GlobalDCE.cpp 15.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transform is designed to eliminate unreachable internal globals from the
// program.  It uses an aggressive algorithm, searching out globals that are
// known to be alive.  After it finds all of the globals which are needed, it
// deletes whatever is left over.  This allows it to delete recursive chunks of
// the program which are unreachable.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"

using namespace llvm;

#define DEBUG_TYPE "globaldce"

static cl::opt<bool>
    ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
                cl::desc("Enable virtual function elimination"));

STATISTIC(NumAliases  , "Number of global aliases removed");
STATISTIC(NumFunctions, "Number of functions removed");
STATISTIC(NumIFuncs,    "Number of indirect functions removed");
STATISTIC(NumVariables, "Number of global variables removed");
STATISTIC(NumVFuncs,    "Number of virtual functions removed");

namespace {
  class GlobalDCELegacyPass : public ModulePass {
  public:
    static char ID; // Pass identification, replacement for typeid
    GlobalDCELegacyPass() : ModulePass(ID) {
      initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
    }

    // run - Do the GlobalDCE pass on the specified module, optionally updating
    // the specified callgraph to reflect the changes.
    //
    bool runOnModule(Module &M) override {
      if (skipModule(M))
        return false;

      // We need a minimally functional dummy module analysis manager. It needs
      // to at least know about the possibility of proxying a function analysis
      // manager.
      FunctionAnalysisManager DummyFAM;
      ModuleAnalysisManager DummyMAM;
      DummyMAM.registerPass(
          [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });

      auto PA = Impl.run(M, DummyMAM);
      return !PA.areAllPreserved();
    }

  private:
    GlobalDCEPass Impl;
  };
}

char GlobalDCELegacyPass::ID = 0;
INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
                "Dead Global Elimination", false, false)

// Public interface to the GlobalDCEPass.
ModulePass *llvm::createGlobalDCEPass() {
  return new GlobalDCELegacyPass();
}

/// Returns true if F is effectively empty.
static bool isEmptyFunction(Function *F) {
  BasicBlock &Entry = F->getEntryBlock();
  for (auto &I : Entry) {
    if (isa<DbgInfoIntrinsic>(I))
      continue;
    if (auto *RI = dyn_cast<ReturnInst>(&I))
      return !RI->getReturnValue();
    break;
  }
  return false;
}

/// Compute the set of GlobalValue that depends from V.
/// The recursion stops as soon as a GlobalValue is met.
void GlobalDCEPass::ComputeDependencies(Value *V,
                                        SmallPtrSetImpl<GlobalValue *> &Deps) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    Function *Parent = I->getParent()->getParent();
    Deps.insert(Parent);
  } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
    Deps.insert(GV);
  } else if (auto *CE = dyn_cast<Constant>(V)) {
    // Avoid walking the whole tree of a big ConstantExprs multiple times.
    auto Where = ConstantDependenciesCache.find(CE);
    if (Where != ConstantDependenciesCache.end()) {
      auto const &K = Where->second;
      Deps.insert(K.begin(), K.end());
    } else {
      SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
      for (User *CEUser : CE->users())
        ComputeDependencies(CEUser, LocalDeps);
      Deps.insert(LocalDeps.begin(), LocalDeps.end());
    }
  }
}

void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
  SmallPtrSet<GlobalValue *, 8> Deps;
  for (User *User : GV.users())
    ComputeDependencies(User, Deps);
  Deps.erase(&GV); // Remove self-reference.
  for (GlobalValue *GVU : Deps) {
    // If this is a dep from a vtable to a virtual function, and we have
    // complete information about all virtual call sites which could call
    // though this vtable, then skip it, because the call site information will
    // be more precise.
    if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
      LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
                        << GV.getName() << "\n");
      continue;
    }
    GVDependencies[GVU].insert(&GV);
  }
}

/// Mark Global value as Live
void GlobalDCEPass::MarkLive(GlobalValue &GV,
                             SmallVectorImpl<GlobalValue *> *Updates) {
  auto const Ret = AliveGlobals.insert(&GV);
  if (!Ret.second)
    return;

  if (Updates)
    Updates->push_back(&GV);
  if (Comdat *C = GV.getComdat()) {
    for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
      MarkLive(*CM.second, Updates); // Recursion depth is only two because only
                                     // globals in the same comdat are visited.
    }
  }
}

void GlobalDCEPass::ScanVTables(Module &M) {
  SmallVector<MDNode *, 2> Types;
  LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");

  auto *LTOPostLinkMD =
      cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
  bool LTOPostLink =
      LTOPostLinkMD &&
      (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);

  for (GlobalVariable &GV : M.globals()) {
    Types.clear();
    GV.getMetadata(LLVMContext::MD_type, Types);
    if (GV.isDeclaration() || Types.empty())
      continue;

