PassManagerBuilder.cpp 50.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/InstSimplifyPass.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include "llvm/Transforms/Vectorize/VectorCombine.h"

using namespace llvm;

static cl::opt<bool>
    RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
                       cl::ZeroOrMore, cl::desc("Run Partial inlinining pass"));

static cl::opt<bool>
UseGVNAfterVectorization("use-gvn-after-vectorization",
  cl::init(false), cl::Hidden,
  cl::desc("Run GVN instead of Early CSE after vectorization passes"));

static cl::opt<bool> ExtraVectorizerPasses(
    "extra-vectorizer-passes", cl::init(false), cl::Hidden,
    cl::desc("Run cleanup optimization passes after vectorization."));

static cl::opt<bool>
RunLoopRerolling("reroll-loops", cl::Hidden,
                 cl::desc("Run the loop rerolling pass"));

static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
                               cl::desc("Run the NewGVN pass"));

// Experimental option to use CFL-AA
enum class CFLAAType { None, Steensgaard, Andersen, Both };
static cl::opt<CFLAAType>
    UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
             cl::desc("Enable the new, experimental CFL alias analysis"),
             cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
                        clEnumValN(CFLAAType::Steensgaard, "steens",
                                   "Enable unification-based CFL-AA"),
                        clEnumValN(CFLAAType::Andersen, "anders",
                                   "Enable inclusion-based CFL-AA"),
                        clEnumValN(CFLAAType::Both, "both",
                                   "Enable both variants of CFL-AA")));

static cl::opt<bool> EnableLoopInterchange(
    "enable-loopinterchange", cl::init(false), cl::Hidden,
    cl::desc("Enable the new, experimental LoopInterchange Pass"));

static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
                                        cl::init(false), cl::Hidden,
                                        cl::desc("Enable Unroll And Jam Pass"));

static cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
                                       cl::Hidden,
                                       cl::desc("Enable the LoopFlatten Pass"));

static cl::opt<bool>
    EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
                            cl::desc("Enable preparation for ThinLTO."));

static cl::opt<bool>
    EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
                         cl::desc("Enable performing ThinLTO."));

cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false),
    cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass"));

static cl::opt<bool> UseLoopVersioningLICM(
    "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
    cl::desc("Enable the experimental Loop Versioning LICM pass"));

static cl::opt<bool>
    DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
                      cl::desc("Disable pre-instrumentation inliner"));

static cl::opt<int> PreInlineThreshold(
    "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
    cl::desc("Control the amount of inlining in pre-instrumentation inliner "
             "(default = 75)"));

static cl::opt<bool> EnableGVNHoist(
    "enable-gvn-hoist", cl::init(false), cl::ZeroOrMore,
    cl::desc("Enable the GVN hoisting pass (default = off)"));

static cl::opt<bool>
    DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
                              cl::Hidden,
                              cl::desc("Disable shrink-wrap library calls"));

static cl::opt<bool> EnableSimpleLoopUnswitch(
    "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
    cl::desc("Enable the simple loop unswitch pass. Also enables independent "
             "cleanup passes integrated into the loop pass manager pipeline."));

static cl::opt<bool> EnableGVNSink(
    "enable-gvn-sink", cl::init(false), cl::ZeroOrMore,
    cl::desc("Enable the GVN sinking pass (default = off)"));

// This option is used in simplifying testing SampleFDO optimizations for
// profile loading.
static cl::opt<bool>
    EnableCHR("enable-chr", cl::init(true), cl::Hidden,
              cl::desc("Enable control height reduction optimization (CHR)"));

cl::opt<bool> FlattenedProfileUsed(
    "flattened-profile-used", cl::init(false), cl::Hidden,
    cl::desc("Indicate the sample profile being used is flattened, i.e., "
             "no inline hierachy exists in the profile. "));

cl::opt<bool> EnableOrderFileInstrumentation(
    "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
    cl::desc("Enable order file instrumentation (default = off)"));

cl::opt<bool> EnableMatrix(
    "enable-matrix", cl::init(false), cl::Hidden,
    cl::desc("Enable lowering of the matrix intrinsics"));

cl::opt<bool> EnableConstraintElimination(
    "enable-constraint-elimination", cl::init(false), cl::Hidden,
    cl::desc(
        "Enable pass to eliminate conditions based on linear constraints."));

cl::opt<AttributorRunOption> AttributorRun(
    "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
    cl::desc("Enable the attributor inter-procedural deduction pass."),
    cl::values(clEnumValN(AttributorRunOption::ALL, "all",
                          "enable all attributor runs"),
               clEnumValN(AttributorRunOption::MODULE, "module",
                          "enable module-wide attributor runs"),
               clEnumValN(AttributorRunOption::CGSCC, "cgscc",
                          "enable call graph SCC attributor runs"),
               clEnumValN(AttributorRunOption::NONE, "none",
                          "disable attributor runs")));

extern cl::opt<bool> EnableKnowledgeRetention;

