sgpr-control-flow.ll
7.28 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=SI %s
;
; Most SALU instructions ignore control flow, so we need to make sure
; they don't overwrite values from other blocks.
; If the branch decision is made based on a value in an SGPR then all
; threads will execute the same code paths, so we don't need to worry
; about instructions in different blocks overwriting each other.
define amdgpu_kernel void @sgpr_if_else_salu_br(i32 addrspace(1)* %out, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_load_dwordx4 s[8:11], s[0:1], 0xb
; SI-NEXT: s_load_dword s0, s[0:1], 0xf
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s8, 0
; SI-NEXT: s_cbranch_scc0 BB0_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_add_i32 s0, s11, s0
; SI-NEXT: s_cbranch_execz BB0_3
; SI-NEXT: s_branch BB0_4
; SI-NEXT: BB0_2:
; SI-NEXT: ; implicit-def: $sgpr0
; SI-NEXT: BB0_3: ; %if
; SI-NEXT: s_sub_i32 s0, s9, s10
; SI-NEXT: BB0_4: ; %endif
; SI-NEXT: s_add_i32 s0, s0, s8
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%0 = icmp eq i32 %a, 0
br i1 %0, label %if, label %else
if:
%1 = sub i32 %b, %c
br label %endif
else:
%2 = add i32 %d, %e
br label %endif
endif:
%3 = phi i32 [%1, %if], [%2, %else]
%4 = add i32 %3, %a
store i32 %4, i32 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_salu_br_opt(i32 addrspace(1)* %out, [8 x i32], i32 %a, [8 x i32], i32 %b, [8 x i32], i32 %c, [8 x i32], i32 %d, [8 x i32], i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br_opt:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dword s2, s[0:1], 0x13
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s2, 0
; SI-NEXT: s_cbranch_scc0 BB1_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_load_dword s3, s[0:1], 0x2e
; SI-NEXT: s_load_dword s6, s[0:1], 0x37
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s3, s3, s6
; SI-NEXT: s_cbranch_execz BB1_3
; SI-NEXT: s_branch BB1_4
; SI-NEXT: BB1_2:
; SI-NEXT: ; implicit-def: $sgpr3
; SI-NEXT: BB1_3: ; %if
; SI-NEXT: s_load_dword s3, s[0:1], 0x1c
; SI-NEXT: s_load_dword s0, s[0:1], 0x25
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s3, s3, s0
; SI-NEXT: BB1_4: ; %endif
; SI-NEXT: s_add_i32 s0, s3, s2
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%cmp0 = icmp eq i32 %a, 0
br i1 %cmp0, label %if, label %else
if:
%add0 = add i32 %b, %c
br label %endif
else:
%add1 = add i32 %d, %e
br label %endif
endif:
%phi = phi i32 [%add0, %if], [%add1, %else]
%add2 = add i32 %phi, %a
store i32 %add2, i32 addrspace(1)* %out
ret void
}
; The two S_ADD instructions should write to different registers, since
; different threads will take different control flow paths.
define amdgpu_kernel void @sgpr_if_else_valu_br(i32 addrspace(1)* %out, float %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_valu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: v_cvt_f32_u32_e32 v0, v0
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_load_dwordx4 s[0:3], s[0:1], 0xc
; SI-NEXT: ; implicit-def: $sgpr6
; SI-NEXT: v_cmp_lg_f32_e32 vcc, 0, v0
; SI-NEXT: s_and_saveexec_b64 s[8:9], vcc
; SI-NEXT: s_xor_b64 s[8:9], exec, s[8:9]
; SI-NEXT: s_cbranch_execz BB2_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s6, s2, s3
; SI-NEXT: BB2_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[8:9]
; SI-NEXT: v_mov_b32_e32 v0, s6
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_add_i32 s0, s0, s1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: ; %bb.4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tid_f = uitofp i32 %tid to float
%tmp1 = fcmp ueq float %tid_f, 0.0
br i1 %tmp1, label %if, label %else
if:
%tmp2 = add i32 %b, %c
br label %endif
else:
%tmp3 = add i32 %d, %e
br label %endif
endif:
%tmp4 = phi i32 [%tmp2, %if], [%tmp3, %else]
store i32 %tmp4, i32 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_valu_cmp_phi_br(i32 addrspace(1)* %out, i32 addrspace(1)* %a, i32 addrspace(1)* %b) {
; SI-LABEL: sgpr_if_else_valu_cmp_phi_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s10, 0
; SI-NEXT: v_cmp_ne_u32_e32 vcc, 0, v0
; SI-NEXT: ; implicit-def: $sgpr0_sgpr1
; SI-NEXT: s_and_saveexec_b64 s[2:3], vcc
; SI-NEXT: s_xor_b64 s[2:3], exec, s[2:3]
; SI-NEXT: s_cbranch_execz BB3_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_mov_b32 s11, 0xf000
; SI-NEXT: v_lshlrev_b32_e32 v1, 2, v0
; SI-NEXT: v_mov_b32_e32 v2, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_load_dword v1, v[1:2], s[8:11], 0 addr64
; SI-NEXT: s_andn2_b64 s[0:1], s[0:1], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v1
; SI-NEXT: s_and_b64 s[8:9], vcc, exec
; SI-NEXT: s_or_b64 s[0:1], s[0:1], s[8:9]
; SI-NEXT: BB3_2: ; %Flow
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[2:3]
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: s_cbranch_execz BB3_4
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_mov_b32 s11, 0xf000
; SI-NEXT: s_mov_b32 s10, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b64 s[8:9], s[6:7]
; SI-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: buffer_load_dword v0, v[0:1], s[8:11], 0 addr64
; SI-NEXT: s_andn2_b64 s[0:1], s[0:1], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_eq_u32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[6:7], vcc, exec
; SI-NEXT: s_or_b64 s[0:1], s[0:1], s[6:7]
; SI-NEXT: BB3_4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_cndmask_b32_e64 v0, 0, -1, s[0:1]
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tmp1 = icmp eq i32 %tid, 0
br i1 %tmp1, label %if, label %else
if:
%gep.if = getelementptr i32, i32 addrspace(1)* %a, i32 %tid
%a.val = load i32, i32 addrspace(1)* %gep.if
%cmp.if = icmp eq i32 %a.val, 0
br label %endif
else:
%gep.else = getelementptr i32, i32 addrspace(1)* %b, i32 %tid
%b.val = load i32, i32 addrspace(1)* %gep.else
%cmp.else = icmp slt i32 %b.val, 0
br label %endif
endif:
%tmp4 = phi i1 [%cmp.if, %if], [%cmp.else, %else]
%ext = sext i1 %tmp4 to i32
store i32 %ext, i32 addrspace(1)* %out
ret void
}
declare i32 @llvm.amdgcn.workitem.id.x() #0
attributes #0 = { readnone }