizeType>())
      return op->emitOpError()
             << "if at least one of the operands can hold error values then "
                "the result must be of type `size` to propagate them";
  }
  return success();
}

static LogicalResult verifyShapeOrExtentTensorOp(Operation *op) {
  assert(op != nullptr && op->getNumResults() == 1);
  Type resultTy = op->getResultTypes().front();
  if (isErrorPropagationPossible(op->getOperandTypes())) {
    if (!resultTy.isa<ShapeType>())
      return op->emitOpError()
             << "if at least one of the operands can hold error values then "
                "the result must be of type `shape` to propagate them";
  }
  return success();
}

//===----------------------------------------------------------------------===//
// InlinerInterface
//===----------------------------------------------------------------------===//

namespace {
/// This class defines the interface for inlining shape dialect ops.
struct ShapeInlinerInterface : public DialectInlinerInterface {
  using DialectInlinerInterface::DialectInlinerInterface;

  // Returns true if the given region 'src' can be inlined into the region
  // 'dest' that is attached to an operation registered to the current dialect.
  bool isLegalToInline(Region *dest, Region *src,
                       BlockAndValueMapping &) const final {
    return true;
  }

  // Returns true if the given operation 'op', that is registered to this
  // dialect, can be inlined into the region 'dest' that is attached to an
  // operation registered to the current dialect.
  bool isLegalToInline(Operation *op, Region *dest,
                       BlockAndValueMapping &) const final {
    return true;
  }
};
} // namespace

void ShapeDialect::initialize() {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
      >();
  addTypes<ComponentType, ElementType, ShapeType, SizeType, ValueShapeType,
           WitnessType>();
  addInterfaces<ShapeInlinerInterface>();
  // Allow unknown operations during prototyping and testing. As the dialect is
  // still evolving it makes it simple to start with an unregistered ops and
  // try different variants before actually defining the op.
  allowUnknownOperations();
}

Operation *ShapeDialect::materializeConstant(OpBuilder &builder,
                                             Attribute value, Type type,
                                             Location loc) {
  if (type.isa<ShapeType>() ||
      type == getExtentTensorType(builder.getContext()))
    return builder.create<ConstShapeOp>(loc, type,
                                        value.cast<DenseIntElementsAttr>());
  if (type.isa<SizeType>())
    return builder.create<ConstSizeOp>(loc, type, value.cast<IntegerAttr>());
  if (type.isa<WitnessType>())
    return builder.create<ConstWitnessOp>(loc, type, value.cast<BoolAttr>());
  if (type.isa<IndexType>())
    return builder.create<ConstantOp>(loc, type, value);
  return nullptr;
}

/// Parse a type registered to this dialect.
Type ShapeDialect::parseType(DialectAsmParser &parser) const {
  StringRef keyword;
  if (parser.parseKeyword(&keyword))
    return Type();

  if (keyword == "component")
    return ComponentType::get(getContext());
  if (keyword == "element")
    return ElementType::get(getContext());
  if (keyword == "shape")
    return ShapeType::get(getContext());
  if (keyword == "size")
    return SizeType::get(getContext());
  if (keyword == "value_shape")
    return ValueShapeType::get(getContext());
  if (keyword == "witness")
    return WitnessType::get(getContext());

  parser.emitError(parser.getNameLoc(), "unknown shape type: ") << keyword;
  return Type();
}

/// Print a type registered to this dialect.
void ShapeDialect::printType(Type type, DialectAsmPrinter &os) const {
  TypeSwitch<Type>(type)
      .Case<ComponentType>([&](Type) { os << "component"; })
      .Case<ElementType>([&](Type) { os << "element"; })
      .Case<ShapeType>([&](Type) { os << "shape"; })
      .Case<SizeType>([&](Type) { os << "size"; })
      .Case<ValueShapeType>([&](Type) { os << "value_shape"; })
      .Case<WitnessType>([&](Type) { os << "witness"; })
      .Default([](Type) { llvm_unreachable("unexpected 'shape' type kind"); });
}

//===----------------------------------------------------------------------===//
// AnyOp
//===----------------------------------------------------------------------===//

