InstrProfReader.cpp 32.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
//===- InstrProfReader.cpp - Instrumented profiling reader ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SymbolRemappingReader.h"
#include "llvm/Support/SwapByteOrder.h"
#include <algorithm>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;

static Expected<std::unique_ptr<MemoryBuffer>>
setupMemoryBuffer(const Twine &Path) {
  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
      MemoryBuffer::getFileOrSTDIN(Path);
  if (std::error_code EC = BufferOrErr.getError())
    return errorCodeToError(EC);
  return std::move(BufferOrErr.get());
}

static Error initializeReader(InstrProfReader &Reader) {
  return Reader.readHeader();
}

Expected<std::unique_ptr<InstrProfReader>>
InstrProfReader::create(const Twine &Path) {
  // Set up the buffer to read.
  auto BufferOrError = setupMemoryBuffer(Path);
  if (Error E = BufferOrError.takeError())
    return std::move(E);
  return InstrProfReader::create(std::move(BufferOrError.get()));
}

Expected<std::unique_ptr<InstrProfReader>>
InstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer) {
  // Sanity check the buffer.
  if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint64_t>::max())
    return make_error<InstrProfError>(instrprof_error::too_large);

  if (Buffer->getBufferSize() == 0)
    return make_error<InstrProfError>(instrprof_error::empty_raw_profile);

  std::unique_ptr<InstrProfReader> Result;
  // Create the reader.
  if (IndexedInstrProfReader::hasFormat(*Buffer))
    Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
  else if (RawInstrProfReader64::hasFormat(*Buffer))
    Result.reset(new RawInstrProfReader64(std::move(Buffer)));
  else if (RawInstrProfReader32::hasFormat(*Buffer))
    Result.reset(new RawInstrProfReader32(std::move(Buffer)));
  else if (TextInstrProfReader::hasFormat(*Buffer))
    Result.reset(new TextInstrProfReader(std::move(Buffer)));
  else
    return make_error<InstrProfError>(instrprof_error::unrecognized_format);

  // Initialize the reader and return the result.
  if (Error E = initializeReader(*Result))
    return std::move(E);

  return std::move(Result);
}

Expected<std::unique_ptr<IndexedInstrProfReader>>
IndexedInstrProfReader::create(const Twine &Path, const Twine &RemappingPath) {
  // Set up the buffer to read.
  auto BufferOrError = setupMemoryBuffer(Path);
  if (Error E = BufferOrError.takeError())
    return std::move(E);

  // Set up the remapping buffer if requested.
  std::unique_ptr<MemoryBuffer> RemappingBuffer;
  std::string RemappingPathStr = RemappingPath.str();
  if (!RemappingPathStr.empty()) {
    auto RemappingBufferOrError = setupMemoryBuffer(RemappingPathStr);
    if (Error E = RemappingBufferOrError.takeError())
      return std::move(E);
    RemappingBuffer = std::move(RemappingBufferOrError.get());
  }

  return IndexedInstrProfReader::create(std::move(BufferOrError.get()),
                                        std::move(RemappingBuffer));
}

Expected<std::unique_ptr<IndexedInstrProfReader>>
IndexedInstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
                               std::unique_ptr<MemoryBuffer> RemappingBuffer) {
  // Sanity check the buffer.
  if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint64_t>::max())
    return make_error<InstrProfError>(instrprof_error::too_large);

  // Create the reader.
  if (!IndexedInstrProfReader::hasFormat(*Buffer))
    return make_error<InstrProfError>(instrprof_error::bad_magic);
  auto Result = std::make_unique<IndexedInstrProfReader>(
      std::move(Buffer), std::move(RemappingBuffer));