PassManagerBuilder::PassManagerBuilder() {
    OptLevel = 2;
    SizeLevel = 0;
    LibraryInfo = nullptr;
    Inliner = nullptr;
    DisableUnrollLoops = false;
    SLPVectorize = false;
    LoopVectorize = true;
    LoopsInterleaved = true;
    RerollLoops = RunLoopRerolling;
    NewGVN = RunNewGVN;
    LicmMssaOptCap = SetLicmMssaOptCap;
    LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
    DisableGVNLoadPRE = false;
    ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
    VerifyInput = false;
    VerifyOutput = false;
    MergeFunctions = false;
    PrepareForLTO = false;
    EnablePGOInstrGen = false;
    EnablePGOCSInstrGen = false;
    EnablePGOCSInstrUse = false;
    PGOInstrGen = "";
    PGOInstrUse = "";
    PGOSampleUse = "";
    PrepareForThinLTO = EnablePrepareForThinLTO;
    PerformThinLTO = EnablePerformThinLTO;
    DivergentTarget = false;
    CallGraphProfile = true;
}

PassManagerBuilder::~PassManagerBuilder() {
  delete LibraryInfo;
  delete Inliner;
}

/// Set of global extensions, automatically added as part of the standard set.
static ManagedStatic<
    SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
                           PassManagerBuilder::ExtensionFn,
                           PassManagerBuilder::GlobalExtensionID>,
                8>>
    GlobalExtensions;
static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;

/// Check if GlobalExtensions is constructed and not empty.
/// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
/// the construction of the object.
static bool GlobalExtensionsNotEmpty() {
  return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
}

PassManagerBuilder::GlobalExtensionID
PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
                                       PassManagerBuilder::ExtensionFn Fn) {
  auto ExtensionID = GlobalExtensionsCounter++;
  GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
  return ExtensionID;
}

void PassManagerBuilder::removeGlobalExtension(
    PassManagerBuilder::GlobalExtensionID ExtensionID) {
  // RegisterStandardPasses may try to call this function after GlobalExtensions
  // has already been destroyed; doing so should not generate an error.
  if (!GlobalExtensions.isConstructed())
    return;

  auto GlobalExtension =
      llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
        return std::get<2>(elem) == ExtensionID;
      });
  assert(GlobalExtension != GlobalExtensions->end() &&
         "The extension ID to be removed should always be valid.");

  GlobalExtensions->erase(GlobalExtension);
}

void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
  Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
}

void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
                                           legacy::PassManagerBase &PM) const {
  if (GlobalExtensionsNotEmpty()) {
    for (auto &Ext : *GlobalExtensions) {
      if (std::get<0>(Ext) == ETy)
        std::get<1>(Ext)(*this, PM);
    }
  }
  for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
    if (Extensions[i].first == ETy)
      Extensions[i].second(*this, PM);
}

void PassManagerBuilder::addInitialAliasAnalysisPasses(
    legacy::PassManagerBase &PM) const {
  switch (UseCFLAA) {
  case CFLAAType::Steensgaard:
    PM.add(createCFLSteensAAWrapperPass());
    break;
  case CFLAAType::Andersen:
    PM.add(createCFLAndersAAWrapperPass());
    break;
  case CFLAAType::Both:
    PM.add(createCFLSteensAAWrapperPass());
    PM.add(createCFLAndersAAWrapperPass());
    break;
  default:
    break;
  }

  // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
  // BasicAliasAnalysis wins if they disagree. This is intended to help
  // support "obvious" type-punning idioms.
  PM.add(createTypeBasedAAWrapperPass());
  PM.add(createScopedNoAliasAAWrapperPass());
}

void PassManagerBuilder::populateFunctionPassManager(
    legacy::FunctionPassManager &FPM) {
  addExtensionsToPM(EP_EarlyAsPossible, FPM);
  FPM.add(createEntryExitInstrumenterPass());

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  // The backends do not handle matrix intrinsics currently.
  // Make sure they are also lowered in O0.
  // FIXME: A lightweight version of the pass should run in the backend
  //        pipeline on demand.
  if (EnableMatrix && OptLevel == 0)
    FPM.add(createLowerMatrixIntrinsicsMinimalPass());

  if (OptLevel == 0) return;

  addInitialAliasAnalysisPasses(FPM);

  FPM.add(createCFGSimplificationPass());
  FPM.add(createSROAPass());
  FPM.add(createEarlyCSEPass());
  FPM.add(createLowerExpectIntrinsicPass());
}

// Do PGO instrumentation generation or use pass as the option specified.
void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM,
                                           bool IsCS = false) {
  if (IsCS) {
    if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse)
      return;
  } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
    return;

  // Perform the preinline and cleanup passes for O1 and above.
  // And avoid doing them if optimizing for size.
  // We will not do this inline for context sensitive PGO (when IsCS is true).
  if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner &&
      PGOSampleUse.empty() && !IsCS) {
    // Create preinline pass. We construct an InlineParams object and specify
    // the threshold here to avoid the command line options of the regular
    // inliner to influence pre-inlining. The only fields of InlineParams we
    // care about are DefaultThreshold and HintThreshold.
    InlineParams IP;
    IP.DefaultThreshold = PreInlineThreshold;
    // FIXME: The hint threshold has the same value used by the regular inliner.
    // This should probably be lowered after performance testing.
    IP.HintThreshold = 325;

