SCF.cpp
35.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
//===- SCF.cpp - Structured Control Flow Operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/InliningUtils.h"
using namespace mlir;
using namespace mlir::scf;
//===----------------------------------------------------------------------===//
// SCFDialect Dialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
struct SCFInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
// We don't have any special restrictions on what can be inlined into
// destination regions (e.g. while/conditional bodies). Always allow it.
bool isLegalToInline(Region *dest, Region *src,
BlockAndValueMapping &valueMapping) const final {
return true;
}
// Operations in scf dialect are always legal to inline since they are
// pure.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
// Handle the given inlined terminator by replacing it with a new operation
// as necessary. Required when the region has only one block.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
auto retValOp = dyn_cast<scf::YieldOp>(op);
if (!retValOp)
return;
for (auto retValue : llvm::zip(valuesToRepl, retValOp.getOperands())) {
std::get<0>(retValue).replaceAllUsesWith(std::get<1>(retValue));
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// SCFDialect
//===----------------------------------------------------------------------===//
void SCFDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"
>();
addInterfaces<SCFInlinerInterface>();
}
/// Default callback for IfOp builders. Inserts a yield without arguments.
void mlir::scf::buildTerminatedBody(OpBuilder &builder, Location loc) {
builder.create<scf::YieldOp>(loc);
}
//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//
void ForOp::build(OpBuilder &builder, OperationState &result, Value lb,
Value ub, Value step, ValueRange iterArgs,
BodyBuilderFn bodyBuilder) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
for (Value v : iterArgs)
result.addTypes(v.getType());
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
bodyBlock.addArgument(builder.getIndexType());
for (Value v : iterArgs)
bodyBlock.addArgument(v.getType());
// Create the default terminator if the builder is not provided and if the
// iteration arguments are not provided. Otherwise, leave this to the caller
// because we don't know which values to return from the loop.
if (iterArgs.empty() && !bodyBuilder) {
ForOp::ensureTerminator(*bodyRegion, builder, result.location);
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArgument(0),
bodyBlock.getArguments().drop_front());
}
}
static LogicalResult verify(ForOp op) {
if (auto cst = op.step().getDefiningOp<ConstantIndexOp>())
if (cst.getValue() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
// If ForOp defines values, check that the number and types of
// the defined values match ForOp initial iter operands and backedge
// basic block arguments.
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults = op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return RegionBranchOpInterface::verifyTypes(op);
}
static void print(OpAsmPrinter &p, ForOp op) {
bool printBlockTerminators = false;
p << op.getOperationName() << " " << op.getInductionVar() << " = "
<< op.lowerBound() << " to " << op.upperBound() << " step " << op.step();
if (op.hasIterOperands()) {
p << " iter_args(";
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ")";
p << " -> (" << op.getResultTypes() << ")";
printBlockTerminators = true;
}
p.printRegion(op.region(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
p.printOptionalAttrDict(op.getAttrs());
}
static ParseResult parseForOp(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
OpAsmParser::OperandType inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return failure();
// Parse loop bounds.
Type indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
SmallVector<Type, 4> argTypes;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
// Resolve input operands.
for (auto operand_type : llvm::zip(operands, result.types))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
}
// Induction variable.
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
Region *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
Region &ForOp::getLoopBody() { return region(); }
bool ForOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult ForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
ForOp mlir::scf::getForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ForOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<ForOp>(containingOp);
}
/// Return operands used when entering the region at 'index'. These operands
/// correspond to the loop iterator operands, i.e., those exclusing the
/// induction variable. LoopOp only has one region, so 0 is the only valid value
/// for `index`.