  // Initialize the reader and return the result.
  if (Error E = initializeReader(*Result))
    return std::move(E);

  return std::move(Result);
}

void InstrProfIterator::Increment() {
  if (auto E = Reader->readNextRecord(Record)) {
    // Handle errors in the reader.
    InstrProfError::take(std::move(E));
    *this = InstrProfIterator();
  }
}

bool TextInstrProfReader::hasFormat(const MemoryBuffer &Buffer) {
  // Verify that this really looks like plain ASCII text by checking a
  // 'reasonable' number of characters (up to profile magic size).
  size_t count = std::min(Buffer.getBufferSize(), sizeof(uint64_t));
  StringRef buffer = Buffer.getBufferStart();
  return count == 0 ||
         std::all_of(buffer.begin(), buffer.begin() + count,
                     [](char c) { return isPrint(c) || isSpace(c); });
}

// Read the profile variant flag from the header: ":FE" means this is a FE
// generated profile. ":IR" means this is an IR level profile. Other strings
// with a leading ':' will be reported an error format.
Error TextInstrProfReader::readHeader() {
  Symtab.reset(new InstrProfSymtab());
  bool IsIRInstr = false;
  bool IsEntryFirst = false;
  bool IsCS = false;

  while (Line->startswith(":")) {
    StringRef Str = Line->substr(1);
    if (Str.equals_lower("ir"))
      IsIRInstr = true;
    else if (Str.equals_lower("fe"))
      IsIRInstr = false;
    else if (Str.equals_lower("csir")) {
      IsIRInstr = true;
      IsCS = true;
    } else if (Str.equals_lower("entry_first"))
      IsEntryFirst = true;
    else if (Str.equals_lower("not_entry_first"))
      IsEntryFirst = false;
    else
      return error(instrprof_error::bad_header);
    ++Line;
  }
  IsIRLevelProfile = IsIRInstr;
  InstrEntryBBEnabled = IsEntryFirst;
  HasCSIRLevelProfile = IsCS;
  return success();
}

Error
TextInstrProfReader::readValueProfileData(InstrProfRecord &Record) {

#define CHECK_LINE_END(Line)                                                   \
  if (Line.is_at_end())                                                        \
    return error(instrprof_error::truncated);
#define READ_NUM(Str, Dst)                                                     \
  if ((Str).getAsInteger(10, (Dst)))                                           \
    return error(instrprof_error::malformed);
#define VP_READ_ADVANCE(Val)                                                   \
  CHECK_LINE_END(Line);                                                        \
  uint32_t Val;                                                                \
  READ_NUM((*Line), (Val));                                                    \
  Line++;

  if (Line.is_at_end())
    return success();

  uint32_t NumValueKinds;
  if (Line->getAsInteger(10, NumValueKinds)) {
    // No value profile data
    return success();
  }
  if (NumValueKinds == 0 || NumValueKinds > IPVK_Last + 1)
    return error(instrprof_error::malformed);
  Line++;

  for (uint32_t VK = 0; VK < NumValueKinds; VK++) {
    VP_READ_ADVANCE(ValueKind);
    if (ValueKind > IPVK_Last)
      return error(instrprof_error::malformed);
    VP_READ_ADVANCE(NumValueSites);
    if (!NumValueSites)
      continue;

    Record.reserveSites(VK, NumValueSites);
    for (uint32_t S = 0; S < NumValueSites; S++) {
      VP_READ_ADVANCE(NumValueData);

      std::vector<InstrProfValueData> CurrentValues;
      for (uint32_t V = 0; V < NumValueData; V++) {
        CHECK_LINE_END(Line);
        std::pair<StringRef, StringRef> VD = Line->rsplit(':');
        uint64_t TakenCount, Value;
        if (ValueKind == IPVK_IndirectCallTarget) {
          if (InstrProfSymtab::isExternalSymbol(VD.first)) {
            Value = 0;
          } else {
            if (Error E = Symtab->addFuncName(VD.first))
              return E;
            Value = IndexedInstrProf::ComputeHash(VD.first);
          }
        } else {
          READ_NUM(VD.first, Value);
        }
        READ_NUM(VD.second, TakenCount);
        CurrentValues.push_back({Value, TakenCount});
        Line++;
      }
      Record.addValueData(ValueKind, S, CurrentValues.data(), NumValueData,
                          nullptr);
    }
  }
  return success();