    MPM.add(createFunctionInliningPass(IP));
    MPM.add(createSROAPass());
    MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
    MPM.add(createCFGSimplificationPass());    // Merge & remove BBs
    MPM.add(createInstructionCombiningPass()); // Combine silly seq's
    addExtensionsToPM(EP_Peephole, MPM);
  }
  if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) {
    MPM.add(createPGOInstrumentationGenLegacyPass(IsCS));
    // Add the profile lowering pass.
    InstrProfOptions Options;
    if (!PGOInstrGen.empty())
      Options.InstrProfileOutput = PGOInstrGen;
    Options.DoCounterPromotion = true;
    Options.UseBFIInPromotion = IsCS;
    MPM.add(createLoopRotatePass());
    MPM.add(createInstrProfilingLegacyPass(Options, IsCS));
  }
  if (!PGOInstrUse.empty())
    MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS));
  // Indirect call promotion that promotes intra-module targets only.
  // For ThinLTO this is done earlier due to interactions with globalopt
  // for imported functions. We don't run this at -O0.
  if (OptLevel > 0 && !IsCS)
    MPM.add(
        createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
}
void PassManagerBuilder::addFunctionSimplificationPasses(
    legacy::PassManagerBase &MPM) {
  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
  MPM.add(createSROAPass());
  MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
  if (EnableKnowledgeRetention)
    MPM.add(createAssumeSimplifyPass());

  if (OptLevel > 1) {
    if (EnableGVNHoist)
      MPM.add(createGVNHoistPass());
    if (EnableGVNSink) {
      MPM.add(createGVNSinkPass());
      MPM.add(createCFGSimplificationPass());
    }
  }

  if (EnableConstraintElimination)
    MPM.add(createConstraintEliminationPass());

  if (OptLevel > 1) {
    // Speculative execution if the target has divergent branches; otherwise nop.
    MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());

    MPM.add(createJumpThreadingPass());         // Thread jumps.
    MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  }
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  // Combine silly seq's
  if (OptLevel > 2)
    MPM.add(createAggressiveInstCombinerPass());
  MPM.add(createInstructionCombiningPass());
  if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
    MPM.add(createLibCallsShrinkWrapPass());
  addExtensionsToPM(EP_Peephole, MPM);

  // Optimize memory intrinsic calls based on the profiled size information.
  if (SizeLevel == 0)
    MPM.add(createPGOMemOPSizeOptLegacyPass());

  // TODO: Investigate the cost/benefit of tail call elimination on debugging.
  if (OptLevel > 1)
    MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(createCFGSimplificationPass());      // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions

  // Begin the loop pass pipeline.
  if (EnableSimpleLoopUnswitch) {
    // The simple loop unswitch pass relies on separate cleanup passes. Schedule
    // them first so when we re-process a loop they run before other loop
    // passes.
    MPM.add(createLoopInstSimplifyPass());
    MPM.add(createLoopSimplifyCFGPass());
  }
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
  // TODO: Investigate promotion cap for O1.
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  if (EnableSimpleLoopUnswitch)
    MPM.add(createSimpleLoopUnswitchLegacyPass());
  else
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
  // FIXME: We break the loop pass pipeline here in order to do full
  // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
  // need for this.
  MPM.add(createCFGSimplificationPass());
  MPM.add(createInstructionCombiningPass());
  // We resume loop passes creating a second loop pipeline here.
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  addExtensionsToPM(EP_LateLoopOptimizations, MPM);
  MPM.add(createLoopDeletionPass());          // Delete dead loops

  if (EnableLoopInterchange)
    MPM.add(createLoopInterchangePass()); // Interchange loops
  if (EnableLoopFlatten) {
    MPM.add(createLoopFlattenPass()); // Flatten loops
    MPM.add(createLoopSimplifyCFGPass());
  }

  // Unroll small loops
  MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                     ForgetAllSCEVInLoopUnroll));
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
  // This ends the loop pass pipelines.

  // Break up allocas that may now be splittable after loop unrolling.
  MPM.add(createSROAPass());

  if (OptLevel > 1) {
    MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(NewGVN ? createNewGVNPass()
                   : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
  }
  MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  MPM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, MPM);
  if (OptLevel > 1) {
    MPM.add(createJumpThreadingPass());         // Thread jumps
    MPM.add(createCorrelatedValuePropagationPass());
    MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  }

  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);

  if (RerollLoops)
    MPM.add(createLoopRerollPass());