    // Use the typeid metadata on the vtable to build a mapping from typeids to
    // the list of (GV, offset) pairs which are the possible vtables for that
    // typeid.
    for (MDNode *Type : Types) {
      Metadata *TypeID = Type->getOperand(1).get();

      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();

      TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
    }

    // If the type corresponding to the vtable is private to this translation
    // unit, we know that we can see all virtual functions which might use it,
    // so VFE is safe.
    if (auto GO = dyn_cast<GlobalObject>(&GV)) {
      GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
      if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
          (LTOPostLink &&
           TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
        LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
        VFESafeVTables.insert(&GV);
      }
    }
  }
}

void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
                                   uint64_t CallOffset) {
  for (auto &VTableInfo : TypeIdMap[TypeId]) {
    GlobalVariable *VTable = VTableInfo.first;
    uint64_t VTableOffset = VTableInfo.second;

    Constant *Ptr =
        getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
                           *Caller->getParent());
    if (!Ptr) {
      LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
      VFESafeVTables.erase(VTable);
      return;
    }

    auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
    if (!Callee) {
      LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
      VFESafeVTables.erase(VTable);
      return;
    }

    LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
                      << Callee->getName() << "\n");
    GVDependencies[Caller].insert(Callee);
  }
}

void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
  LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
  Function *TypeCheckedLoadFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));

  if (!TypeCheckedLoadFunc)
    return;

  for (auto U : TypeCheckedLoadFunc->users()) {
    auto CI = dyn_cast<CallInst>(U);
    if (!CI)
      continue;

    auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    Value *TypeIdValue = CI->getArgOperand(2);
    auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();

    if (Offset) {
      ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
    } else {
      // type.checked.load with a non-constant offset, so assume every entry in
      // every matching vtable is used.
      for (auto &VTableInfo : TypeIdMap[TypeId]) {
        VFESafeVTables.erase(VTableInfo.first);
      }
    }
  }
}

void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
  if (!ClEnableVFE)
    return;

  // If the Virtual Function Elim module flag is present and set to zero, then
  // the vcall_visibility metadata was inserted for another optimization (WPD)
  // and we may not have type checked loads on all accesses to the vtable.
  // Don't attempt VFE in that case.
  auto *Val = mdconst::dyn_extract_or_null<ConstantInt>(
      M.getModuleFlag("Virtual Function Elim"));
  if (!Val || Val->getZExtValue() == 0)
    return;

  ScanVTables(M);

  if (VFESafeVTables.empty())
    return;

  ScanTypeCheckedLoadIntrinsics(M);

  LLVM_DEBUG(
    dbgs() << "VFE safe vtables:\n";
    for (auto *VTable : VFESafeVTables)
      dbgs() << "  " << VTable->getName() << "\n";
  );
}

PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
  bool Changed = false;

  // The algorithm first computes the set L of global variables that are
  // trivially live.  Then it walks the initialization of these variables to
  // compute the globals used to initialize them, which effectively builds a
  // directed graph where nodes are global variables, and an edge from A to B
  // means B is used to initialize A.  Finally, it propagates the liveness
  // information through the graph starting from the nodes in L. Nodes note
  // marked as alive are discarded.

  // Remove empty functions from the global ctors list.
  Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);

  // Collect the set of members for each comdat.
  for (Function &F : M)
    if (Comdat *C = F.getComdat())
      ComdatMembers.insert(std::make_pair(C, &F));
  for (GlobalVariable &GV : M.globals())
    if (Comdat *C = GV.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GV));
  for (GlobalAlias &GA : M.aliases())
    if (Comdat *C = GA.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GA));

  // Add dependencies between virtual call sites and the virtual functions they
  // might call, if we have that information.
  AddVirtualFunctionDependencies(M);

  // Loop over the module, adding globals which are obviously necessary.
  for (GlobalObject &GO : M.global_objects()) {
    Changed |= RemoveUnusedGlobalValue(GO);
    // Functions with external linkage are needed if they have a body.
    // Externally visible & appending globals are needed, if they have an
    // initializer.
    if (!GO.isDeclaration())
      if (!GO.isDiscardableIfUnused())
        MarkLive(GO);