#undef CHECK_LINE_END
#undef READ_NUM
#undef VP_READ_ADVANCE
}

Error TextInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
  // Skip empty lines and comments.
  while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
    ++Line;
  // If we hit EOF while looking for a name, we're done.
  if (Line.is_at_end()) {
    return error(instrprof_error::eof);
  }

  // Read the function name.
  Record.Name = *Line++;
  if (Error E = Symtab->addFuncName(Record.Name))
    return error(std::move(E));

  // Read the function hash.
  if (Line.is_at_end())
    return error(instrprof_error::truncated);
  if ((Line++)->getAsInteger(0, Record.Hash))
    return error(instrprof_error::malformed);

  // Read the number of counters.
  uint64_t NumCounters;
  if (Line.is_at_end())
    return error(instrprof_error::truncated);
  if ((Line++)->getAsInteger(10, NumCounters))
    return error(instrprof_error::malformed);
  if (NumCounters == 0)
    return error(instrprof_error::malformed);

  // Read each counter and fill our internal storage with the values.
  Record.Clear();
  Record.Counts.reserve(NumCounters);
  for (uint64_t I = 0; I < NumCounters; ++I) {
    if (Line.is_at_end())
      return error(instrprof_error::truncated);
    uint64_t Count;
    if ((Line++)->getAsInteger(10, Count))
      return error(instrprof_error::malformed);
    Record.Counts.push_back(Count);
  }

  // Check if value profile data exists and read it if so.
  if (Error E = readValueProfileData(Record))
    return error(std::move(E));

  return success();
}

template <class IntPtrT>
bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) {
  if (DataBuffer.getBufferSize() < sizeof(uint64_t))
    return false;
  uint64_t Magic =
    *reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart());
  return RawInstrProf::getMagic<IntPtrT>() == Magic ||
         sys::getSwappedBytes(RawInstrProf::getMagic<IntPtrT>()) == Magic;
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readHeader() {
  if (!hasFormat(*DataBuffer))
    return error(instrprof_error::bad_magic);
  if (DataBuffer->getBufferSize() < sizeof(RawInstrProf::Header))
    return error(instrprof_error::bad_header);
  auto *Header = reinterpret_cast<const RawInstrProf::Header *>(
      DataBuffer->getBufferStart());
  ShouldSwapBytes = Header->Magic != RawInstrProf::getMagic<IntPtrT>();
  return readHeader(*Header);
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
  const char *End = DataBuffer->getBufferEnd();
  // Skip zero padding between profiles.
  while (CurrentPos != End && *CurrentPos == 0)
    ++CurrentPos;
  // If there's nothing left, we're done.
  if (CurrentPos == End)
    return make_error<InstrProfError>(instrprof_error::eof);
  // If there isn't enough space for another header, this is probably just
  // garbage at the end of the file.
  if (CurrentPos + sizeof(RawInstrProf::Header) > End)
    return make_error<InstrProfError>(instrprof_error::malformed);
  // The writer ensures each profile is padded to start at an aligned address.
  if (reinterpret_cast<size_t>(CurrentPos) % alignof(uint64_t))
    return make_error<InstrProfError>(instrprof_error::malformed);
  // The magic should have the same byte order as in the previous header.
  uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
  if (Magic != swap(RawInstrProf::getMagic<IntPtrT>()))
    return make_error<InstrProfError>(instrprof_error::bad_magic);

  // There's another profile to read, so we need to process the header.
  auto *Header = reinterpret_cast<const RawInstrProf::Header *>(CurrentPos);
  return readHeader(*Header);
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::createSymtab(InstrProfSymtab &Symtab) {
  if (Error E = Symtab.create(StringRef(NamesStart, NamesSize)))
    return error(std::move(E));
  for (const RawInstrProf::ProfileData<IntPtrT> *I = Data; I != DataEnd; ++I) {
    const IntPtrT FPtr = swap(I->FunctionPointer);
    if (!FPtr)
      continue;
    Symtab.mapAddress(FPtr, I->NameRef);
  }
  return success();
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readHeader(
    const RawInstrProf::Header &Header) {
  Version = swap(Header.Version);
  if (GET_VERSION(Version) != RawInstrProf::Version)
    return error(instrprof_error::unsupported_version);