  // TODO: Investigate if this is too expensive at O1.
  MPM.add(createAggressiveDCEPass());         // Delete dead instructions
  MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
  // Clean up after everything.
  MPM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, MPM);

  if (EnableCHR && OptLevel >= 3 &&
      (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
    MPM.add(createControlHeightReductionLegacyPass());
}

void PassManagerBuilder::populateModulePassManager(
    legacy::PassManagerBase &MPM) {
  // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
  // is handled separately, so just check this is not the ThinLTO post-link.
  bool DefaultOrPreLinkPipeline = !PerformThinLTO;

  if (!PGOSampleUse.empty()) {
    MPM.add(createPruneEHPass());
    // In ThinLTO mode, when flattened profile is used, all the available
    // profile information will be annotated in PreLink phase so there is
    // no need to load the profile again in PostLink.
    if (!(FlattenedProfileUsed && PerformThinLTO))
      MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
  }

  // Allow forcing function attributes as a debugging and tuning aid.
  MPM.add(createForceFunctionAttrsLegacyPass());

  // If all optimizations are disabled, just run the always-inline pass and,
  // if enabled, the function merging pass.
  if (OptLevel == 0) {
    addPGOInstrPasses(MPM);
    if (Inliner) {
      MPM.add(Inliner);
      Inliner = nullptr;
    }

    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
    // creates a CGSCC pass manager, but we don't want to add extensions into
    // that pass manager. To prevent this we insert a no-op module pass to reset
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
    // builds. The function merging pass is
    if (MergeFunctions)
      MPM.add(createMergeFunctionsPass());
    else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
      MPM.add(createBarrierNoopPass());

    if (PerformThinLTO) {
      MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
      // Drop available_externally and unreferenced globals. This is necessary
      // with ThinLTO in order to avoid leaving undefined references to dead
      // globals in the object file.
      MPM.add(createEliminateAvailableExternallyPass());
      MPM.add(createGlobalDCEPass());
    }

    addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);

    if (PrepareForLTO || PrepareForThinLTO) {
      MPM.add(createCanonicalizeAliasesPass());
      // Rename anon globals to be able to export them in the summary.
      // This has to be done after we add the extensions to the pass manager
      // as there could be passes (e.g. Adddress sanitizer) which introduce
      // new unnamed globals.
      MPM.add(createNameAnonGlobalPass());
    }
    return;
  }

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  addInitialAliasAnalysisPasses(MPM);

  // For ThinLTO there are two passes of indirect call promotion. The
  // first is during the compile phase when PerformThinLTO=false and
  // intra-module indirect call targets are promoted. The second is during
  // the ThinLTO backend when PerformThinLTO=true, when we promote imported
  // inter-module indirect calls. For that we perform indirect call promotion
  // earlier in the pass pipeline, here before globalopt. Otherwise imported
  // available_externally functions look unreferenced and are removed.
  if (PerformThinLTO) {
    MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
                                                     !PGOSampleUse.empty()));
    MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
  }

  // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
  // as it will change the CFG too much to make the 2nd profile annotation
  // in backend more difficult.
  bool PrepareForThinLTOUsingPGOSampleProfile =
      PrepareForThinLTO && !PGOSampleUse.empty();
  if (PrepareForThinLTOUsingPGOSampleProfile)
    DisableUnrollLoops = true;

  // Infer attributes about declarations if possible.
  MPM.add(createInferFunctionAttrsLegacyPass());

  // Infer attributes on declarations, call sites, arguments, etc.
  if (AttributorRun & AttributorRunOption::MODULE)
    MPM.add(createAttributorLegacyPass());

  addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);

  if (OptLevel > 2)
    MPM.add(createCallSiteSplittingPass());

  MPM.add(createIPSCCPPass());          // IP SCCP
  MPM.add(createCalledValuePropagationPass());

  MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
  // Promote any localized global vars.
  MPM.add(createPromoteMemoryToRegisterPass());

  MPM.add(createDeadArgEliminationPass()); // Dead argument elimination

  MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE

  // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
  // call promotion as it will change the CFG too much to make the 2nd
  // profile annotation in backend more difficult.
  // PGO instrumentation is added during the compile phase for ThinLTO, do
  // not run it a second time
  if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
    addPGOInstrPasses(MPM);

  // Create profile COMDAT variables. Lld linker wants to see all variables
  // before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
  if (!PerformThinLTO && EnablePGOCSInstrGen)
    MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));

  // We add a module alias analysis pass here. In part due to bugs in the
  // analysis infrastructure this "works" in that the analysis stays alive
  // for the entire SCC pass run below.
  MPM.add(createGlobalsAAWrapperPass());

  // Start of CallGraph SCC passes.
  MPM.add(createPruneEHPass()); // Remove dead EH info
  bool RunInliner = false;
  if (Inliner) {
    MPM.add(Inliner);
    Inliner = nullptr;
    RunInliner = true;
  }

  // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
  if (AttributorRun & AttributorRunOption::CGSCC)
    MPM.add(createAttributorCGSCCLegacyPass());

  // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
  // there are no OpenMP runtime calls present in the module.
  if (OptLevel > 1)
    MPM.add(createOpenMPOptLegacyPass());

  MPM.add(createPostOrderFunctionAttrsLegacyPass());
  if (OptLevel > 2)
    MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args

  addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
  addFunctionSimplificationPasses(MPM);