// TODO: Canonicalization should be implemented for shapes that can be
// determined through mixtures of the known dimensions of the inputs.
OpFoldResult AnyOp::fold(ArrayRef<Attribute> operands) {
  // Only the last operand is checked because AnyOp is commutative.
  if (operands.back())
    return operands.back();

  return nullptr;
}

//===----------------------------------------------------------------------===//
// AssumingOp
//===----------------------------------------------------------------------===//

static ParseResult parseAssumingOp(OpAsmParser &parser,
                                   OperationState &result) {
  result.regions.reserve(1);
  Region *doRegion = result.addRegion();

  auto &builder = parser.getBuilder();
  OpAsmParser::OperandType cond;
  if (parser.parseOperand(cond) ||
      parser.resolveOperand(cond, builder.getType<WitnessType>(),
                            result.operands))
    return failure();

  // Parse optional results type list.
  if (parser.parseOptionalArrowTypeList(result.types))
    return failure();

  // Parse the region and add a terminator if elided.
  if (parser.parseRegion(*doRegion, /*arguments=*/{}, /*argTypes=*/{}))
    return failure();
  AssumingOp::ensureTerminator(*doRegion, parser.getBuilder(), result.location);

  // Parse the optional attribute list.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();
  return success();
}

static void print(OpAsmPrinter &p, AssumingOp op) {
  bool yieldsResults = !op.results().empty();

  p << AssumingOp::getOperationName() << " " << op.witness();
  if (yieldsResults) {
    p << " -> (" << op.getResultTypes() << ")";
  }
  p.printRegion(op.doRegion(),
                /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/yieldsResults);
  p.printOptionalAttrDict(op.getAttrs());
}

namespace {
// Removes AssumingOp with a passing witness and inlines the region.
struct AssumingWithTrue : public OpRewritePattern<AssumingOp> {
  using OpRewritePattern<AssumingOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AssumingOp op,
                                PatternRewriter &rewriter) const override {
    auto witness = op.witness().getDefiningOp<ConstWitnessOp>();
    if (!witness || !witness.passingAttr())
      return failure();

    AssumingOp::inlineRegionIntoParent(op, rewriter);
    return success();
  }
};
} // namespace

void AssumingOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
                                             MLIRContext *context) {
  // If taking a passing witness, inline region.
  patterns.insert<AssumingWithTrue>(context);
}

// See RegionBranchOpInterface in Interfaces/ControlFlowInterfaces.td
void AssumingOp::getSuccessorRegions(
    Optional<unsigned> index, ArrayRef<Attribute> operands,
    SmallVectorImpl<RegionSuccessor> &regions) {
  // AssumingOp has unconditional control flow into the region and back to the
  // parent, so return the correct RegionSuccessor purely based on the index
  // being None or 0.
  if (index.hasValue()) {
    regions.push_back(RegionSuccessor(getResults()));
    return;
  }

  regions.push_back(RegionSuccessor(&doRegion()));
}

void AssumingOp::inlineRegionIntoParent(AssumingOp &op,
                                        PatternRewriter &rewriter) {
  auto *blockBeforeAssuming = rewriter.getInsertionBlock();
  auto *assumingBlock = op.getBody();
  auto initPosition = rewriter.getInsertionPoint();
  auto *blockAfterAssuming =
      rewriter.splitBlock(blockBeforeAssuming, initPosition);

  // Remove the AssumingOp and AssumingYieldOp.
  auto &yieldOp = assumingBlock->back();
  rewriter.inlineRegionBefore(op.doRegion(), blockAfterAssuming);
  rewriter.replaceOp(op, yieldOp.getOperands());
  rewriter.eraseOp(&yieldOp);

  // Merge blocks together as there was no branching behavior from the
  // AssumingOp.
  rewriter.mergeBlocks(assumingBlock, blockBeforeAssuming);
  rewriter.mergeBlocks(blockAfterAssuming, blockBeforeAssuming);
}

//===----------------------------------------------------------------------===//
// AssumingAllOp
//===----------------------------------------------------------------------===//
OpFoldResult AssumingAllOp::fold(ArrayRef<Attribute> operands) {
  // Iterate in reverse to first handle all constant operands. They are
  // guaranteed to be the tail of the inputs because this is commutative.
  for (int idx = operands.size() - 1; idx >= 0; idx--) {
    Attribute a = operands[idx];
    // Cannot fold if any inputs are not constant;
    if (!a)
      return nullptr;