  CountersDelta = swap(Header.CountersDelta);
  NamesDelta = swap(Header.NamesDelta);
  auto DataSize = swap(Header.DataSize);
  auto PaddingBytesBeforeCounters = swap(Header.PaddingBytesBeforeCounters);
  auto CountersSize = swap(Header.CountersSize);
  auto PaddingBytesAfterCounters = swap(Header.PaddingBytesAfterCounters);
  NamesSize = swap(Header.NamesSize);
  ValueKindLast = swap(Header.ValueKindLast);

  auto DataSizeInBytes = DataSize * sizeof(RawInstrProf::ProfileData<IntPtrT>);
  auto PaddingSize = getNumPaddingBytes(NamesSize);

  ptrdiff_t DataOffset = sizeof(RawInstrProf::Header);
  ptrdiff_t CountersOffset =
      DataOffset + DataSizeInBytes + PaddingBytesBeforeCounters;
  ptrdiff_t NamesOffset = CountersOffset + (sizeof(uint64_t) * CountersSize) +
                          PaddingBytesAfterCounters;
  ptrdiff_t ValueDataOffset = NamesOffset + NamesSize + PaddingSize;

  auto *Start = reinterpret_cast<const char *>(&Header);
  if (Start + ValueDataOffset > DataBuffer->getBufferEnd())
    return error(instrprof_error::bad_header);

  Data = reinterpret_cast<const RawInstrProf::ProfileData<IntPtrT> *>(
      Start + DataOffset);
  DataEnd = Data + DataSize;
  CountersStart = reinterpret_cast<const uint64_t *>(Start + CountersOffset);
  NamesStart = Start + NamesOffset;
  ValueDataStart = reinterpret_cast<const uint8_t *>(Start + ValueDataOffset);

  std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>();
  if (Error E = createSymtab(*NewSymtab.get()))
    return E;

  Symtab = std::move(NewSymtab);
  return success();
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readName(NamedInstrProfRecord &Record) {
  Record.Name = getName(Data->NameRef);
  return success();
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readFuncHash(NamedInstrProfRecord &Record) {
  Record.Hash = swap(Data->FuncHash);
  return success();
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readRawCounts(
    InstrProfRecord &Record) {
  uint32_t NumCounters = swap(Data->NumCounters);
  IntPtrT CounterPtr = Data->CounterPtr;
  if (NumCounters == 0)
    return error(instrprof_error::malformed);

  auto *NamesStartAsCounter = reinterpret_cast<const uint64_t *>(NamesStart);
  ptrdiff_t MaxNumCounters = NamesStartAsCounter - CountersStart;

  // Check bounds. Note that the counter pointer embedded in the data record
  // may itself be corrupt.
  if (MaxNumCounters < 0 || NumCounters > (uint32_t)MaxNumCounters)
    return error(instrprof_error::malformed);
  ptrdiff_t CounterOffset = getCounterOffset(CounterPtr);
  if (CounterOffset < 0 || CounterOffset > MaxNumCounters ||
      ((uint32_t)CounterOffset + NumCounters) > (uint32_t)MaxNumCounters)
    return error(instrprof_error::malformed);

  auto RawCounts = makeArrayRef(getCounter(CounterOffset), NumCounters);

  if (ShouldSwapBytes) {
    Record.Counts.clear();
    Record.Counts.reserve(RawCounts.size());
    for (uint64_t Count : RawCounts)
      Record.Counts.push_back(swap(Count));
  } else
    Record.Counts = RawCounts;

  return success();
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readValueProfilingData(
    InstrProfRecord &Record) {
  Record.clearValueData();
  CurValueDataSize = 0;
  // Need to match the logic in value profile dumper code in compiler-rt:
  uint32_t NumValueKinds = 0;
  for (uint32_t I = 0; I < IPVK_Last + 1; I++)
    NumValueKinds += (Data->NumValueSites[I] != 0);

  if (!NumValueKinds)
    return success();

  Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
      ValueProfData::getValueProfData(
          ValueDataStart, (const unsigned char *)DataBuffer->getBufferEnd(),
          getDataEndianness());

  if (Error E = VDataPtrOrErr.takeError())
    return E;

  // Note that besides deserialization, this also performs the conversion for
  // indirect call targets.  The function pointers from the raw profile are
  // remapped into function name hashes.
  VDataPtrOrErr.get()->deserializeTo(Record, Symtab.get());
  CurValueDataSize = VDataPtrOrErr.get()->getSize();
  return success();
}

template <class IntPtrT>
Error RawInstrProfReader<IntPtrT>::readNextRecord(NamedInstrProfRecord &Record) {
  if (atEnd())
    // At this point, ValueDataStart field points to the next header.
    if (Error E = readNextHeader(getNextHeaderPos()))
      return error(std::move(E));

  // Read name ad set it in Record.
  if (Error E = readName(Record))
    return error(std::move(E));

  // Read FuncHash and set it in Record.
  if (Error E = readFuncHash(Record))
    return error(std::move(E));

  // Read raw counts and set Record.
  if (Error E = readRawCounts(Record))
    return error(std::move(E));

  // Read value data and set Record.
  if (Error E = readValueProfilingData(Record))
    return error(std::move(E));

  // Iterate.
  advanceData();
  return success();
}

namespace llvm {

template class RawInstrProfReader<uint32_t>;
template class RawInstrProfReader<uint64_t>;

} // end namespace llvm

InstrProfLookupTrait::hash_value_type
InstrProfLookupTrait::ComputeHash(StringRef K) {
  return IndexedInstrProf::ComputeHash(HashType, K);
}

using data_type = InstrProfLookupTrait::data_type;
using offset_type = InstrProfLookupTrait::offset_type;

bool InstrProfLookupTrait::readValueProfilingData(
    const unsigned char *&D, const unsigned char *const End) {
  Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
      ValueProfData::getValueProfData(D, End, ValueProfDataEndianness);

  if (VDataPtrOrErr.takeError())
    return false;

  VDataPtrOrErr.get()->deserializeTo(DataBuffer.back(), nullptr);
  D += VDataPtrOrErr.get()->TotalSize;

  return true;
}

data_type InstrProfLookupTrait::ReadData(StringRef K, const unsigned char *D,
                                         offset_type N) {
  using namespace support;

  // Check if the data is corrupt. If so, don't try to read it.
  if (N % sizeof(uint64_t))
    return data_type();

  DataBuffer.clear();
  std::vector<uint64_t> CounterBuffer;

  const unsigned char *End = D + N;
  while (D < End) {
    // Read hash.
    if (D + sizeof(uint64_t) >= End)
      return data_type();
    uint64_t Hash = endian::readNext<uint64_t, little, unaligned>(D);

    // Initialize number of counters for GET_VERSION(FormatVersion) == 1.
    uint64_t CountsSize = N / sizeof(uint64_t) - 1;
    // If format version is different then read the number of counters.
    if (GET_VERSION(FormatVersion) != IndexedInstrProf::ProfVersion::Version1) {
      if (D + sizeof(uint64_t) > End)
        return data_type();
      CountsSize = endian::readNext<uint64_t, little, unaligned>(D);
    }
    // Read counter values.
    if (D + CountsSize * sizeof(uint64_t) > End)
      return data_type();

    CounterBuffer.clear();
    CounterBuffer.reserve(CountsSize);
    for (uint64_t J = 0; J < CountsSize; ++J)
      CounterBuffer.push_back(endian::readNext<uint64_t, little, unaligned>(D));

    DataBuffer.emplace_back(K, Hash, std::move(CounterBuffer));

