HashTableTest.cpp
8.14 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//===- llvm/unittest/DebugInfo/PDB/HashTableTest.cpp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/PDB/Native/HashTable.h"
#include "llvm/DebugInfo/PDB/Native/Hash.h"
#include "llvm/DebugInfo/PDB/Native/NamedStreamMap.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
#include <vector>
using namespace llvm;
using namespace llvm::pdb;
using namespace llvm::support;
namespace {
struct IdentityHashTraits {
uint32_t hashLookupKey(uint32_t N) const { return N; }
uint32_t storageKeyToLookupKey(uint32_t N) const { return N; }
uint32_t lookupKeyToStorageKey(uint32_t N) { return N; }
};
template <class T = uint32_t>
class HashTableInternals : public HashTable<T> {
public:
using HashTable<T>::Buckets;
using HashTable<T>::Present;
using HashTable<T>::Deleted;
};
}
TEST(HashTableTest, TestSimple) {
HashTableInternals<> Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
IdentityHashTraits Traits;
Table.set_as(3u, 7, Traits);
EXPECT_EQ(1u, Table.size());
ASSERT_NE(Table.end(), Table.find_as(3u, Traits));
EXPECT_EQ(7u, Table.get(3u, Traits));
}
TEST(HashTableTest, TestCollision) {
HashTableInternals<> Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
// We use knowledge of the hash table's implementation details to make sure
// to add another value that is the equivalent to the first value modulo the
// hash table's capacity.
uint32_t N1 = Table.capacity() + 1;
uint32_t N2 = 2 * N1;
IdentityHashTraits Traits;
Table.set_as(N1, 7, Traits);
Table.set_as(N2, 12, Traits);
EXPECT_EQ(2u, Table.size());
ASSERT_NE(Table.end(), Table.find_as(N1, Traits));
ASSERT_NE(Table.end(), Table.find_as(N2, Traits));
EXPECT_EQ(7u, Table.get(N1, Traits));
EXPECT_EQ(12u, Table.get(N2, Traits));
}
TEST(HashTableTest, TestRemove) {
HashTableInternals<> Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
IdentityHashTraits Traits;
Table.set_as(1u, 2, Traits);
Table.set_as(3u, 4, Traits);
EXPECT_EQ(2u, Table.size());
ASSERT_NE(Table.end(), Table.find_as(1u, Traits));
ASSERT_NE(Table.end(), Table.find_as(3u, Traits));
EXPECT_EQ(2u, Table.get(1u, Traits));
EXPECT_EQ(4u, Table.get(3u, Traits));
}
TEST(HashTableTest, TestCollisionAfterMultipleProbes) {
HashTableInternals<> Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
// Probing looks for the first available slot. A slot may already be filled
// as a result of an item with a *different* hash value already being there.
// Test that when this happens, the probe still finds the value.
uint32_t N1 = Table.capacity() + 1;
uint32_t N2 = N1 + 1;
uint32_t N3 = 2 * N1;
IdentityHashTraits Traits;
Table.set_as(N1, 7, Traits);
Table.set_as(N2, 11, Traits);
Table.set_as(N3, 13, Traits);
EXPECT_EQ(3u, Table.size());
ASSERT_NE(Table.end(), Table.find_as(N1, Traits));
ASSERT_NE(Table.end(), Table.find_as(N2, Traits));
ASSERT_NE(Table.end(), Table.find_as(N3, Traits));
EXPECT_EQ(7u, Table.get(N1, Traits));
EXPECT_EQ(11u, Table.get(N2, Traits));
EXPECT_EQ(13u, Table.get(N3, Traits));
}
TEST(HashTableTest, Grow) {
// So that we are independent of the load factor, `capacity` items, which is
// guaranteed to trigger a grow. Then verify that the size is the same, the
// capacity is larger, and all the original items are still in the table.
