VectorToSCF.cpp
27.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
//===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-dependent lowering of vector transfer operations.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "mlir/Conversion/VectorToSCF/VectorToSCF.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/EDSC/Builders.h"
#include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using vector::TransferReadOp;
using vector::TransferWriteOp;
namespace {
/// Helper class captures the common information needed to lower N>1-D vector
/// transfer operations (read and write).
/// On construction, this class opens an edsc::ScopedContext for simpler IR
/// manipulation.
/// In pseudo-IR, for an n-D vector_transfer_read such as:
///
/// ```
/// vector_transfer_read(%m, %offsets, identity_map, %fill) :
/// memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
/// vector<(major_dims) x (minor_dims) x type>
/// ```
///
/// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or
/// higher).
///
/// This is the entry point to emitting pseudo-IR resembling:
///
/// ```
/// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>>
/// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest
/// if (any_of(%ivs_major + %offsets, <, major_dims)) {
/// %v = vector_transfer_read(
/// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
/// %ivs_minor):
/// memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
/// vector<(minor_dims) x type>;
/// store(%v, %tmp);
/// } else {
/// %v = splat(vector<(minor_dims) x type>, %fill)
/// store(%v, %tmp, %ivs_major);
/// }
/// }
/// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>):
// vector<(major_dims) x (minor_dims) x type>
/// ```
///
template <typename ConcreteOp>
class NDTransferOpHelper {
public:
NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp,
const VectorTransferToSCFOptions &options)
: rewriter(rewriter), options(options), loc(xferOp.getLoc()),
scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp),
op(xferOp.getOperation()) {
vectorType = xferOp.getVectorType();
// TODO: when we go to k > 1-D vectors adapt minorRank.
minorRank = 1;
majorRank = vectorType.getRank() - minorRank;
leadingRank = xferOp.getLeadingMemRefRank();
majorVectorType =
VectorType::get(vectorType.getShape().take_front(majorRank),
vectorType.getElementType());
minorVectorType =
VectorType::get(vectorType.getShape().take_back(minorRank),
vectorType.getElementType());
/// Memref of minor vector type is used for individual transfers.
memRefMinorVectorType =
MemRefType::get(majorVectorType.getShape(), minorVectorType, {},
xferOp.getMemRefType().getMemorySpace());
}
LogicalResult doReplace();
private:
/// Creates the loop nest on the "major" dimensions and calls the
/// `loopBodyBuilder` lambda in the context of the loop nest.
void
emitLoops(llvm::function_ref<void(ValueRange, ValueRange, ValueRange,
ValueRange, const MemRefBoundsCapture &)>
loopBodyBuilder);
/// Common state to lower vector transfer ops.
PatternRewriter &rewriter;
const VectorTransferToSCFOptions &options;
Location loc;
std::unique_ptr<ScopedContext> scope;
ConcreteOp xferOp;
Operation *op;
// A vector transfer copies data between:
// - memref<(leading_dims) x (major_dims) x (minor_dims) x type>
// - vector<(major_dims) x (minor_dims) x type>
unsigned minorRank; // for now always 1
unsigned majorRank; // vector rank - minorRank
unsigned leadingRank; // memref rank - vector rank
VectorType vectorType; // vector<(major_dims) x (minor_dims) x type>
VectorType majorVectorType; // vector<(major_dims) x type>
VectorType minorVectorType; // vector<(minor_dims) x type>
MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>>
};
template <typename ConcreteOp>
void NDTransferOpHelper<ConcreteOp>::emitLoops(
llvm::function_ref<void(ValueRange, ValueRange, ValueRange, ValueRange,
const MemRefBoundsCapture &)>
loopBodyBuilder) {
/// Loop nest operates on the major dimensions
MemRefBoundsCapture memrefBoundsCapture(xferOp.memref());
if (options.unroll) {
auto shape = majorVectorType.getShape();
auto strides = computeStrides(shape);
unsigned numUnrolledInstances = computeMaxLinearIndex(shape);
ValueRange indices(xferOp.indices());
for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) {
SmallVector<int64_t, 4> offsets = delinearize(strides, idx);
SmallVector<Value, 4> offsetValues =
llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value {
return std_constant_index(off);
}));
loopBodyBuilder(offsetValues, indices.take_front(leadingRank),
indices.drop_front(leadingRank).take_front(majorRank),
indices.take_back(minorRank), memrefBoundsCapture);
}
} else {
VectorBoundsCapture vectorBoundsCapture(majorVectorType);
auto majorLbs = vectorBoundsCapture.getLbs();
auto majorUbs = vectorBoundsCapture.getUbs();
auto majorSteps = vectorBoundsCapture.getSteps();
affineLoopNestBuilder(
majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) {
ValueRange indices(xferOp.indices());
loopBodyBuilder(majorIvs, indices.take_front(leadingRank),
indices.drop_front(leadingRank).take_front(majorRank),
indices.take_back(minorRank), memrefBoundsCapture);
});
}
}
static Optional<int64_t> extractConstantIndex(Value v) {
if (auto cstOp = v.getDefiningOp<ConstantIndexOp>())
return cstOp.getValue();
if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>())
if (affineApplyOp.getAffineMap().isSingleConstant())
return affineApplyOp.getAffineMap().getSingleConstantResult();
return None;
}
// Missing foldings of scf.if make it necessary to perform poor man's folding
// eagerly, especially in the case of unrolling. In the future, this should go
// away once scf.if folds properly.