    // Read value profiling data.
    if (GET_VERSION(FormatVersion) > IndexedInstrProf::ProfVersion::Version2 &&
        !readValueProfilingData(D, End)) {
      DataBuffer.clear();
      return data_type();
    }
  }
  return DataBuffer;
}

template <typename HashTableImpl>
Error InstrProfReaderIndex<HashTableImpl>::getRecords(
    StringRef FuncName, ArrayRef<NamedInstrProfRecord> &Data) {
  auto Iter = HashTable->find(FuncName);
  if (Iter == HashTable->end())
    return make_error<InstrProfError>(instrprof_error::unknown_function);

  Data = (*Iter);
  if (Data.empty())
    return make_error<InstrProfError>(instrprof_error::malformed);

  return Error::success();
}

template <typename HashTableImpl>
Error InstrProfReaderIndex<HashTableImpl>::getRecords(
    ArrayRef<NamedInstrProfRecord> &Data) {
  if (atEnd())
    return make_error<InstrProfError>(instrprof_error::eof);

  Data = *RecordIterator;

  if (Data.empty())
    return make_error<InstrProfError>(instrprof_error::malformed);

  return Error::success();
}

template <typename HashTableImpl>
InstrProfReaderIndex<HashTableImpl>::InstrProfReaderIndex(
    const unsigned char *Buckets, const unsigned char *const Payload,
    const unsigned char *const Base, IndexedInstrProf::HashT HashType,
    uint64_t Version) {
  FormatVersion = Version;
  HashTable.reset(HashTableImpl::Create(
      Buckets, Payload, Base,
      typename HashTableImpl::InfoType(HashType, Version)));
  RecordIterator = HashTable->data_begin();
}

namespace {
/// A remapper that does not apply any remappings.
class InstrProfReaderNullRemapper : public InstrProfReaderRemapper {
  InstrProfReaderIndexBase &Underlying;

public:
  InstrProfReaderNullRemapper(InstrProfReaderIndexBase &Underlying)
      : Underlying(Underlying) {}

  Error getRecords(StringRef FuncName,
                   ArrayRef<NamedInstrProfRecord> &Data) override {
    return Underlying.getRecords(FuncName, Data);
  }
};
}

/// A remapper that applies remappings based on a symbol remapping file.
template <typename HashTableImpl>
class llvm::InstrProfReaderItaniumRemapper
    : public InstrProfReaderRemapper {
public:
  InstrProfReaderItaniumRemapper(
      std::unique_ptr<MemoryBuffer> RemapBuffer,
      InstrProfReaderIndex<HashTableImpl> &Underlying)
      : RemapBuffer(std::move(RemapBuffer)), Underlying(Underlying) {
  }

  /// Extract the original function name from a PGO function name.
  static StringRef extractName(StringRef Name) {
    // We can have multiple :-separated pieces; there can be pieces both
    // before and after the mangled name. Find the first part that starts
    // with '_Z'; we'll assume that's the mangled name we want.
    std::pair<StringRef, StringRef> Parts = {StringRef(), Name};
    while (true) {
      Parts = Parts.second.split(':');
      if (Parts.first.startswith("_Z"))
        return Parts.first;
      if (Parts.second.empty())
        return Name;
    }
  }

  /// Given a mangled name extracted from a PGO function name, and a new
  /// form for that mangled name, reconstitute the name.
  static void reconstituteName(StringRef OrigName, StringRef ExtractedName,
                               StringRef Replacement,
                               SmallVectorImpl<char> &Out) {
    Out.reserve(OrigName.size() + Replacement.size() - ExtractedName.size());
    Out.insert(Out.end(), OrigName.begin(), ExtractedName.begin());
    Out.insert(Out.end(), Replacement.begin(), Replacement.end());
    Out.insert(Out.end(), ExtractedName.end(), OrigName.end());
  }

  Error populateRemappings() override {
    if (Error E = Remappings.read(*RemapBuffer))
      return E;
    for (StringRef Name : Underlying.HashTable->keys()) {
      StringRef RealName = extractName(Name);
      if (auto Key = Remappings.insert(RealName)) {
        // FIXME: We could theoretically map the same equivalence class to
        // multiple names in the profile data. If that happens, we should
        // return NamedInstrProfRecords from all of them.
        MappedNames.insert({Key, RealName});
      }
    }
    return Error::success();
  }