HashTableInternals<> Table;
IdentityHashTraits Traits;
uint32_t OldCapacity = Table.capacity();
for (uint32_t I = 0; I < OldCapacity; ++I) {
Table.set_as(OldCapacity + I * 2 + 1, I * 2 + 3, Traits);
}
EXPECT_EQ(OldCapacity, Table.size());
EXPECT_GT(Table.capacity(), OldCapacity);
for (uint32_t I = 0; I < OldCapacity; ++I) {
ASSERT_NE(Table.end(), Table.find_as(OldCapacity + I * 2 + 1, Traits));
EXPECT_EQ(I * 2 + 3, Table.get(OldCapacity + I * 2 + 1, Traits));
}
}
TEST(HashTableTest, Serialization) {
HashTableInternals<> Table;
IdentityHashTraits Traits;
uint32_t Cap = Table.capacity();
for (uint32_t I = 0; I < Cap; ++I) {
Table.set_as(Cap + I * 2 + 1, I * 2 + 3, Traits);
}
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
MutableBinaryByteStream Stream(Buffer, little);
BinaryStreamWriter Writer(Stream);
EXPECT_THAT_ERROR(Table.commit(Writer), Succeeded());
// We should have written precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Writer.getOffset());
HashTableInternals<> Table2;
BinaryStreamReader Reader(Stream);
EXPECT_THAT_ERROR(Table2.load(Reader), Succeeded());
// We should have read precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Reader.getOffset());
EXPECT_EQ(Table.size(), Table2.size());
EXPECT_EQ(Table.capacity(), Table2.capacity());
EXPECT_EQ(Table.Buckets, Table2.Buckets);
EXPECT_EQ(Table.Present, Table2.Present);
EXPECT_EQ(Table.Deleted, Table2.Deleted);
}
TEST(HashTableTest, NamedStreamMap) {
std::vector<StringRef> Streams = {"One", "Two", "Three", "Four",
"Five", "Six", "Seven"};
StringMap<uint32_t> ExpectedIndices;
for (uint32_t I = 0; I < Streams.size(); ++I)
ExpectedIndices[Streams[I]] = I + 1;
// To verify the hash table actually works, we want to verify that insertion
// order doesn't matter. So try inserting in every possible order of 7 items.
do {
NamedStreamMap NSM;
for (StringRef S : Streams)
NSM.set(S, ExpectedIndices[S]);
EXPECT_EQ(Streams.size(), NSM.size());
uint32_t N;
EXPECT_TRUE(NSM.get("One", N));
EXPECT_EQ(1U, N);
EXPECT_TRUE(NSM.get("Two", N));
EXPECT_EQ(2U, N);
EXPECT_TRUE(NSM.get("Three", N));
EXPECT_EQ(3U, N);
EXPECT_TRUE(NSM.get("Four", N));
EXPECT_EQ(4U, N);
EXPECT_TRUE(NSM.get("Five", N));
EXPECT_EQ(5U, N);
EXPECT_TRUE(NSM.get("Six", N));
EXPECT_EQ(6U, N);
EXPECT_TRUE(NSM.get("Seven", N));
EXPECT_EQ(7U, N);
} while (std::next_permutation(Streams.begin(), Streams.end()));
}
struct FooBar {
uint32_t X;
uint32_t Y;
bool operator==(const FooBar &RHS) const {
return X == RHS.X && Y == RHS.Y;
}
};
struct FooBarHashTraits {
std::vector<char> Buffer;
FooBarHashTraits() { Buffer.push_back(0); }
uint32_t hashLookupKey(StringRef S) const {
return llvm::pdb::hashStringV1(S);
}
StringRef storageKeyToLookupKey(uint32_t N) const {
if (N >= Buffer.size())
return StringRef();
return StringRef(Buffer.data() + N);
}
uint32_t lookupKeyToStorageKey(StringRef S) {
uint32_t N = Buffer.size();
Buffer.insert(Buffer.end(), S.begin(), S.end());
Buffer.push_back('\0');
return N;
}
};
TEST(HashTableTest, NonTrivialValueType) {
HashTableInternals<FooBar> Table;
FooBarHashTraits Traits;
uint32_t Cap = Table.capacity();
for (uint32_t I = 0; I < Cap; ++I) {
FooBar F;
F.X = I;
F.Y = I + 1;
Table.set_as(utostr(I), F, Traits);
}
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
MutableBinaryByteStream Stream(Buffer, little);
BinaryStreamWriter Writer(Stream);
EXPECT_THAT_ERROR(Table.commit(Writer), Succeeded());
// We should have written precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Writer.getOffset());
HashTableInternals<FooBar> Table2;
BinaryStreamReader Reader(Stream);
EXPECT_THAT_ERROR(Table2.load(Reader), Succeeded());
// We should have read precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Reader.getOffset());
EXPECT_EQ(Table.size(), Table2.size());
EXPECT_EQ(Table.capacity(), Table2.capacity());
EXPECT_EQ(Table.Buckets, Table2.Buckets);
EXPECT_EQ(Table.Present, Table2.Present);
EXPECT_EQ(Table.Deleted, Table2.Deleted);
}