  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
  // pass manager that we are specifically trying to avoid. To prevent this
  // we must insert a no-op module pass to reset the pass manager.
  MPM.add(createBarrierNoopPass());

  if (RunPartialInlining)
    MPM.add(createPartialInliningPass());

  if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
    // Remove avail extern fns and globals definitions if we aren't
    // compiling an object file for later LTO. For LTO we want to preserve
    // these so they are eligible for inlining at link-time. Note if they
    // are unreferenced they will be removed by GlobalDCE later, so
    // this only impacts referenced available externally globals.
    // Eventually they will be suppressed during codegen, but eliminating
    // here enables more opportunity for GlobalDCE as it may make
    // globals referenced by available external functions dead
    // and saves running remaining passes on the eliminated functions.
    MPM.add(createEliminateAvailableExternallyPass());

  // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
  // for LTO and ThinLTO -- The actual pass will be called after all inlines
  // are performed.
  // Need to do this after COMDAT variables have been eliminated,
  // (i.e. after EliminateAvailableExternallyPass).
  if (!(PrepareForLTO || PrepareForThinLTO))
    addPGOInstrPasses(MPM, /* IsCS */ true);

  if (EnableOrderFileInstrumentation)
    MPM.add(createInstrOrderFilePass());

  MPM.add(createReversePostOrderFunctionAttrsPass());

  // The inliner performs some kind of dead code elimination as it goes,
  // but there are cases that are not really caught by it. We might
  // at some point consider teaching the inliner about them, but it
  // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
  // benefits generally outweight the cost, making the whole pipeline
  // faster.
  if (RunInliner) {
    MPM.add(createGlobalOptimizerPass());
    MPM.add(createGlobalDCEPass());
  }

  // If we are planning to perform ThinLTO later, let's not bloat the code with
  // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
  // during ThinLTO and perform the rest of the optimizations afterward.
  if (PrepareForThinLTO) {
    // Ensure we perform any last passes, but do so before renaming anonymous
    // globals in case the passes add any.
    addExtensionsToPM(EP_OptimizerLast, MPM);
    MPM.add(createCanonicalizeAliasesPass());
    // Rename anon globals to be able to export them in the summary.
    MPM.add(createNameAnonGlobalPass());
    return;
  }

  if (PerformThinLTO)
    // Optimize globals now when performing ThinLTO, this enables more
    // optimizations later.
    MPM.add(createGlobalOptimizerPass());

  // Scheduling LoopVersioningLICM when inlining is over, because after that
  // we may see more accurate aliasing. Reason to run this late is that too
  // early versioning may prevent further inlining due to increase of code
  // size. By placing it just after inlining other optimizations which runs
  // later might get benefit of no-alias assumption in clone loop.
  if (UseLoopVersioningLICM) {
    MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  }

  // We add a fresh GlobalsModRef run at this point. This is particularly
  // useful as the above will have inlined, DCE'ed, and function-attr
  // propagated everything. We should at this point have a reasonably minimal
  // and richly annotated call graph. By computing aliasing and mod/ref
  // information for all local globals here, the late loop passes and notably
  // the vectorizer will be able to use them to help recognize vectorizable
  // memory operations.
  //
  // Note that this relies on a bug in the pass manager which preserves
  // a module analysis into a function pass pipeline (and throughout it) so
  // long as the first function pass doesn't invalidate the module analysis.
  // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
  // this to work. Fortunately, it is trivial to preserve AliasAnalysis
  // (doing nothing preserves it as it is required to be conservatively
  // correct in the face of IR changes).
  MPM.add(createGlobalsAAWrapperPass());

  MPM.add(createFloat2IntPass());
  MPM.add(createLowerConstantIntrinsicsPass());

  if (EnableMatrix) {
    MPM.add(createLowerMatrixIntrinsicsPass());
    // CSE the pointer arithmetic of the column vectors.  This allows alias
    // analysis to establish no-aliasing between loads and stores of different
    // columns of the same matrix.
    MPM.add(createEarlyCSEPass(false));
  }

  addExtensionsToPM(EP_VectorizerStart, MPM);

  // Re-rotate loops in all our loop nests. These may have fallout out of
  // rotated form due to GVN or other transformations, and the vectorizer relies
  // on the rotated form. Disable header duplication at -Oz.
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.  This is
  // currently only performed for loops marked with the metadata
  // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
  MPM.add(createLoopDistributePass());

  MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));

  // Eliminate loads by forwarding stores from the previous iteration to loads
  // of the current iteration.
  MPM.add(createLoopLoadEliminationPass());