    // We do not need to keep statically known values after handling them in
    // this method.
    getOperation()->eraseOperand(idx);

    // Always false if any input is statically known false
    if (!a.cast<BoolAttr>().getValue())
      return a;
  }
  // If this is reached, all inputs were statically known passing.
  return BoolAttr::get(true, getContext());
}

static LogicalResult verify(AssumingAllOp op) {
  // Ensure that AssumingAllOp contains at least one operand
  if (op.getNumOperands() == 0)
    return op.emitOpError("no operands specified");

  return success();
}

//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//

OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
  if (!operands[1])
    return nullptr;

  auto rhsShape = llvm::to_vector<6>(
      operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
  if (rhsShape.empty())
    return lhs();

  if (!operands[0])
    return nullptr;

  auto lhsShape = llvm::to_vector<6>(
      operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
  if (lhsShape.empty())
    return rhs();

  SmallVector<int64_t, 6> resultShape;
  // If the shapes are not compatible, we can't fold it.
  // TODO: Fold to an "error".
  if (!OpTrait::util::getBroadcastedShape(lhsShape, rhsShape, resultShape))
    return nullptr;
  Builder builder(getContext());
  return builder.getIndexTensorAttr(resultShape);
}

//===----------------------------------------------------------------------===//
// ConcatOp
//===----------------------------------------------------------------------===//

OpFoldResult ConcatOp::fold(ArrayRef<Attribute> operands) {
  if (!operands[0] || !operands[1])
    return nullptr;
  auto lhsShape = llvm::to_vector<6>(
      operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
  auto rhsShape = llvm::to_vector<6>(
      operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
  SmallVector<int64_t, 6> resultShape;
  resultShape.append(lhsShape.begin(), lhsShape.end());
  resultShape.append(rhsShape.begin(), rhsShape.end());
  Builder builder(getContext());
  return builder.getIndexTensorAttr(resultShape);
}

//===----------------------------------------------------------------------===//
// ConstShapeOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter &p, ConstShapeOp &op) {
  p << "shape.const_shape ";
  p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"shape"});
  p << "[";
  interleaveComma(op.shape().getValues<int64_t>(), p,
                  [&](int64_t i) { p << i; });
  p << "] : ";
  p.printType(op.getType());
}

static ParseResult parseConstShapeOp(OpAsmParser &parser,
                                     OperationState &result) {
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();
  // We piggy-back on ArrayAttr parsing, though we don't internally store the
  // shape as an ArrayAttr.
  // TODO: Implement custom parser and maybe make syntax a bit more concise.
  Attribute extentsRaw;
  NamedAttrList dummy;
  if (parser.parseAttribute(extentsRaw, "dummy", dummy))
    return failure();
  auto extentsArray = extentsRaw.dyn_cast<ArrayAttr>();
  if (!extentsArray)
    return failure();
  SmallVector<int64_t, 6> ints;
  for (Attribute extent : extentsArray) {
    IntegerAttr attr = extent.dyn_cast<IntegerAttr>();
    if (!attr)
      return failure();
    ints.push_back(attr.getInt());
  }
  Builder &builder = parser.getBuilder();
  result.addAttribute("shape", builder.getIndexTensorAttr(ints));
  Type resultTy;
  if (parser.parseColonType(resultTy))
    return failure();
  result.types.push_back(resultTy);
  return success();
}

OpFoldResult ConstShapeOp::fold(ArrayRef<Attribute>) { return shapeAttr(); }

//===----------------------------------------------------------------------===//
// CstrBroadcastableOp
//===----------------------------------------------------------------------===//

namespace {
// Given an input shape Value, try to obtain the shape's values.
LogicalResult getShapeVec(Value input, SmallVectorImpl<int64_t> &shapeValues) {
  if (auto inputOp = input.getDefiningOp<ShapeOfOp>()) {
    auto type = inputOp.arg().getType().dyn_cast<ShapedType>();
    if (!type.hasRank())
      return failure();
    shapeValues = llvm::to_vector<6>(type.getShape());
    return success();
  } else if (auto inputOp = input.getDefiningOp<ConstShapeOp>()) {
    shapeValues = llvm::to_vector<6>(inputOp.shape().getValues<int64_t>());
    return success();
  } else {
    return failure();
  }
}
} // namespace

void CstrBroadcastableOp::getCanonicalizationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  // Canonicalization patterns have overlap with the considerations during
  // folding in case additional shape information is inferred at some point that
  // does not result in folding.
  patterns.insert<CstrBroadcastableEqOps>(context);
}