static Value onTheFlyFoldSLT(Value v, Value ub) {
using namespace mlir::edsc::op;
auto maybeCstV = extractConstantIndex(v);
auto maybeCstUb = extractConstantIndex(ub);
if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb)
return Value();
return slt(v, ub);
}
/// 1. Compute the indexings `majorIvs + majorOffsets` and save them in
/// `majorIvsPlusOffsets`.
/// 2. Return a value of i1 that determines whether the first `majorIvs.rank()`
/// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`.
static Value
emitInBoundsCondition(PatternRewriter &rewriter,
VectorTransferOpInterface xferOp, unsigned leadingRank,
ValueRange majorIvs, ValueRange majorOffsets,
const MemRefBoundsCapture &memrefBounds,
SmallVectorImpl<Value> &majorIvsPlusOffsets) {
Value inBoundsCondition;
majorIvsPlusOffsets.reserve(majorIvs.size());
unsigned idx = 0;
SmallVector<Value, 4> bounds =
linalg::applyMapToValues(rewriter, xferOp.getLoc(),
xferOp.permutation_map(), memrefBounds.getUbs());
for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) {
Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it);
using namespace mlir::edsc::op;
majorIvsPlusOffsets.push_back(iv + off);
if (xferOp.isMaskedDim(leadingRank + idx)) {
Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub);
if (inBoundsCond)
inBoundsCondition = (inBoundsCondition)
? (inBoundsCondition && inBoundsCond)
: inBoundsCond;
}
++idx;
}
return inBoundsCondition;
}
// TODO: Parallelism and threadlocal considerations.
static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType,
Operation *op) {
auto &b = ScopedContext::getBuilderRef();
OpBuilder::InsertionGuard guard(b);
Operation *scope =
op->getParentWithTrait<OpTrait::AutomaticAllocationScope>();
assert(scope && "Expected op to be inside automatic allocation scope");
b.setInsertionPointToStart(&scope->getRegion(0).front());
Value res = std_alloca(memRefMinorVectorType);
return res;
}
template <>
LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() {
Value alloc, result;
if (options.unroll)
result = std_splat(vectorType, xferOp.padding());
else
alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op);
emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
ValueRange majorOffsets, ValueRange minorOffsets,
const MemRefBoundsCapture &memrefBounds) {
/// Lambda to load 1-D vector in the current loop ivs + offset context.
auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value {
SmallVector<Value, 8> indexing;
indexing.reserve(leadingRank + majorRank + minorRank);
indexing.append(leadingOffsets.begin(), leadingOffsets.end());
indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
indexing.append(minorOffsets.begin(), minorOffsets.end());
Value memref = xferOp.memref();
auto map =
getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType);
ArrayAttr masked;
if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) {
OpBuilder &b = ScopedContext::getBuilderRef();
masked = b.getBoolArrayAttr({false});
}
return vector_transfer_read(minorVectorType, memref, indexing,
AffineMapAttr::get(map), xferOp.padding(),
masked);
};
// 1. Compute the inBoundsCondition in the current loops ivs + offset
// context.
SmallVector<Value, 4> majorIvsPlusOffsets;
Value inBoundsCondition = emitInBoundsCondition(
rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()),
leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets);
if (inBoundsCondition) {
// 2. If the condition is not null, we need an IfOp, which may yield
// if `options.unroll` is true.
SmallVector<Type, 1> resultType;
if (options.unroll)
resultType.push_back(vectorType);
// 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise
// splat a 1-D vector.