  // FIXME: Because of #pragma vectorize enable, the passes below are always
  // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
  // on -O1 and no #pragma is found). Would be good to have these two passes
  // as function calls, so that we can only pass them when the vectorizer
  // changed the code.
  MPM.add(createInstructionCombiningPass());
  if (OptLevel > 1 && ExtraVectorizerPasses) {
    // At higher optimization levels, try to clean up any runtime overlap and
    // alignment checks inserted by the vectorizer. We want to track correllated
    // runtime checks for two inner loops in the same outer loop, fold any
    // common computations, hoist loop-invariant aspects out of any outer loop,
    // and unswitch the runtime checks if possible. Once hoisted, we may have
    // dead (or speculatable) control flows or more combining opportunities.
    MPM.add(createEarlyCSEPass());
    MPM.add(createCorrelatedValuePropagationPass());
    MPM.add(createInstructionCombiningPass());
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
    MPM.add(createCFGSimplificationPass());
    MPM.add(createInstructionCombiningPass());
  }

  // Cleanup after loop vectorization, etc. Simplification passes like CVP and
  // GVN, loop transforms, and others have already run, so it's now better to
  // convert to more optimized IR using more aggressive simplify CFG options.
  // The extra sinking transform can create larger basic blocks, so do this
  // before SLP vectorization.
  // FIXME: study whether hoisting and/or sinking of common instructions should
  //        be delayed until after SLP vectorizer.
  MPM.add(createCFGSimplificationPass(SimplifyCFGOptions()
                                          .forwardSwitchCondToPhi(true)
                                          .convertSwitchToLookupTable(true)
                                          .needCanonicalLoops(false)
                                          .hoistCommonInsts(true)
                                          .sinkCommonInsts(true)));

  if (SLPVectorize) {
    MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
    if (OptLevel > 1 && ExtraVectorizerPasses) {
      MPM.add(createEarlyCSEPass());
    }
  }

  // Enhance/cleanup vector code.
  MPM.add(createVectorCombinePass());

  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createInstructionCombiningPass());

  if (EnableUnrollAndJam && !DisableUnrollLoops) {
    // Unroll and Jam. We do this before unroll but need to be in a separate
    // loop pass manager in order for the outer loop to be processed by
    // unroll and jam before the inner loop is unrolled.
    MPM.add(createLoopUnrollAndJamPass(OptLevel));
  }

  // Unroll small loops
  MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                               ForgetAllSCEVInLoopUnroll));

  if (!DisableUnrollLoops) {
    // LoopUnroll may generate some redundency to cleanup.
    MPM.add(createInstructionCombiningPass());

    // Runtime unrolling will introduce runtime check in loop prologue. If the
    // unrolled loop is a inner loop, then the prologue will be inside the
    // outer loop. LICM pass can help to promote the runtime check out if the
    // checked value is loop invariant.
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  }

  MPM.add(createWarnMissedTransformationsPass());

  // After vectorization and unrolling, assume intrinsics may tell us more
  // about pointer alignments.
  MPM.add(createAlignmentFromAssumptionsPass());

  // FIXME: We shouldn't bother with this anymore.
  MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes

  // GlobalOpt already deletes dead functions and globals, at -O2 try a
  // late pass of GlobalDCE.  It is capable of deleting dead cycles.
  if (OptLevel > 1) {
    MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
    MPM.add(createConstantMergePass());     // Merge dup global constants
  }

  // See comment in the new PM for justification of scheduling splitting at
  // this stage (\ref buildModuleSimplificationPipeline).
  if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
    MPM.add(createHotColdSplittingPass());

  if (MergeFunctions)
    MPM.add(createMergeFunctionsPass());

  // Add Module flag "CG Profile" based on Branch Frequency Information.
  if (CallGraphProfile)
    MPM.add(createCGProfileLegacyPass());

  // LoopSink pass sinks instructions hoisted by LICM, which serves as a
  // canonicalization pass that enables other optimizations. As a result,
  // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
  // result too early.
  MPM.add(createLoopSinkPass());
  // Get rid of LCSSA nodes.
  MPM.add(createInstSimplifyLegacyPass());

  // This hoists/decomposes div/rem ops. It should run after other sink/hoist
  // passes to avoid re-sinking, but before SimplifyCFG because it can allow
  // flattening of blocks.
  MPM.add(createDivRemPairsPass());

  // LoopSink (and other loop passes since the last simplifyCFG) might have
  // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
  MPM.add(createCFGSimplificationPass());

  addExtensionsToPM(EP_OptimizerLast, MPM);

  if (PrepareForLTO) {
    MPM.add(createCanonicalizeAliasesPass());
    // Rename anon globals to be able to handle them in the summary
    MPM.add(createNameAnonGlobalPass());
  }
}

void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
  // Load sample profile before running the LTO optimization pipeline.
  if (!PGOSampleUse.empty()) {
    PM.add(createPruneEHPass());
    PM.add(createSampleProfileLoaderPass(PGOSampleUse));
  }

  // Remove unused virtual tables to improve the quality of code generated by
  // whole-program devirtualization and bitset lowering.
  PM.add(createGlobalDCEPass());

  // Provide AliasAnalysis services for optimizations.
  addInitialAliasAnalysisPasses(PM);

  // Allow forcing function attributes as a debugging and tuning aid.
  PM.add(createForceFunctionAttrsLegacyPass());