OperandRange ForOp::getSuccessorEntryOperands(unsigned index) {
assert(index == 0 && "invalid region index");
// The initial operands map to the loop arguments after the induction
// variable.
return initArgs();
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void ForOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
// If the predecessor is the ForOp, branch into the body using the iterator
// arguments.
if (!index.hasValue()) {
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
return;
}
// Otherwise, the loop may branch back to itself or the parent operation.
assert(index.getValue() == 0 && "expected loop region");
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
regions.push_back(RegionSuccessor(getResults()));
}
ValueVector mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps, ValueRange iterArgs,
function_ref<ValueVector(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilder) {
assert(lbs.size() == ubs.size() &&
"expected the same number of lower and upper bounds");
assert(lbs.size() == steps.size() &&
"expected the same number of lower bounds and steps");
// If there are no bounds, call the body-building function and return early.
if (lbs.empty()) {
ValueVector results =
bodyBuilder ? bodyBuilder(builder, loc, ValueRange(), iterArgs)
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
return results;
}
// First, create the loop structure iteratively using the body-builder
// callback of `ForOp::build`. Do not create `YieldOp`s yet.
OpBuilder::InsertionGuard guard(builder);
SmallVector<scf::ForOp, 4> loops;
SmallVector<Value, 4> ivs;
loops.reserve(lbs.size());
ivs.reserve(lbs.size());
ValueRange currentIterArgs = iterArgs;
Location currentLoc = loc;
for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
auto loop = builder.create<scf::ForOp>(
currentLoc, lbs[i], ubs[i], steps[i], currentIterArgs,
[&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange args) {
ivs.push_back(iv);
// It is safe to store ValueRange args because it points to block
// arguments of a loop operation that we also own.
currentIterArgs = args;
currentLoc = nestedLoc;
});
// Set the builder to point to the body of the newly created loop. We don't
// do this in the callback because the builder is reset when the callback
// returns.
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
}
// For all loops but the innermost, yield the results of the nested loop.
for (unsigned i = 0, e = loops.size() - 1; i < e; ++i) {
builder.setInsertionPointToEnd(loops[i].getBody());
builder.create<scf::YieldOp>(loc, loops[i + 1].getResults());
}
// In the body of the innermost loop, call the body building function if any
// and yield its results.
builder.setInsertionPointToStart(loops.back().getBody());
ValueVector results = bodyBuilder
? bodyBuilder(builder, currentLoc, ivs,
loops.back().getRegionIterArgs())
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
builder.setInsertionPointToEnd(loops.back().getBody());
builder.create<scf::YieldOp>(loc, results);
// Return the results of the outermost loop.
return ValueVector(loops.front().result_begin(), loops.front().result_end());
}
ValueVector mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
// Delegate to the main function by wrapping the body builder.
return buildLoopNest(builder, loc, lbs, ubs, steps, llvm::None,
[&bodyBuilder](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) -> ValueVector {
if (bodyBuilder)
bodyBuilder(nestedBuilder, nestedLoc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
bool withElseRegion) {
build(builder, result, /*resultTypes=*/llvm::None, cond, withElseRegion);
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond, bool withElseRegion) {
auto addTerminator = [&](OpBuilder &nested, Location loc) {
if (resultTypes.empty())
IfOp::ensureTerminator(*nested.getInsertionBlock()->getParent(), nested,
loc);
};
build(builder, result, resultTypes, cond, addTerminator,
withElseRegion ? addTerminator
: function_ref<void(OpBuilder &, Location)>());
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
assert(thenBuilder && "the builder callback for 'then' must be present");
result.addOperands(cond);
result.addTypes(resultTypes);
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
thenBuilder(builder, result.location);
Region *elseRegion = result.addRegion();
if (!elseBuilder)
return;
builder.createBlock(elseRegion);
elseBuilder(builder, result.location);
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
build(builder, result, TypeRange(), cond, thenBuilder, elseBuilder);
}
static LogicalResult verify(IfOp op) {
if (op.getNumResults() != 0 && op.elseRegion().empty())
return op.emitOpError("must have an else block if defining values");
return RegionBranchOpInterface::verifyTypes(op);
}
static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
// Create the regions for 'then'.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, IfOp op) {
bool printBlockTerminators = false;
p << IfOp::getOperationName() << " " << op.condition();
if (!op.results().empty()) {
p << " -> (" << op.getResultTypes() << ")";
// Print yield explicitly if the op defines values.
printBlockTerminators = true;
}
p.printRegion(op.thenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &elseRegion = op.elseRegion();
if (!elseRegion.empty()) {
p << " else";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
}
p.printOptionalAttrDict(op.getAttrs());
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void IfOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
// The `then` and the `else` region branch back to the parent operation.