OpFoldResult CstrBroadcastableOp::fold(ArrayRef<Attribute> operands) {
  // Both operands are not needed if one is a scalar.
  if (operands[0] &&
      operands[0].cast<DenseIntElementsAttr>().getNumElements() == 0)
    return BoolAttr::get(true, getContext());
  if (operands[1] &&
      operands[1].cast<DenseIntElementsAttr>().getNumElements() == 0)
    return BoolAttr::get(true, getContext());

  if (operands[0] && operands[1]) {
    auto lhsShape = llvm::to_vector<6>(
        operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
    auto rhsShape = llvm::to_vector<6>(
        operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
    SmallVector<int64_t, 6> resultShape;
    if (OpTrait::util::staticallyKnownBroadcastable(lhsShape, rhsShape))
      return BoolAttr::get(true, getContext());
  }

  // Lastly, see if folding can be completed based on what constraints are known
  // on the input shapes.
  SmallVector<int64_t, 6> lhsShape, rhsShape;
  if (failed(getShapeVec(lhs(), lhsShape)))
    return nullptr;
  if (failed(getShapeVec(rhs(), rhsShape)))
    return nullptr;

  if (OpTrait::util::staticallyKnownBroadcastable(lhsShape, rhsShape))
    return BoolAttr::get(true, getContext());

  // Because a failing witness result here represents an eventual assertion
  // failure, we do not replace it with a constant witness.
  return nullptr;
}

//===----------------------------------------------------------------------===//
// CstrEqOp
//===----------------------------------------------------------------------===//

void CstrEqOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
                                           MLIRContext *context) {
  // If inputs are equal, return passing witness
  patterns.insert<CstrEqEqOps>(context);
}

OpFoldResult CstrEqOp::fold(ArrayRef<Attribute> operands) {
  if (llvm::all_of(operands,
                   [&](Attribute a) { return a && a == operands[0]; }))
    return BoolAttr::get(true, getContext());

  // Because a failing witness result here represents an eventual assertion
  // failure, we do not try to replace it with a constant witness. Similarly, we
  // cannot if there are any non-const inputs.
  return nullptr;
}

//===----------------------------------------------------------------------===//
// ConstSizeOp
//===----------------------------------------------------------------------===//

void ConstSizeOp::build(OpBuilder &builder, OperationState &result,
                        int64_t value) {
  build(builder, result, builder.getIndexAttr(value));
}

OpFoldResult ConstSizeOp::fold(ArrayRef<Attribute>) { return valueAttr(); }

void ConstSizeOp::getAsmResultNames(
    llvm::function_ref<void(Value, StringRef)> setNameFn) {
  SmallString<4> buffer;
  llvm::raw_svector_ostream os(buffer);
  os << "c" << value();
  setNameFn(getResult(), os.str());
}

//===----------------------------------------------------------------------===//
// ConstWitnessOp
//===----------------------------------------------------------------------===//

OpFoldResult ConstWitnessOp::fold(ArrayRef<Attribute>) { return passingAttr(); }

//===----------------------------------------------------------------------===//
// CstrRequireOp
//===----------------------------------------------------------------------===//

OpFoldResult CstrRequireOp::fold(ArrayRef<Attribute> operands) {
  return operands[0];
}

//===----------------------------------------------------------------------===//
// ShapeEqOp
//===----------------------------------------------------------------------===//

OpFoldResult ShapeEqOp::fold(ArrayRef<Attribute> operands) {
  auto lhs = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
  if (lhs == nullptr)
    return {};
  auto rhs = operands[1].dyn_cast_or_null<DenseIntElementsAttr>();
  if (rhs == nullptr)
    return {};
  return BoolAttr::get(lhs == rhs, getContext());
}

//===----------------------------------------------------------------------===//
// IndexToSizeOp
//===----------------------------------------------------------------------===//

OpFoldResult IndexToSizeOp::fold(ArrayRef<Attribute> operands) {
  // Constant values of both types, `shape.size` and `index`, are represented as
  // `IntegerAttr`s which makes constant folding simple.
  if (Attribute arg = operands[0])
    return arg;
  return {};
}

void IndexToSizeOp::getCanonicalizationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  patterns.insert<SizeToIndexToSizeCanonicalization>(context);
}