ValueRange ifResults = conditionBuilder(
resultType, inBoundsCondition,
[&]() -> scf::ValueVector {
Value vector = load1DVector(majorIvsPlusOffsets);
// 3.a. If `options.unroll` is true, insert the 1-D vector in the
// aggregate. We must yield and merge with the `else` branch.
if (options.unroll) {
vector = vector_insert(vector, result, majorIvs);
return {vector};
}
// 3.b. Otherwise, just go through the temporary `alloc`.
std_store(vector, alloc, majorIvs);
return {};
},
[&]() -> scf::ValueVector {
Value vector = std_splat(minorVectorType, xferOp.padding());
// 3.c. If `options.unroll` is true, insert the 1-D vector in the
// aggregate. We must yield and merge with the `then` branch.
if (options.unroll) {
vector = vector_insert(vector, result, majorIvs);
return {vector};
}
// 3.d. Otherwise, just go through the temporary `alloc`.
std_store(vector, alloc, majorIvs);
return {};
});
if (!resultType.empty())
result = *ifResults.begin();
} else {
// 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read.
Value loaded1D = load1DVector(majorIvsPlusOffsets);
// 5.a. If `options.unroll` is true, insert the 1-D vector in the
// aggregate.
if (options.unroll)
result = vector_insert(loaded1D, result, majorIvs);
// 5.b. Otherwise, just go through the temporary `alloc`.
else
std_store(loaded1D, alloc, majorIvs);
}
});
assert((!options.unroll ^ (bool)result) &&
"Expected resulting Value iff unroll");
if (!result)
result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc));
rewriter.replaceOp(op, result);
return success();
}
template <>
LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() {
Value alloc;
if (!options.unroll) {
alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op);
std_store(xferOp.vector(),
vector_type_cast(MemRefType::get({}, vectorType), alloc));
}
emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
ValueRange majorOffsets, ValueRange minorOffsets,
const MemRefBoundsCapture &memrefBounds) {
// Lower to 1-D vector_transfer_write and let recursion handle it.
auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) {
SmallVector<Value, 8> indexing;
indexing.reserve(leadingRank + majorRank + minorRank);
indexing.append(leadingOffsets.begin(), leadingOffsets.end());
indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
indexing.append(minorOffsets.begin(), minorOffsets.end());
Value result;
// If `options.unroll` is true, extract the 1-D vector from the
// aggregate.
if (options.unroll)
result = vector_extract(xferOp.vector(), majorIvs);
else
result = std_load(alloc, majorIvs);
auto map =
getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType);
ArrayAttr masked;
if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) {
OpBuilder &b = ScopedContext::getBuilderRef();
masked = b.getBoolArrayAttr({false});
}
vector_transfer_write(result, xferOp.memref(), indexing,
AffineMapAttr::get(map), masked);
};
// 1. Compute the inBoundsCondition in the current loops ivs + offset
// context.
SmallVector<Value, 4> majorIvsPlusOffsets;
Value inBoundsCondition = emitInBoundsCondition(
rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()),
leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets);
if (inBoundsCondition) {
// 2.a. If the condition is not null, we need an IfOp, to write
// conditionally. Progressively lower to a 1-D transfer write.
conditionBuilder(inBoundsCondition,
[&] { emitTransferWrite(majorIvsPlusOffsets); });
} else {
// 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write.
emitTransferWrite(majorIvsPlusOffsets);
}
});
rewriter.eraseOp(op);
return success();
}
} // namespace
/// Analyzes the `transfer` to find an access dimension along the fastest remote
/// MemRef dimension. If such a dimension with coalescing properties is found,
/// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of
/// LoopNestBuilder captures it in the innermost loop.
template <typename TransferOpTy>
static int computeCoalescedIndex(TransferOpTy transfer) {
// rank of the remote memory access, coalescing behavior occurs on the
// innermost memory dimension.
auto remoteRank = transfer.getMemRefType().getRank();
// Iterate over the results expressions of the permutation map to determine
// the loop order for creating pointwise copies between remote and local
// memories.
int coalescedIdx = -1;
auto exprs = transfer.permutation_map().getResults();
for (auto en : llvm::enumerate(exprs)) {
auto dim = en.value().template dyn_cast<AffineDimExpr>();
if (!dim) {
continue;
}
auto memRefDim = dim.getPosition();
if (memRefDim == remoteRank - 1) {
// memRefDim has coalescing properties, it should be swapped in the last
// position.
assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices");
coalescedIdx = en.index();
}
}
return coalescedIdx;
}
template <typename TransferOpTy>
VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter(
VectorTransferToSCFOptions options, MLIRContext *context)
: RewritePattern(TransferOpTy::getOperationName(), 1, context),
options(options) {}
/// Used for staging the transfer in a local buffer.