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// Don't consider the else region if it is empty.
Region *elseRegion = &this->elseRegion();
if (elseRegion->empty())
elseRegion = nullptr;
// Otherwise, the successor is dependent on the condition.
bool condition;
if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
condition = condAttr.getValue().isOneValue();
} else {
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&thenRegion()));
regions.push_back(RegionSuccessor(elseRegion));
return;
}
// Add the successor regions using the condition.
regions.push_back(RegionSuccessor(condition ? &thenRegion() : elseRegion));
}
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps, ValueRange initVals,
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilderFn) {
result.addOperands(lowerBounds);
result.addOperands(upperBounds);
result.addOperands(steps);
result.addOperands(initVals);
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lowerBounds.size()),
static_cast<int32_t>(upperBounds.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
result.addTypes(initVals.getTypes());
OpBuilder::InsertionGuard guard(builder);
unsigned numIVs = steps.size();
SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
Region *bodyRegion = result.addRegion();
Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes);
if (bodyBuilderFn) {
builder.setInsertionPointToStart(bodyBlock);
bodyBuilderFn(builder, result.location,
bodyBlock->getArguments().take_front(numIVs),
bodyBlock->getArguments().drop_front(numIVs));
}
ParallelOp::ensureTerminator(*bodyRegion, builder, result.location);
}
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
// Only pass a non-null wrapper if bodyBuilderFn is non-null itself. Make sure
// we don't capture a reference to a temporary by constructing the lambda at
// function level.
auto wrappedBuilderFn = [&bodyBuilderFn](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) {
bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
};
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)> wrapper;
if (bodyBuilderFn)
wrapper = wrappedBuilderFn;
build(builder, result, lowerBounds, upperBounds, steps, ValueRange(),
wrapper);
}
static LogicalResult verify(ParallelOp op) {
// Check that there is at least one value in lowerBound, upperBound and step.
// It is sufficient to test only step, because it is ensured already that the
// number of elements in lowerBound, upperBound and step are the same.
Operation::operand_range stepValues = op.step();
if (stepValues.empty())
return op.emitOpError(
"needs at least one tuple element for lowerBound, upperBound and step");
// Check whether all constant step values are positive.
for (Value stepValue : stepValues)
if (auto cst = stepValue.getDefiningOp<ConstantIndexOp>())
if (cst.getValue() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines the same number of block arguments as the
// number of tuple elements in step.
Block *body = op.getBody();
if (body->getNumArguments() != stepValues.size())
return op.emitOpError()
<< "expects the same number of induction variables: "
<< body->getNumArguments()
<< " as bound and step values: " << stepValues.size();
for (auto arg : body->getArguments())
if (!arg.getType().isIndex())
return op.emitOpError(
"expects arguments for the induction variable to be of index type");
// Check that the yield has no results
Operation *yield = body->getTerminator();
if (yield->getNumOperands() != 0)
return yield->emitOpError() << "not allowed to have operands inside '"
<< ParallelOp::getOperationName() << "'";
// Check that the number of results is the same as the number of ReduceOps.