  // Infer attributes about declarations if possible.
  PM.add(createInferFunctionAttrsLegacyPass());

  if (OptLevel > 1) {
    // Split call-site with more constrained arguments.
    PM.add(createCallSiteSplittingPass());

    // Indirect call promotion. This should promote all the targets that are
    // left by the earlier promotion pass that promotes intra-module targets.
    // This two-step promotion is to save the compile time. For LTO, it should
    // produce the same result as if we only do promotion here.
    PM.add(
        createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));

    // Propagate constants at call sites into the functions they call.  This
    // opens opportunities for globalopt (and inlining) by substituting function
    // pointers passed as arguments to direct uses of functions.
    PM.add(createIPSCCPPass());

    // Attach metadata to indirect call sites indicating the set of functions
    // they may target at run-time. This should follow IPSCCP.
    PM.add(createCalledValuePropagationPass());

    // Infer attributes on declarations, call sites, arguments, etc.
    if (AttributorRun & AttributorRunOption::MODULE)
      PM.add(createAttributorLegacyPass());
  }

  // Infer attributes about definitions. The readnone attribute in particular is
  // required for virtual constant propagation.
  PM.add(createPostOrderFunctionAttrsLegacyPass());
  PM.add(createReversePostOrderFunctionAttrsPass());

  // Split globals using inrange annotations on GEP indices. This can help
  // improve the quality of generated code when virtual constant propagation or
  // control flow integrity are enabled.
  PM.add(createGlobalSplitPass());

  // Apply whole-program devirtualization and virtual constant propagation.
  PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));

  // That's all we need at opt level 1.
  if (OptLevel == 1)
    return;

  // Now that we internalized some globals, see if we can hack on them!
  PM.add(createGlobalOptimizerPass());
  // Promote any localized global vars.
  PM.add(createPromoteMemoryToRegisterPass());

  // Linking modules together can lead to duplicated global constants, only
  // keep one copy of each constant.
  PM.add(createConstantMergePass());

  // Remove unused arguments from functions.
  PM.add(createDeadArgEliminationPass());

  // Reduce the code after globalopt and ipsccp.  Both can open up significant
  // simplification opportunities, and both can propagate functions through
  // function pointers.  When this happens, we often have to resolve varargs
  // calls, etc, so let instcombine do this.
  if (OptLevel > 2)
    PM.add(createAggressiveInstCombinerPass());
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);

  // Inline small functions
  bool RunInliner = Inliner;
  if (RunInliner) {
    PM.add(Inliner);
    Inliner = nullptr;
  }

  PM.add(createPruneEHPass());   // Remove dead EH info.

  // CSFDO instrumentation and use pass.
  addPGOInstrPasses(PM, /* IsCS */ true);

  // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
  if (AttributorRun & AttributorRunOption::CGSCC)
    PM.add(createAttributorCGSCCLegacyPass());

  // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
  // there are no OpenMP runtime calls present in the module.
  if (OptLevel > 1)
    PM.add(createOpenMPOptLegacyPass());

  // Optimize globals again if we ran the inliner.
  if (RunInliner)
    PM.add(createGlobalOptimizerPass());
  PM.add(createGlobalDCEPass()); // Remove dead functions.

  // If we didn't decide to inline a function, check to see if we can
  // transform it to pass arguments by value instead of by reference.
  PM.add(createArgumentPromotionPass());

  // The IPO passes may leave cruft around.  Clean up after them.
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);
  PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));

  // Break up allocas
  PM.add(createSROAPass());

  // LTO provides additional opportunities for tailcall elimination due to
  // link-time inlining, and visibility of nocapture attribute.
  if (OptLevel > 1)
    PM.add(createTailCallEliminationPass());

  // Infer attributes on declarations, call sites, arguments, etc.
  PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
  // Run a few AA driven optimizations here and now, to cleanup the code.
  PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.

  PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  PM.add(NewGVN ? createNewGVNPass()
                : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
  PM.add(createMemCpyOptPass());            // Remove dead memcpys.

  // Nuke dead stores.
  PM.add(createDeadStoreEliminationPass());
  PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.

  // More loops are countable; try to optimize them.
  PM.add(createIndVarSimplifyPass());
  PM.add(createLoopDeletionPass());
  if (EnableLoopInterchange)
    PM.add(createLoopInterchangePass());
  if (EnableLoopFlatten)
    PM.add(createLoopFlattenPass());

  // Unroll small loops
  PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                    ForgetAllSCEVInLoopUnroll));
  PM.add(createLoopVectorizePass(true, !LoopVectorize));
  // The vectorizer may have significantly shortened a loop body; unroll again.
  PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                              ForgetAllSCEVInLoopUnroll));

  PM.add(createWarnMissedTransformationsPass());

  // Now that we've optimized loops (in particular loop induction variables),
  // we may have exposed more scalar opportunities. Run parts of the scalar
  // optimizer again at this point.
  PM.add(createInstructionCombiningPass()); // Initial cleanup
  PM.add(createCFGSimplificationPass()); // if-convert
  PM.add(createSCCPPass()); // Propagate exposed constants
  PM.add(createInstructionCombiningPass()); // Clean up again
  PM.add(createBitTrackingDCEPass());

  // More scalar chains could be vectorized due to more alias information
  if (SLPVectorize)
    PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.