template <typename TransferOpTy>
MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType(
TransferOpTy transfer) const {
auto vectorType = transfer.getVectorType();
return MemRefType::get(vectorType.getShape().drop_back(),
VectorType::get(vectorType.getShape().take_back(),
vectorType.getElementType()),
{}, 0);
}
static void emitWithBoundsChecks(
PatternRewriter &rewriter, VectorTransferOpInterface transfer,
ValueRange ivs, const MemRefBoundsCapture &memRefBoundsCapture,
function_ref<void(ArrayRef<Value>)> inBoundsFun,
function_ref<void(ArrayRef<Value>)> outOfBoundsFun = nullptr) {
// Permute the incoming indices according to the permutation map.
SmallVector<Value, 4> indices =
linalg::applyMapToValues(rewriter, transfer.getLoc(),
transfer.permutation_map(), transfer.indices());
// Generate a bounds check if necessary.
SmallVector<Value, 4> majorIvsPlusOffsets;
Value inBoundsCondition =
emitInBoundsCondition(rewriter, transfer, 0, ivs, indices,
memRefBoundsCapture, majorIvsPlusOffsets);
// Apply the permutation map to the ivs. The permutation map may not use all
// the inputs.
SmallVector<Value, 4> scalarAccessExprs(transfer.indices().size());
for (unsigned memRefDim = 0; memRefDim < transfer.indices().size();
++memRefDim) {
// Linear search on a small number of entries.
int loopIndex = -1;
auto exprs = transfer.permutation_map().getResults();
for (auto en : llvm::enumerate(exprs)) {
auto expr = en.value();
auto dim = expr.dyn_cast<AffineDimExpr>();
// Sanity check.
assert((dim || expr.cast<AffineConstantExpr>().getValue() == 0) &&
"Expected dim or 0 in permutationMap");
if (dim && memRefDim == dim.getPosition()) {
loopIndex = en.index();
break;
}
}
using namespace edsc::op;
auto i = transfer.indices()[memRefDim];
scalarAccessExprs[memRefDim] = loopIndex < 0 ? i : i + ivs[loopIndex];
}
if (inBoundsCondition)
conditionBuilder(
/* scf.if */ inBoundsCondition, // {
[&] { inBoundsFun(scalarAccessExprs); },
// } else {
outOfBoundsFun ? [&] { outOfBoundsFun(scalarAccessExprs); }
: function_ref<void()>()
// }
);
else
inBoundsFun(scalarAccessExprs);
}
namespace mlir {
/// Lowers TransferReadOp into a combination of:
/// 1. local memory allocation;
/// 2. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with padding).
/// 3. vector_load from local buffer (viewed as a memref<1 x vector>);
/// 4. local memory deallocation.
///
/// Lowers the data transfer part of a TransferReadOp while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// padding.
/// Performs the rewrite.
template <>
LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
using namespace mlir::edsc::op;
TransferReadOp transfer = cast<TransferReadOp>(op);
// Fall back to a loop if the fastest varying stride is not 1 or it is
// permuted.
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(transfer.getMemRefType(), strides, offset);
if (succeeded(successStrides) && strides.back() == 1 &&
transfer.permutation_map().isMinorIdentity()) {
// If > 1D, emit a bunch of loops around 1-D vector transfers.
if (transfer.getVectorType().getRank() > 1)
return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options)
.doReplace();
// If 1-D this is now handled by the target-specific lowering.
if (transfer.getVectorType().getRank() == 1)
return failure();
}
// Conservative lowering to scalar load / stores.
// 1. Setup all the captures.
ScopedContext scope(rewriter, transfer.getLoc());
StdIndexedValue remote(transfer.memref());
MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
VectorBoundsCapture vectorBoundsCapture(transfer.vector());
int coalescedIdx = computeCoalescedIndex(transfer);
// Swap the vectorBoundsCapture which will reorder loop bounds.
if (coalescedIdx >= 0)
vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
coalescedIdx);
auto lbs = vectorBoundsCapture.getLbs();
auto ubs = vectorBoundsCapture.getUbs();
SmallVector<Value, 8> steps;
steps.reserve(vectorBoundsCapture.getSteps().size());
for (auto step : vectorBoundsCapture.getSteps())
steps.push_back(std_constant_index(step));
// 2. Emit alloc-copy-load-dealloc.