//===----------------------------------------------------------------------===//
// FromExtentsOp
//===----------------------------------------------------------------------===//

OpFoldResult FromExtentsOp::fold(ArrayRef<Attribute> operands) {
  if (llvm::any_of(operands, [](Attribute a) { return !a; }))
    return nullptr;
  SmallVector<int64_t, 6> extents;
  for (auto attr : operands)
    extents.push_back(attr.cast<IntegerAttr>().getInt());
  Builder builder(getContext());
  return builder.getIndexTensorAttr(extents);
}

//===----------------------------------------------------------------------===//
// GetExtentOp
//===----------------------------------------------------------------------===//

Optional<int64_t> GetExtentOp::getConstantDim() {
  if (auto constSizeOp = dim().getDefiningOp<ConstSizeOp>())
    return constSizeOp.value().getLimitedValue();
  if (auto constantOp = dim().getDefiningOp<ConstantOp>())
    return constantOp.value().cast<IntegerAttr>().getInt();
  return llvm::None;
}

OpFoldResult GetExtentOp::fold(ArrayRef<Attribute> operands) {
  auto elements = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
  if (!elements)
    return nullptr;
  Optional<int64_t> dim = getConstantDim();
  if (!dim.hasValue())
    return nullptr;
  if (dim.getValue() >= elements.getNumElements())
    return nullptr;
  return elements.getValue({(uint64_t)dim.getValue()});
}

void GetExtentOp::build(OpBuilder &builder, OperationState &result, Value shape,
                        int64_t dim) {
  auto loc = result.location;
  auto dimAttr = builder.getIndexAttr(dim);
  if (shape.getType().isa<ShapeType>()) {
    Value dim = builder.create<ConstSizeOp>(loc, dimAttr);
    build(builder, result, builder.getType<SizeType>(), shape, dim);
  } else {
    Value dim =
        builder.create<ConstantOp>(loc, builder.getIndexType(), dimAttr);
    build(builder, result, builder.getIndexType(), shape, dim);
  }
}

//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//

OpFoldResult shape::RankOp::fold(ArrayRef<Attribute> operands) {
  auto shape = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
  if (!shape)
    return {};
  int64_t rank = shape.getNumElements();
  Builder builder(getContext());
  return builder.getIndexAttr(rank);
}

/// Evaluate the `rank` operation for shapes of ranked tensors at compile time.
/// Constant folding fails in cases where only the rank is constant, not the
/// shape itself.
/// This canonicalization matches `shape.rank(shape.shape_of(%ranked_tensor))`.
///
/// Example:
///
/// %shape = shape.shape_of %ranked_tensor : tensor<1x2x?xf32>
/// %rank = shape.rank %shape
///
/// becomes
///
/// %rank = shape.const_size 3

namespace {
struct RankShapeOfCanonicalizationPattern
    : public OpRewritePattern<shape::RankOp> {
  using OpRewritePattern<shape::RankOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(shape::RankOp op,
                                PatternRewriter &rewriter) const override {
    auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>();
    if (!shapeOfOp)
      return failure();
    auto rankedTensorType =
        shapeOfOp.arg().getType().dyn_cast<RankedTensorType>();
    if (!rankedTensorType)
      return failure();
    int64_t rank = rankedTensorType.getRank();
    if (op.getType().isa<IndexType>()) {
      rewriter.replaceOpWithNewOp<ConstantIndexOp>(op.getOperation(), rank);
    } else if (op.getType().isa<shape::SizeType>()) {
      rewriter.replaceOpWithNewOp<shape::ConstSizeOp>(op.getOperation(), rank);
    } else {
      return failure();
    }
    return success();
  }
};
} // namespace

void shape::RankOp::getCanonicalizationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  patterns.insert<RankShapeOfCanonicalizationPattern>(context);
}

//===----------------------------------------------------------------------===//
// NumElementsOp
//===----------------------------------------------------------------------===//

OpFoldResult NumElementsOp::fold(ArrayRef<Attribute> operands) {

  // Fold only when argument constant.
  Attribute shape = operands[0];
  if (!shape)
    return {};

