add-ext.ll
5.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown | FileCheck %s
; The fundamental problem: an add separated from other arithmetic by a sign or
; zero extension can't be combined with the later instructions. However, if the
; first add is 'nsw' or 'nuw' respectively, then we can promote the extension
; ahead of that add to allow optimizations.
define i64 @add_nsw_consts(i32 %i) {
; CHECK-LABEL: add_nsw_consts:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: addq $12, %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, 5
%ext = sext i32 %add to i64
%idx = add i64 %ext, 7
ret i64 %idx
}
; An x86 bonus: If we promote the sext ahead of the 'add nsw',
; we allow LEA formation and eliminate an add instruction.
define i64 @add_nsw_sext_add(i32 %i, i64 %x) {
; CHECK-LABEL: add_nsw_sext_add:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: leaq 5(%rax,%rsi), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, 5
%ext = sext i32 %add to i64
%idx = add i64 %x, %ext
ret i64 %idx
}
; Throw in a scale (left shift) because an LEA can do that too.
; Use a negative constant (LEA displacement) to verify that's handled correctly.
define i64 @add_nsw_sext_lsh_add(i32 %i, i64 %x) {
; CHECK-LABEL: add_nsw_sext_lsh_add:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: leaq -40(%rsi,%rax,8), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, -5
%ext = sext i32 %add to i64
%shl = shl i64 %ext, 3
%idx = add i64 %x, %shl
ret i64 %idx
}
; Don't promote the sext if it has no users. The wider add instruction needs an
; extra byte to encode.
define i64 @add_nsw_sext(i32 %i, i64 %x) {
; CHECK-LABEL: add_nsw_sext:
; CHECK: # %bb.0:
; CHECK-NEXT: addl $5, %edi
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, 5
%ext = sext i32 %add to i64
ret i64 %ext
}
; The typical use case: a 64-bit system where an 'int' is used as an index into an array.
define i8* @gep8(i32 %i, i8* %x) {
; CHECK-LABEL: gep8:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: leaq 5(%rax,%rsi), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, 5
%ext = sext i32 %add to i64
%idx = getelementptr i8, i8* %x, i64 %ext
ret i8* %idx
}
define i16* @gep16(i32 %i, i16* %x) {
; CHECK-LABEL: gep16:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: leaq -10(%rsi,%rax,2), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, -5
%ext = sext i32 %add to i64
%idx = getelementptr i16, i16* %x, i64 %ext
ret i16* %idx
}
define i32* @gep32(i32 %i, i32* %x) {
; CHECK-LABEL: gep32:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: leaq 20(%rsi,%rax,4), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, 5
%ext = sext i32 %add to i64
%idx = getelementptr i32, i32* %x, i64 %ext
ret i32* %idx
}
define i64* @gep64(i32 %i, i64* %x) {
; CHECK-LABEL: gep64:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: leaq -40(%rsi,%rax,8), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, -5
%ext = sext i32 %add to i64
%idx = getelementptr i64, i64* %x, i64 %ext
ret i64* %idx
}
; LEA can't scale by 16, but the adds can still be combined into an LEA.
define i128* @gep128(i32 %i, i128* %x) {
; CHECK-LABEL: gep128:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %edi, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: leaq 80(%rax,%rsi), %rax
; CHECK-NEXT: retq
%add = add nsw i32 %i, 5
%ext = sext i32 %add to i64
%idx = getelementptr i128, i128* %x, i64 %ext
ret i128* %idx
}
; A bigger win can be achieved when there is more than one use of the
; sign extended value. In this case, we can eliminate sign extension
; instructions plus use more efficient addressing modes for memory ops.
define void @PR20134(i32* %a, i32 %i) {
; CHECK-LABEL: PR20134:
; CHECK: # %bb.0:
; CHECK-NEXT: movslq %esi, %rax
; CHECK-NEXT: movl 4(%rdi,%rax,4), %ecx
; CHECK-NEXT: addl 8(%rdi,%rax,4), %ecx
; CHECK-NEXT: movl %ecx, (%rdi,%rax,4)
; CHECK-NEXT: retq
%add1 = add nsw i32 %i, 1
%idx1 = sext i32 %add1 to i64
%gep1 = getelementptr i32, i32* %a, i64 %idx1
%load1 = load i32, i32* %gep1, align 4
%add2 = add nsw i32 %i, 2
%idx2 = sext i32 %add2 to i64
%gep2 = getelementptr i32, i32* %a, i64 %idx2
%load2 = load i32, i32* %gep2, align 4
%add3 = add i32 %load1, %load2
%idx3 = sext i32 %i to i64
%gep3 = getelementptr i32, i32* %a, i64 %idx3
store i32 %add3, i32* %gep3, align 4
ret void
}
; The same as @PR20134 but sign extension is replaced with zero extension
define void @PR20134_zext(i32* %a, i32 %i) {
; CHECK-LABEL: PR20134_zext:
; CHECK: # %bb.0:
; CHECK-NEXT: movl %esi, %eax
; CHECK-NEXT: movl 4(%rdi,%rax,4), %ecx
; CHECK-NEXT: addl 8(%rdi,%rax,4), %ecx
; CHECK-NEXT: movl %ecx, (%rdi,%rax,4)
; CHECK-NEXT: retq
%add1 = add nuw i32 %i, 1
%idx1 = zext i32 %add1 to i64
%gep1 = getelementptr i32, i32* %a, i64 %idx1
%load1 = load i32, i32* %gep1, align 4
%add2 = add nuw i32 %i, 2
%idx2 = zext i32 %add2 to i64
%gep2 = getelementptr i32, i32* %a, i64 %idx2
%load2 = load i32, i32* %gep2, align 4
%add3 = add i32 %load1, %load2
%idx3 = zext i32 %i to i64
%gep3 = getelementptr i32, i32* %a, i64 %idx3
store i32 %add3, i32* %gep3, align 4
ret void
}