MLIRContext *ctx = op->getContext();
Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer);
StdIndexedValue local(tmp);
loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) {
auto ivsStorage = llvm::to_vector<8>(loopIvs);
// Swap the ivs which will reorder memory accesses.
if (coalescedIdx >= 0)
std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]);
ArrayRef<Value> ivs(ivsStorage);
Value pos = std_index_cast(IntegerType::get(32, ctx), ivs.back());
Value inVector = local(ivs.drop_back());
auto loadValue = [&](ArrayRef<Value> indices) {
Value vector = vector_insert_element(remote(indices), inVector, pos);
local(ivs.drop_back()) = vector;
};
auto loadPadding = [&](ArrayRef<Value>) {
Value vector = vector_insert_element(transfer.padding(), inVector, pos);
local(ivs.drop_back()) = vector;
};
emitWithBoundsChecks(
rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs,
memRefBoundsCapture, loadValue, loadPadding);
});
Value vectorValue = std_load(vector_type_cast(tmp));
// 3. Propagate.
rewriter.replaceOp(op, vectorValue);
return success();
}
/// Lowers TransferWriteOp into a combination of:
/// 1. local memory allocation;
/// 2. vector_store to local buffer (viewed as a memref<1 x vector>);
/// 3. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (if in bounds).
/// 4. local memory deallocation.
///
/// More specifically, lowers the data transfer part while ensuring no
/// out-of-bounds accesses are possible.
template <>
LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
using namespace edsc::op;
TransferWriteOp transfer = cast<TransferWriteOp>(op);
// Fall back to a loop if the fastest varying stride is not 1 or it is
// permuted.
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(transfer.getMemRefType(), strides, offset);
if (succeeded(successStrides) && strides.back() == 1 &&
transfer.permutation_map().isMinorIdentity()) {
// If > 1D, emit a bunch of loops around 1-D vector transfers.
if (transfer.getVectorType().getRank() > 1)
return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options)
.doReplace();
// If 1-D this is now handled by the target-specific lowering.
if (transfer.getVectorType().getRank() == 1)
return failure();
}
// 1. Setup all the captures.
ScopedContext scope(rewriter, transfer.getLoc());
StdIndexedValue remote(transfer.memref());
MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
Value vectorValue(transfer.vector());
VectorBoundsCapture vectorBoundsCapture(transfer.vector());
int coalescedIdx = computeCoalescedIndex(transfer);
// Swap the vectorBoundsCapture which will reorder loop bounds.
if (coalescedIdx >= 0)
vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
coalescedIdx);
auto lbs = vectorBoundsCapture.getLbs();
auto ubs = vectorBoundsCapture.getUbs();
SmallVector<Value, 8> steps;
steps.reserve(vectorBoundsCapture.getSteps().size());
for (auto step : vectorBoundsCapture.getSteps())
steps.push_back(std_constant_index(step));
// 2. Emit alloc-store-copy-dealloc.
Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer);
StdIndexedValue local(tmp);
Value vec = vector_type_cast(tmp);
std_store(vectorValue, vec);
loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) {
auto ivsStorage = llvm::to_vector<8>(loopIvs);
// Swap the ivsStorage which will reorder memory accesses.
if (coalescedIdx >= 0)
std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]);
ArrayRef<Value> ivs(ivsStorage);
Value pos =
std_index_cast(IntegerType::get(32, op->getContext()), ivs.back());
auto storeValue = [&](ArrayRef<Value> indices) {
Value scalar = vector_extract_element(local(ivs.drop_back()), pos);
remote(indices) = scalar;
};
emitWithBoundsChecks(
rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs,
memRefBoundsCapture, storeValue);
});
// 3. Erase.
rewriter.eraseOp(op);
return success();
}
void populateVectorToSCFConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *context,
const VectorTransferToSCFOptions &options) {
patterns.insert<VectorTransferRewriter<vector::TransferReadOp>,
VectorTransferRewriter<vector::TransferWriteOp>>(options,
context);
}
} // namespace mlir
namespace {
struct ConvertVectorToSCFPass
: public ConvertVectorToSCFBase<ConvertVectorToSCFPass> {
ConvertVectorToSCFPass() = default;
ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) {
this->fullUnroll = options.unroll;
}
void runOnFunction() override {
OwningRewritePatternList patterns;
auto *context = getFunction().getContext();
populateVectorToSCFConversionPatterns(
patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll));
applyPatternsAndFoldGreedily(getFunction(), patterns);
}
};
} // namespace
std::unique_ptr<Pass>
mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) {
return std::make_unique<ConvertVectorToSCFPass>(options);
}