  APInt product(64, 1);
  for (auto value : shape.cast<DenseIntElementsAttr>())
    product *= value;
  Builder builder(getContext());
  return builder.getIndexAttr(product.getLimitedValue());
}

void NumElementsOp::build(OpBuilder &builder, OperationState &result,
                          Value shape) {
  if (shape.getType().isa<ShapedType>()) {
    auto type = builder.getIndexType();
    return build(builder, result, type, shape);
  }
  auto type = SizeType::get(builder.getContext());
  return build(builder, result, type, shape);
}

//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//

OpFoldResult MulOp::fold(ArrayRef<Attribute> operands) {
  auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>();
  if (!lhs)
    return nullptr;
  auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>();
  if (!rhs)
    return nullptr;
  APInt folded = lhs.getValue() * rhs.getValue();
  Type indexTy = IndexType::get(getContext());
  return IntegerAttr::get(indexTy, folded);
}

//===----------------------------------------------------------------------===//
// ShapeOfOp
//===----------------------------------------------------------------------===//

OpFoldResult ShapeOfOp::fold(ArrayRef<Attribute>) {
  auto type = getOperand().getType().dyn_cast<ShapedType>();
  if (!type || !type.hasStaticShape())
    return nullptr;
  Builder builder(getContext());
  return builder.getIndexTensorAttr(type.getShape());
}

void ShapeOfOp::build(OpBuilder &builder, OperationState &result, Value arg) {
  Type type = arg.getType().isa<ShapedType>()
                  ? (Type)getExtentTensorType(builder.getContext())
                  : (Type)builder.getType<ShapeType>();
  return ShapeOfOp::build(builder, result, type, arg);
}

namespace {
struct ShapeOfWithTensor : public OpRewritePattern<shape::ShapeOfOp> {
  using OpRewritePattern<shape::ShapeOfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(shape::ShapeOfOp op,
                                PatternRewriter &rewriter) const override {
    if (!op.arg().getType().isa<ShapedType>())
      return failure();
    if (op.getType().isa<ShapedType>())
      return failure();

    rewriter.replaceOpWithNewOp<shape::ShapeOfOp>(op.getOperation(), op.arg());
    return success();
  }
};
} // namespace

void ShapeOfOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
                                            MLIRContext *context) {
  patterns.insert<ShapeOfWithTensor>(context);
}

//===----------------------------------------------------------------------===//
// SizeToIndexOp
//===----------------------------------------------------------------------===//

OpFoldResult SizeToIndexOp::fold(ArrayRef<Attribute> operands) {
  // Constant values of both types, `shape.size` and `index`, are represented as
  // `IntegerAttr`s which makes constant folding simple.
  if (Attribute arg = operands[0])
    return arg;
  return impl::foldCastOp(*this);
}

void SizeToIndexOp::getCanonicalizationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  patterns.insert<IndexToSizeToIndexCanonicalization>(context);
}

//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(shape::YieldOp op) {
  auto *parentOp = op.getParentOp();
  auto results = parentOp->getResults();
  auto operands = op.getOperands();

  if (parentOp->getNumResults() != op.getNumOperands())
    return op.emitOpError() << "number of operands does not match number of "
                               "results of its parent";
  for (auto e : llvm::zip(results, operands))
    if (std::get<0>(e).getType() != std::get<1>(e).getType())
      return op.emitOpError()
             << "types mismatch between yield op and its parent";

  return success();
}

//===----------------------------------------------------------------------===//
// SplitAtOp
//===----------------------------------------------------------------------===//

LogicalResult SplitAtOp::fold(ArrayRef<Attribute> operands,
                              SmallVectorImpl<OpFoldResult> &results) {
  if (!operands[0] || !operands[1])
    return failure();
  auto shapeVec = llvm::to_vector<6>(
      operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
  auto shape = llvm::makeArrayRef(shapeVec);
  auto splitPoint = operands[1].cast<IntegerAttr>().getInt();
  // Verify that the split point is in the correct range.
  // TODO: Constant fold to an "error".
  int64_t rank = shape.size();
  if (!(-rank <= splitPoint && splitPoint <= rank))
    return failure();
  if (splitPoint < 0)
    splitPoint += shape.size();
  Builder builder(operands[0].getContext());
  results.push_back(builder.getIndexTensorAttr(shape.take_front(splitPoint)));
  results.push_back(builder.getIndexTensorAttr(shape.drop_front(splitPoint)));
  return success();
}