SmallVector<ReduceOp, 4> reductions(body->getOps<ReduceOp>());
auto resultsSize = op.results().size();
auto reductionsSize = reductions.size();
auto initValsSize = op.initVals().size();
if (resultsSize != reductionsSize)
return op.emitOpError()
<< "expects number of results: " << resultsSize
<< " to be the same as number of reductions: " << reductionsSize;
if (resultsSize != initValsSize)
return op.emitOpError()
<< "expects number of results: " << resultsSize
<< " to be the same as number of initial values: " << initValsSize;
// Check that the types of the results and reductions are the same.
for (auto resultAndReduce : llvm::zip(op.results(), reductions)) {
auto resultType = std::get<0>(resultAndReduce).getType();
auto reduceOp = std::get<1>(resultAndReduce);
auto reduceType = reduceOp.operand().getType();
if (resultType != reduceType)
return reduceOp.emitOpError()
<< "expects type of reduce: " << reduceType
<< " to be the same as result type: " << resultType;
}
return success();
}
static ParseResult parseParallelOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::OperandType, 4> ivs;
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
// Parse loop bounds.
SmallVector<OpAsmParser::OperandType, 4> lower;
if (parser.parseEqual() ||
parser.parseOperandList(lower, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
return failure();
SmallVector<OpAsmParser::OperandType, 4> upper;
if (parser.parseKeyword("to") ||
parser.parseOperandList(upper, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
return failure();
// Parse step values.
SmallVector<OpAsmParser::OperandType, 4> steps;
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
return failure();
// Parse init values.
SmallVector<OpAsmParser::OperandType, 4> initVals;
if (succeeded(parser.parseOptionalKeyword("init"))) {
if (parser.parseOperandList(initVals, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
}
// Parse optional results in case there is a reduce.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Now parse the body.
Region *body = result.addRegion();
SmallVector<Type, 4> types(ivs.size(), builder.getIndexType());
if (parser.parseRegion(*body, ivs, types))
return failure();
// Set `operand_segment_sizes` attribute.
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lower.size()),
static_cast<int32_t>(upper.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
// Parse attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
if (!initVals.empty())
parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
result.operands);
// Add a terminator if none was parsed.
ForOp::ensureTerminator(*body, builder, result.location);
return success();
}
static void print(OpAsmPrinter &p, ParallelOp op) {
p << op.getOperationName() << " (" << op.getBody()->getArguments() << ") = ("
<< op.lowerBound() << ") to (" << op.upperBound() << ") step (" << op.step()
<< ")";
if (!op.initVals().empty())
p << " init (" << op.initVals() << ")";
p.printOptionalArrowTypeList(op.getResultTypes());
p.printRegion(op.region(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(
op.getAttrs(), /*elidedAttrs=*/ParallelOp::getOperandSegmentSizeAttr());
}
Region &ParallelOp::getLoopBody() { return region(); }
bool ParallelOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult ParallelOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
ParallelOp mlir::scf::getParallelForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ParallelOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast<ParallelOp>(containingOp);
}
namespace {
// Collapse loop dimensions that perform a single iteration.
struct CollapseSingleIterationLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
BlockAndValueMapping mapping;
// Compute new loop bounds that omit all single-iteration loop dimensions.
SmallVector<Value, 2> newLowerBounds;
SmallVector<Value, 2> newUpperBounds;
SmallVector<Value, 2> newSteps;
newLowerBounds.reserve(op.lowerBound().size());
newUpperBounds.reserve(op.upperBound().size());
newSteps.reserve(op.step().size());
for (auto dim : llvm::zip(op.lowerBound(), op.upperBound(), op.step(),
op.getInductionVars())) {
Value lowerBound, upperBound, step, iv;
std::tie(lowerBound, upperBound, step, iv) = dim;
// Collect the statically known loop bounds.
auto lowerBoundConstant =
dyn_cast_or_null<ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant =
dyn_cast_or_null<ConstantIndexOp>(step.getDefiningOp());
// Replace the loop induction variable by the lower bound if the loop
// performs a single iteration. Otherwise, copy the loop bounds.
