FakeQuantSupport.cpp
6.72 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
//===- FakeQuantSupport.cpp - Support utilities for FakeQuant ops ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Quant/FakeQuantSupport.h"
#include "mlir/Dialect/Quant/QuantTypes.h"
using namespace mlir;
using namespace mlir::quant;
static bool getDefaultStorageParams(unsigned numBits, bool narrowRange,
bool isSigned, MLIRContext *ctx,
Type &storageType, int64_t &qmin,
int64_t &qmax) {
// Hard-coded type mapping from TFLite.
if (numBits <= 8) {
storageType = IntegerType::get(8, ctx);
if (isSigned) {
qmin = -128;
qmax = 127;
} else {
qmin = 0;
qmax = 255;
}
} else if (numBits <= 16) {
storageType = IntegerType::get(16, ctx);
if (isSigned) {
qmin = -32768;
qmax = 32767;
} else {
qmin = 0;
qmax = 65535;
}
} else if (numBits <= 32) {
storageType = IntegerType::get(32, ctx);
if (isSigned) {
qmin = std::numeric_limits<int32_t>::min();
qmax = std::numeric_limits<int32_t>::max();
} else {
qmin = std::numeric_limits<uint32_t>::min();
qmax = std::numeric_limits<uint32_t>::max();
}
} else {
return true;
}
// Handle narrowRange.
if (narrowRange) {
qmin += 1;
}
return false;
}
// This is a specific implementation of nudging:
// If 0.0 < rmin < rmax or rmin < rmax < 0.0, the range will be shifted
// to include 0.0, but the range width size (rmax-rmin) isn't changed. The zero
// point is derived from the shifted range, and the scale isn't changed. As
// a consequence some values, which are supposed in the original [rmin, rmax]
// range will be outside the shifted range and be clamped during quantization.
// TODO: we should nudge the scale as well, but that requires the
// fake quant op used in the training to use the nudged scale as well.
static void getNudgedScaleAndZeroPoint(int64_t qmin, int64_t qmax, double rmin,
double rmax, double &scale,
int64_t &nudgedZeroPoint) {
// Determine the scale.
const double qminDouble = qmin;
const double qmaxDouble = qmax;
scale = (rmax - rmin) / (qmaxDouble - qminDouble);
// Zero point computation.
// In float, solve the affine equation for any known pair
// (real value, corresponding quantized value), of which, two such pairs
// are known: (rmin, qmin), (rmax, qmax).
// The arithmetic error on the zero point computed from either pair will be
// roughly machine_epsilon * (sum of absolute values of terms).
// Use the variant that adds the smaller error.
const double zeroPointFromMin = qminDouble - rmin / scale;
const double zeroPointFromMinError =
std::abs(qminDouble) + std::abs(rmin / scale);
const double zeroPointFromMax = qmaxDouble - rmax / scale;
const double zeroPointFromMaxError =
std::abs(qmaxDouble) + std::abs(rmax / scale);
const double zeroPointDouble = (zeroPointFromMinError < zeroPointFromMaxError)
? zeroPointFromMin
: zeroPointFromMax;
// Now nudge the zero point to be an integer.
nudgedZeroPoint = 0;
if (zeroPointDouble < qminDouble) {
nudgedZeroPoint = qmin;
} else if (zeroPointDouble > qmaxDouble) {
nudgedZeroPoint = qmax;
} else {
nudgedZeroPoint = round(zeroPointDouble);
}
// By construction, the nudged zero point should always be in range.
assert(nudgedZeroPoint >= qmin);
assert(nudgedZeroPoint <= qmax);
}
UniformQuantizedType
mlir::quant::fakeQuantAttrsToType(Location loc, unsigned numBits, double rmin,
double rmax, bool narrowRange,
Type expressedType, bool isSigned) {
MLIRContext *ctx = expressedType.getContext();
unsigned flags = isSigned ? QuantizationFlags::Signed : 0;
Type storageType;
int64_t qmin;
int64_t qmax;
if (getDefaultStorageParams(numBits, narrowRange, isSigned, ctx, storageType,
qmin, qmax)) {
return (emitError(loc, "unsupported FakeQuant number of bits: ") << numBits,
nullptr);
}
// Special case where min/max is close enough. The tensor contents are all
// 0.0s, so the scale is set to 1.0 and the tensor can be quantized to zero
// points and dequantized to 0.0.
if (std::fabs(rmax - rmin) < std::numeric_limits<double>::epsilon()) {
return UniformQuantizedType::getChecked(flags, storageType, expressedType,
1.0, qmin, qmin, qmax, loc);
}
double scale;
int64_t nudgedZeroPoint;
getNudgedScaleAndZeroPoint(qmin, qmax, rmin, rmax, scale, nudgedZeroPoint);
return UniformQuantizedType::getChecked(flags, storageType, expressedType,
scale, nudgedZeroPoint, qmin, qmax,
loc);
}
UniformQuantizedPerAxisType mlir::quant::fakeQuantAttrsToType(
Location loc, unsigned numBits, int32_t quantizedDimension,
ArrayRef<double> rmins, ArrayRef<double> rmaxs, bool narrowRange,
Type expressedType, bool isSigned) {
size_t axis_size = rmins.size();
if (axis_size != rmaxs.size()) {
return (emitError(loc, "mismatched per-axis min and max size: ")
<< axis_size << " vs. " << rmaxs.size(),
nullptr);
}
MLIRContext *ctx = expressedType.getContext();
Type storageType;
int64_t qmin;
int64_t qmax;
if (getDefaultStorageParams(numBits, narrowRange, isSigned, ctx, storageType,
qmin, qmax)) {
return (emitError(loc, "unsupported FakeQuant number of bits: ") << numBits,
nullptr);
}
SmallVector<double, 4> scales;
SmallVector<int64_t, 4> zeroPoints;
scales.reserve(axis_size);
zeroPoints.reserve(axis_size);
for (size_t axis = 0; axis != axis_size; ++axis) {
double rmin = rmins[axis];
double rmax = rmaxs[axis];
if (std::fabs(rmax - rmin) < std::numeric_limits<double>::epsilon()) {
scales.push_back(1.0);
zeroPoints.push_back(qmin);
continue;
}
double scale;
int64_t nudgedZeroPoint;
getNudgedScaleAndZeroPoint(qmin, qmax, rmin, rmax, scale, nudgedZeroPoint);
scales.push_back(scale);
zeroPoints.push_back(nudgedZeroPoint);
}
unsigned flags = isSigned ? QuantizationFlags::Signed : 0;
return UniformQuantizedPerAxisType::getChecked(
flags, storageType, expressedType, scales, zeroPoints, quantizedDimension,
qmin, qmax, loc);
}