LinalgToSPIRV.cpp
8.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//===- LinalgToSPIRV.cpp - Linalg to SPIR-V dialect conversion ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToSPIRV/LinalgToSPIRV.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVLowering.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// Returns a `Value` containing the `dim`-th dimension's size of SPIR-V
/// location invocation ID. This function will create necessary operations with
/// `builder` at the proper region containing `op`.
static Value getLocalInvocationDimSize(Operation *op, int dim, Location loc,
OpBuilder *builder) {
assert(dim >= 0 && dim < 3 && "local invocation only has three dimensions");
Value invocation = spirv::getBuiltinVariableValue(
op, spirv::BuiltIn::LocalInvocationId, *builder);
Type xType = invocation.getType().cast<ShapedType>().getElementType();
return builder->create<spirv::CompositeExtractOp>(
loc, xType, invocation, builder->getI32ArrayAttr({dim}));
}
//===----------------------------------------------------------------------===//
// Reduction (single workgroup)
//===----------------------------------------------------------------------===//
namespace {
/// A pattern to convert a linalg.generic op to SPIR-V ops under the condition
/// that the linalg.generic op is performing reduction with a workload size that
/// can fit in one workgroup.
class SingleWorkgroupReduction final
: public SPIRVOpLowering<linalg::GenericOp> {
public:
using SPIRVOpLowering<linalg::GenericOp>::SPIRVOpLowering;
/// Matches the given linalg.generic op as performing reduction and returns
/// the binary op kind if successful.
static Optional<linalg::RegionMatcher::BinaryOpKind>
matchAsPerformingReduction(linalg::GenericOp genericOp);
LogicalResult
matchAndRewrite(linalg::GenericOp genericOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
Optional<linalg::RegionMatcher::BinaryOpKind>
SingleWorkgroupReduction::matchAsPerformingReduction(
linalg::GenericOp genericOp) {
Operation *op = genericOp.getOperation();
// Make sure the linalg.generic is working on memrefs.
if (!genericOp.hasBufferSemantics())
return llvm::None;
// Make sure this is reduction with one input and one output.
if (genericOp.getNumInputs() != 1 || genericOp.getNumOutputs() != 1)
return llvm::None;
auto originalInputType = op->getOperand(0).getType().cast<MemRefType>();
auto originalOutputType = op->getOperand(1).getType().cast<MemRefType>();
// Make sure the original input has one dimension.
if (!originalInputType.hasStaticShape() || originalInputType.getRank() != 1)
return llvm::None;
// Make sure the original output has one element.
if (!originalOutputType.hasStaticShape() ||
originalOutputType.getNumElements() != 1)
return llvm::None;
if (!genericOp.hasSingleReductionLoop())
return llvm::None;
if (genericOp.indexing_maps().getValue().size() != 2)
return llvm::None;
// TODO: create utility functions for these checks in Linalg
// and use them.
auto inputMap = genericOp.indexing_maps().getValue()[0].cast<AffineMapAttr>();
auto outputMap =
genericOp.indexing_maps().getValue()[1].cast<AffineMapAttr>();
// The indexing map for the input should be `(i) -> (i)`.
if (inputMap.getValue() !=
AffineMap::get(1, 0, getAffineDimExpr(0, op->getContext())))
return llvm::None;
// The indexing map for the input should be `(i) -> (0)`.
if (outputMap.getValue() !=
AffineMap::get(1, 0, getAffineConstantExpr(0, op->getContext())))
return llvm::None;
return linalg::RegionMatcher::matchAsScalarBinaryOp(genericOp);
}
LogicalResult SingleWorkgroupReduction::matchAndRewrite(
linalg::GenericOp genericOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
Operation *op = genericOp.getOperation();
auto originalInputType = op->getOperand(0).getType().cast<MemRefType>();
auto originalOutputType = op->getOperand(1).getType().cast<MemRefType>();
auto binaryOpKind = matchAsPerformingReduction(genericOp);
if (!binaryOpKind)
return failure();
// Query the shader interface for local workgroup size to make sure the
// invocation configuration fits with the input memref's shape.
DenseIntElementsAttr localSize = spirv::lookupLocalWorkGroupSize(genericOp);
if (!localSize)
return failure();
if ((*localSize.begin()).getSExtValue() != originalInputType.getDimSize(0))
return failure();
if (llvm::any_of(llvm::drop_begin(localSize.getIntValues(), 1),
[](const APInt &size) { return !size.isOneValue(); }))
return failure();
// TODO: Query the target environment to make sure the current
// workload fits in a local workgroup.
Value convertedInput = operands[0], convertedOutput = operands[1];
Location loc = genericOp.getLoc();
// Get the invocation ID.
Value x = getLocalInvocationDimSize(genericOp, /*dim=*/0, loc, &rewriter);
// TODO: Load to Workgroup storage class first.
// Get the input element accessed by this invocation.
Value inputElementPtr = spirv::getElementPtr(
typeConverter, originalInputType, convertedInput, {x}, loc, rewriter);
Value inputElement = rewriter.create<spirv::LoadOp>(loc, inputElementPtr);
// Perform the group reduction operation.
Value groupOperation;
#define CREATE_GROUP_NON_UNIFORM_BIN_OP(opKind, spvOp) \
case linalg::RegionMatcher::BinaryOpKind::opKind: { \
groupOperation = rewriter.create<spirv::spvOp>( \
loc, originalInputType.getElementType(), spirv::Scope::Subgroup, \
spirv::GroupOperation::Reduce, inputElement, \
/*cluster_size=*/nullptr); \
} break
switch (*binaryOpKind) {
CREATE_GROUP_NON_UNIFORM_BIN_OP(IAdd, GroupNonUniformIAddOp);
}
#undef CREATE_GROUP_NON_UNIFORM_BIN_OP
// Get the output element accessed by this reduction.
Value zero = spirv::ConstantOp::getZero(
typeConverter.getIndexType(rewriter.getContext()), loc, rewriter);
SmallVector<Value, 1> zeroIndices(originalOutputType.getRank(), zero);
Value outputElementPtr =
spirv::getElementPtr(typeConverter, originalOutputType, convertedOutput,
zeroIndices, loc, rewriter);
// Write out the final reduction result. This should be only conducted by one
// invocation. We use spv.GroupNonUniformElect to find the invocation with the
// lowest ID.
//
// ```
// if (spv.GroupNonUniformElect) { output = ... }
// ```
Value condition = rewriter.create<spirv::GroupNonUniformElectOp>(
loc, spirv::Scope::Subgroup);
auto createAtomicOp = [&](OpBuilder &builder) {
#define CREATE_ATOMIC_BIN_OP(opKind, spvOp) \
case linalg::RegionMatcher::BinaryOpKind::opKind: { \
builder.create<spirv::spvOp>(loc, outputElementPtr, spirv::Scope::Device, \
spirv::MemorySemantics::AcquireRelease, \
groupOperation); \
} break
switch (*binaryOpKind) { CREATE_ATOMIC_BIN_OP(IAdd, AtomicIAddOp); }
#undef CREATE_ATOMIC_BIN_OP
};
spirv::SelectionOp::createIfThen(loc, condition, createAtomicOp, rewriter);
rewriter.eraseOp(genericOp);
return success();
}
//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//
void mlir::populateLinalgToSPIRVPatterns(MLIRContext *context,
SPIRVTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<SingleWorkgroupReduction>(context, typeConverter);
}