  Error getRecords(StringRef FuncName,
                   ArrayRef<NamedInstrProfRecord> &Data) override {
    StringRef RealName = extractName(FuncName);
    if (auto Key = Remappings.lookup(RealName)) {
      StringRef Remapped = MappedNames.lookup(Key);
      if (!Remapped.empty()) {
        if (RealName.begin() == FuncName.begin() &&
            RealName.end() == FuncName.end())
          FuncName = Remapped;
        else {
          // Try rebuilding the name from the given remapping.
          SmallString<256> Reconstituted;
          reconstituteName(FuncName, RealName, Remapped, Reconstituted);
          Error E = Underlying.getRecords(Reconstituted, Data);
          if (!E)
            return E;

          // If we failed because the name doesn't exist, fall back to asking
          // about the original name.
          if (Error Unhandled = handleErrors(
                  std::move(E), [](std::unique_ptr<InstrProfError> Err) {
                    return Err->get() == instrprof_error::unknown_function
                               ? Error::success()
                               : Error(std::move(Err));
                  }))
            return Unhandled;
        }
      }
    }
    return Underlying.getRecords(FuncName, Data);
  }

private:
  /// The memory buffer containing the remapping configuration. Remappings
  /// holds pointers into this buffer.
  std::unique_ptr<MemoryBuffer> RemapBuffer;

  /// The mangling remapper.
  SymbolRemappingReader Remappings;

  /// Mapping from mangled name keys to the name used for the key in the
  /// profile data.
  /// FIXME: Can we store a location within the on-disk hash table instead of
  /// redoing lookup?
  DenseMap<SymbolRemappingReader::Key, StringRef> MappedNames;

  /// The real profile data reader.
  InstrProfReaderIndex<HashTableImpl> &Underlying;
};

bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) {
  using namespace support;

  if (DataBuffer.getBufferSize() < 8)
    return false;
  uint64_t Magic =
      endian::read<uint64_t, little, aligned>(DataBuffer.getBufferStart());
  // Verify that it's magical.
  return Magic == IndexedInstrProf::Magic;
}

const unsigned char *
IndexedInstrProfReader::readSummary(IndexedInstrProf::ProfVersion Version,
                                    const unsigned char *Cur, bool UseCS) {
  using namespace IndexedInstrProf;
  using namespace support;

  if (Version >= IndexedInstrProf::Version4) {
    const IndexedInstrProf::Summary *SummaryInLE =
        reinterpret_cast<const IndexedInstrProf::Summary *>(Cur);
    uint64_t NFields =
        endian::byte_swap<uint64_t, little>(SummaryInLE->NumSummaryFields);
    uint64_t NEntries =
        endian::byte_swap<uint64_t, little>(SummaryInLE->NumCutoffEntries);
    uint32_t SummarySize =
        IndexedInstrProf::Summary::getSize(NFields, NEntries);
    std::unique_ptr<IndexedInstrProf::Summary> SummaryData =
        IndexedInstrProf::allocSummary(SummarySize);

    const uint64_t *Src = reinterpret_cast<const uint64_t *>(SummaryInLE);
    uint64_t *Dst = reinterpret_cast<uint64_t *>(SummaryData.get());
    for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
      Dst[I] = endian::byte_swap<uint64_t, little>(Src[I]);

    SummaryEntryVector DetailedSummary;
    for (unsigned I = 0; I < SummaryData->NumCutoffEntries; I++) {
      const IndexedInstrProf::Summary::Entry &Ent = SummaryData->getEntry(I);
      DetailedSummary.emplace_back((uint32_t)Ent.Cutoff, Ent.MinBlockCount,
                                   Ent.NumBlocks);
    }
    std::unique_ptr<llvm::ProfileSummary> &Summary =
        UseCS ? this->CS_Summary : this->Summary;