if (lowerBoundConstant && upperBoundConstant && stepConstant &&
(upperBoundConstant.getValue() - lowerBoundConstant.getValue()) > 0 &&
(upperBoundConstant.getValue() - lowerBoundConstant.getValue()) <=
stepConstant.getValue()) {
mapping.map(iv, lowerBound);
} else {
newLowerBounds.push_back(lowerBound);
newUpperBounds.push_back(upperBound);
newSteps.push_back(step);
}
}
// Exit if all or none of the loop dimensions perform a single iteration.
if (newLowerBounds.size() == 0 ||
newLowerBounds.size() == op.lowerBound().size())
return failure();
// Replace the parallel loop by lower-dimensional parallel loop.
auto newOp =
rewriter.create<ParallelOp>(op.getLoc(), newLowerBounds, newUpperBounds,
newSteps, op.initVals(), nullptr);
// Clone the loop body and remap the block arguments of the collapsed loops
// (inlining does not support a cancellable block argument mapping).
rewriter.cloneRegionBefore(op.region(), newOp.region(),
newOp.region().begin(), mapping);
rewriter.replaceOp(op, newOp.getResults());
return success();
}
};
} // namespace
void ParallelOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<CollapseSingleIterationLoops>(context);
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::build(
OpBuilder &builder, OperationState &result, Value operand,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilderFn) {
auto type = operand.getType();
result.addOperands(operand);
OpBuilder::InsertionGuard guard(builder);
Region *bodyRegion = result.addRegion();
Block *body = builder.createBlock(bodyRegion, {}, ArrayRef<Type>{type, type});
if (bodyBuilderFn)
bodyBuilderFn(builder, result.location, body->getArgument(0),
body->getArgument(1));
}
static LogicalResult verify(ReduceOp op) {
// The region of a ReduceOp has two arguments of the same type as its operand.
auto type = op.operand().getType();
Block &block = op.reductionOperator().front();
if (block.empty())
return op.emitOpError("the block inside reduce should not be empty");
if (block.getNumArguments() != 2 ||
llvm::any_of(block.getArguments(), [&](const BlockArgument &arg) {
return arg.getType() != type;
}))
return op.emitOpError()
<< "expects two arguments to reduce block of type " << type;
// Check that the block is terminated by a ReduceReturnOp.
if (!isa<ReduceReturnOp>(block.getTerminator()))
return op.emitOpError("the block inside reduce should be terminated with a "
"'scf.reduce.return' op");
return success();
}
static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
// Parse an opening `(` followed by the reduced value followed by `)`
OpAsmParser::OperandType operand;
if (parser.parseLParen() || parser.parseOperand(operand) ||
parser.parseRParen())
return failure();
Type resultType;
// Parse the type of the operand (and also what reduce computes on).
if (parser.parseColonType(resultType) ||
parser.resolveOperand(operand, resultType, result.operands))
return failure();
// Now parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceOp op) {
p << op.getOperationName() << "(" << op.operand() << ") ";
p << " : " << op.operand().getType();
p.printRegion(op.reductionOperator());
}
//===----------------------------------------------------------------------===//
// ReduceReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReduceReturnOp op) {
// The type of the return value should be the same type as the type of the
// operand of the enclosing ReduceOp.
auto reduceOp = cast<ReduceOp>(op.getParentOp());
Type reduceType = reduceOp.operand().getType();
if (reduceType != op.result().getType())
return op.emitOpError() << "needs to have type " << reduceType
<< " (the type of the enclosing ReduceOp)";
return success();
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 4> operands;
SmallVector<Type, 4> types;
llvm::SMLoc loc = parser.getCurrentLocation();
// Parse variadic operands list, their types, and resolve operands to SSA
// values.
if (parser.parseOperandList(operands) ||
parser.parseOptionalColonTypeList(types) ||
parser.resolveOperands(operands, types, loc, result.operands))
return failure();
return success();
}
static void print(OpAsmPrinter &p, scf::YieldOp op) {
p << op.getOperationName();
if (op.getNumOperands() != 0)
p << ' ' << op.getOperands() << " : " << op.getOperandTypes();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"