  PM.add(createVectorCombinePass()); // Clean up partial vectorization.

  // After vectorization, assume intrinsics may tell us more about pointer
  // alignments.
  PM.add(createAlignmentFromAssumptionsPass());

  // Cleanup and simplify the code after the scalar optimizations.
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);

  PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
}

void PassManagerBuilder::addLateLTOOptimizationPasses(
    legacy::PassManagerBase &PM) {
  // See comment in the new PM for justification of scheduling splitting at
  // this stage (\ref buildLTODefaultPipeline).
  if (EnableHotColdSplit)
    PM.add(createHotColdSplittingPass());

  // Delete basic blocks, which optimization passes may have killed.
  PM.add(createCFGSimplificationPass());

  // Drop bodies of available externally objects to improve GlobalDCE.
  PM.add(createEliminateAvailableExternallyPass());

  // Now that we have optimized the program, discard unreachable functions.
  PM.add(createGlobalDCEPass());

  // FIXME: this is profitable (for compiler time) to do at -O0 too, but
  // currently it damages debug info.
  if (MergeFunctions)
    PM.add(createMergeFunctionsPass());
}

void PassManagerBuilder::populateThinLTOPassManager(
    legacy::PassManagerBase &PM) {
  PerformThinLTO = true;
  if (LibraryInfo)
    PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  if (VerifyInput)
    PM.add(createVerifierPass());

  if (ImportSummary) {
    // This pass imports type identifier resolutions for whole-program
    // devirtualization and CFI. It must run early because other passes may
    // disturb the specific instruction patterns that these passes look for,
    // creating dependencies on resolutions that may not appear in the summary.
    //
    // For example, GVN may transform the pattern assume(type.test) appearing in
    // two basic blocks into assume(phi(type.test, type.test)), which would
    // transform a dependency on a WPD resolution into a dependency on a type
    // identifier resolution for CFI.
    //
    // Also, WPD has access to more precise information than ICP and can
    // devirtualize more effectively, so it should operate on the IR first.
    PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
    PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
  }

  populateModulePassManager(PM);

  if (VerifyOutput)
    PM.add(createVerifierPass());
  PerformThinLTO = false;
}

void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
  if (LibraryInfo)
    PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  if (VerifyInput)
    PM.add(createVerifierPass());

  addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM);

  if (OptLevel != 0)
    addLTOOptimizationPasses(PM);
  else {
    // The whole-program-devirt pass needs to run at -O0 because only it knows
    // about the llvm.type.checked.load intrinsic: it needs to both lower the
    // intrinsic itself and handle it in the summary.
    PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
  }

  // Create a function that performs CFI checks for cross-DSO calls with targets
  // in the current module.
  PM.add(createCrossDSOCFIPass());

  // Lower type metadata and the type.test intrinsic. This pass supports Clang's
  // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
  // link time if CFI is enabled. The pass does nothing if CFI is disabled.
  PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
  // Run a second time to clean up any type tests left behind by WPD for use
  // in ICP (which is performed earlier than this in the regular LTO pipeline).
  PM.add(createLowerTypeTestsPass(nullptr, nullptr, true));

  if (OptLevel != 0)
    addLateLTOOptimizationPasses(PM);

  addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM);

  if (VerifyOutput)
    PM.add(createVerifierPass());
}

LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
  PassManagerBuilder *PMB = new PassManagerBuilder();
  return wrap(PMB);
}

void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
  PassManagerBuilder *Builder = unwrap(PMB);
  delete Builder;
}

void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
                                  unsigned OptLevel) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->OptLevel = OptLevel;
}

void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
                                   unsigned SizeLevel) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->SizeLevel = SizeLevel;
}

void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
                                            LLVMBool Value) {
  // NOTE: The DisableUnitAtATime switch has been removed.
}

void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
                                            LLVMBool Value) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->DisableUnrollLoops = Value;
}

void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
                                                 LLVMBool Value) {
  // NOTE: The simplify-libcalls pass has been removed.
}

void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
                                              unsigned Threshold) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->Inliner = createFunctionInliningPass(Threshold);
}

void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
                                                  LLVMPassManagerRef PM) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
  Builder->populateFunctionPassManager(*FPM);
}

void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
                                                LLVMPassManagerRef PM) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::PassManagerBase *MPM = unwrap(PM);
  Builder->populateModulePassManager(*MPM);
}

void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
                                                  LLVMPassManagerRef PM,
                                                  LLVMBool Internalize,
                                                  LLVMBool RunInliner) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::PassManagerBase *LPM = unwrap(PM);

  // A small backwards compatibility hack. populateLTOPassManager used to take
  // an RunInliner option.
  if (RunInliner && !Builder->Inliner)
    Builder->Inliner = createFunctionInliningPass();

  Builder->populateLTOPassManager(*LPM);
}