    UpdateGVDependencies(GO);
  }

  // Compute direct dependencies of aliases.
  for (GlobalAlias &GA : M.aliases()) {
    Changed |= RemoveUnusedGlobalValue(GA);
    // Externally visible aliases are needed.
    if (!GA.isDiscardableIfUnused())
      MarkLive(GA);

    UpdateGVDependencies(GA);
  }

  // Compute direct dependencies of ifuncs.
  for (GlobalIFunc &GIF : M.ifuncs()) {
    Changed |= RemoveUnusedGlobalValue(GIF);
    // Externally visible ifuncs are needed.
    if (!GIF.isDiscardableIfUnused())
      MarkLive(GIF);

    UpdateGVDependencies(GIF);
  }

  // Propagate liveness from collected Global Values through the computed
  // dependencies.
  SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
                                           AliveGlobals.end()};
  while (!NewLiveGVs.empty()) {
    GlobalValue *LGV = NewLiveGVs.pop_back_val();
    for (auto *GVD : GVDependencies[LGV])
      MarkLive(*GVD, &NewLiveGVs);
  }

  // Now that all globals which are needed are in the AliveGlobals set, we loop
  // through the program, deleting those which are not alive.
  //

  // The first pass is to drop initializers of global variables which are dead.
  std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
  for (GlobalVariable &GV : M.globals())
    if (!AliveGlobals.count(&GV)) {
      DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
      if (GV.hasInitializer()) {
        Constant *Init = GV.getInitializer();
        GV.setInitializer(nullptr);
        if (isSafeToDestroyConstant(Init))
          Init->destroyConstant();
      }
    }

  // The second pass drops the bodies of functions which are dead...
  std::vector<Function *> DeadFunctions;
  for (Function &F : M)
    if (!AliveGlobals.count(&F)) {
      DeadFunctions.push_back(&F);         // Keep track of dead globals
      if (!F.isDeclaration())
        F.deleteBody();
    }

  // The third pass drops targets of aliases which are dead...
  std::vector<GlobalAlias*> DeadAliases;
  for (GlobalAlias &GA : M.aliases())
    if (!AliveGlobals.count(&GA)) {
      DeadAliases.push_back(&GA);
      GA.setAliasee(nullptr);
    }

  // The fourth pass drops targets of ifuncs which are dead...
  std::vector<GlobalIFunc*> DeadIFuncs;
  for (GlobalIFunc &GIF : M.ifuncs())
    if (!AliveGlobals.count(&GIF)) {
      DeadIFuncs.push_back(&GIF);
      GIF.setResolver(nullptr);
    }

  // Now that all interferences have been dropped, delete the actual objects
  // themselves.
  auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
    RemoveUnusedGlobalValue(*GV);
    GV->eraseFromParent();
    Changed = true;
  };

  NumFunctions += DeadFunctions.size();
  for (Function *F : DeadFunctions) {
    if (!F->use_empty()) {
      // Virtual functions might still be referenced by one or more vtables,
      // but if we've proven them to be unused then it's safe to replace the
      // virtual function pointers with null, allowing us to remove the
      // function itself.
      ++NumVFuncs;
      F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
    }
    EraseUnusedGlobalValue(F);
  }

  NumVariables += DeadGlobalVars.size();
  for (GlobalVariable *GV : DeadGlobalVars)
    EraseUnusedGlobalValue(GV);

  NumAliases += DeadAliases.size();
  for (GlobalAlias *GA : DeadAliases)
    EraseUnusedGlobalValue(GA);

  NumIFuncs += DeadIFuncs.size();
  for (GlobalIFunc *GIF : DeadIFuncs)
    EraseUnusedGlobalValue(GIF);

  // Make sure that all memory is released
  AliveGlobals.clear();
  ConstantDependenciesCache.clear();
  GVDependencies.clear();
  ComdatMembers.clear();
  TypeIdMap.clear();
  VFESafeVTables.clear();

  if (Changed)
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}

// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
// GlobalValue, looking for the constant pointer ref that may be pointing to it.
// If found, check to see if the constant pointer ref is safe to destroy, and if
// so, nuke it.  This will reduce the reference count on the global value, which
// might make it deader.
//
bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
  if (GV.use_empty())
    return false;
  GV.removeDeadConstantUsers();
  return GV.use_empty();
}