//===----------------------------------------------------------------------===//
// ToExtentTensorOp
//===----------------------------------------------------------------------===//

OpFoldResult ToExtentTensorOp::fold(ArrayRef<Attribute> operands) {
  if (!operands[0])
    return impl::foldCastOp(*this);
  Builder builder(getContext());
  auto shape = llvm::to_vector<6>(
      operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
  auto type = RankedTensorType::get({static_cast<int64_t>(shape.size())},
                                    builder.getIndexType());
  return DenseIntElementsAttr::get(type, shape);
}

//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//

void ReduceOp::build(OpBuilder &builder, OperationState &result, Value shape,
                     ValueRange initVals) {
  result.addOperands(shape);
  result.addOperands(initVals);

  Region *bodyRegion = result.addRegion();
  bodyRegion->push_back(new Block);
  Block &bodyBlock = bodyRegion->front();
  bodyBlock.addArgument(builder.getIndexType());

  Type elementType;
  if (auto tensorType = shape.getType().dyn_cast<TensorType>())
    elementType = tensorType.getElementType();
  else
    elementType = SizeType::get(builder.getContext());
  bodyBlock.addArgument(elementType);

  for (Type initValType : initVals.getTypes()) {
    bodyBlock.addArgument(initValType);
    result.addTypes(initValType);
  }
}

static LogicalResult verify(ReduceOp op) {
  // Verify block arg types.
  Block &block = op.region().front();

  // The block takes index, extent, and aggregated values as arguments.
  auto blockArgsCount = op.initVals().size() + 2;
  if (block.getNumArguments() != blockArgsCount)
    return op.emitOpError() << "ReduceOp body is expected to have "
                            << blockArgsCount << " arguments";

  // The first block argument is the index and must always be of type `index`.
  if (!block.getArgument(0).getType().isa<IndexType>())
    return op.emitOpError(
        "argument 0 of ReduceOp body is expected to be of IndexType");

  // The second block argument is the extent and must be of type `size` or
  // `index`, depending on whether the reduce operation is applied to a shape or
  // to an extent tensor.
  Type extentTy = block.getArgument(1).getType();
  if (op.shape().getType().isa<ShapeType>()) {
    if (!extentTy.isa<SizeType>())
      return op.emitOpError("argument 1 of ReduceOp body is expected to be of "
                            "SizeType if the ReduceOp operates on a ShapeType");
  } else {
    if (!extentTy.isa<IndexType>())
      return op.emitOpError(
          "argument 1 of ReduceOp body is expected to be of IndexType if the "
          "ReduceOp operates on an extent tensor");
  }

  for (auto type : llvm::enumerate(op.initVals()))
    if (block.getArgument(type.index() + 2).getType() != type.value().getType())
      return op.emitOpError()
             << "type mismatch between argument " << type.index() + 2
             << " of ReduceOp body and initial value " << type.index();
  return success();
}

static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
  // Parse operands.
  SmallVector<OpAsmParser::OperandType, 3> operands;
  Type shapeOrExtentTensorType;
  if (parser.parseOperandList(operands, /*requiredOperandCount=*/-1,
                              OpAsmParser::Delimiter::Paren) ||
      parser.parseColonType(shapeOrExtentTensorType) ||
      parser.parseOptionalArrowTypeList(result.types))
    return failure();

  // Resolve operands.
  auto initVals = llvm::makeArrayRef(operands).drop_front();
  if (parser.resolveOperand(operands.front(), shapeOrExtentTensorType,
                            result.operands) ||
      parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
                             result.operands))
    return failure();

  // Parse the body.
  Region *body = result.addRegion();
  if (parser.parseRegion(*body, /*args=*/{}, /*argTypes=*/{}))
    return failure();

  // Parse attributes.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();

  return success();
}

static void print(OpAsmPrinter &p, ReduceOp op) {
  p << op.getOperationName() << '(' << op.shape() << ", " << op.initVals()
    << ") : " << op.shape().getType();
  p.printOptionalArrowTypeList(op.getResultTypes());
  p.printRegion(op.region());
  p.printOptionalAttrDict(op.getAttrs());
}

#define GET_OP_CLASSES
#include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"