    // initialize InstrProfSummary using the SummaryData from disk.
    Summary = std::make_unique<ProfileSummary>(
        UseCS ? ProfileSummary::PSK_CSInstr : ProfileSummary::PSK_Instr,
        DetailedSummary, SummaryData->get(Summary::TotalBlockCount),
        SummaryData->get(Summary::MaxBlockCount),
        SummaryData->get(Summary::MaxInternalBlockCount),
        SummaryData->get(Summary::MaxFunctionCount),
        SummaryData->get(Summary::TotalNumBlocks),
        SummaryData->get(Summary::TotalNumFunctions));
    return Cur + SummarySize;
  } else {
    // The older versions do not support a profile summary. This just computes
    // an empty summary, which will not result in accurate hot/cold detection.
    // We would need to call addRecord for all NamedInstrProfRecords to get the
    // correct summary. However, this version is old (prior to early 2016) and
    // has not been supporting an accurate summary for several years.
    InstrProfSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
    Summary = Builder.getSummary();
    return Cur;
  }
}

Error IndexedInstrProfReader::readHeader() {
  using namespace support;

  const unsigned char *Start =
      (const unsigned char *)DataBuffer->getBufferStart();
  const unsigned char *Cur = Start;
  if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24)
    return error(instrprof_error::truncated);

  auto *Header = reinterpret_cast<const IndexedInstrProf::Header *>(Cur);
  Cur += sizeof(IndexedInstrProf::Header);

  // Check the magic number.
  uint64_t Magic = endian::byte_swap<uint64_t, little>(Header->Magic);
  if (Magic != IndexedInstrProf::Magic)
    return error(instrprof_error::bad_magic);

  // Read the version.
  uint64_t FormatVersion = endian::byte_swap<uint64_t, little>(Header->Version);
  if (GET_VERSION(FormatVersion) >
      IndexedInstrProf::ProfVersion::CurrentVersion)
    return error(instrprof_error::unsupported_version);

  Cur = readSummary((IndexedInstrProf::ProfVersion)FormatVersion, Cur,
                    /* UseCS */ false);
  if (FormatVersion & VARIANT_MASK_CSIR_PROF)
    Cur = readSummary((IndexedInstrProf::ProfVersion)FormatVersion, Cur,
                      /* UseCS */ true);

  // Read the hash type and start offset.
  IndexedInstrProf::HashT HashType = static_cast<IndexedInstrProf::HashT>(
      endian::byte_swap<uint64_t, little>(Header->HashType));
  if (HashType > IndexedInstrProf::HashT::Last)
    return error(instrprof_error::unsupported_hash_type);

  uint64_t HashOffset = endian::byte_swap<uint64_t, little>(Header->HashOffset);

  // The rest of the file is an on disk hash table.
  auto IndexPtr =
      std::make_unique<InstrProfReaderIndex<OnDiskHashTableImplV3>>(
          Start + HashOffset, Cur, Start, HashType, FormatVersion);

  // Load the remapping table now if requested.
  if (RemappingBuffer) {
    Remapper = std::make_unique<
        InstrProfReaderItaniumRemapper<OnDiskHashTableImplV3>>(
        std::move(RemappingBuffer), *IndexPtr);
    if (Error E = Remapper->populateRemappings())
      return E;
  } else {
    Remapper = std::make_unique<InstrProfReaderNullRemapper>(*IndexPtr);
  }
  Index = std::move(IndexPtr);

  return success();
}

InstrProfSymtab &IndexedInstrProfReader::getSymtab() {
  if (Symtab.get())
    return *Symtab.get();

  std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>();
  if (Error E = Index->populateSymtab(*NewSymtab.get())) {
    consumeError(error(InstrProfError::take(std::move(E))));
  }

  Symtab = std::move(NewSymtab);
  return *Symtab.get();
}

Expected<InstrProfRecord>
IndexedInstrProfReader::getInstrProfRecord(StringRef FuncName,
                                           uint64_t FuncHash) {
  ArrayRef<NamedInstrProfRecord> Data;
  Error Err = Remapper->getRecords(FuncName, Data);
  if (Err)
    return std::move(Err);
  // Found it. Look for counters with the right hash.
  for (unsigned I = 0, E = Data.size(); I < E; ++I) {
    // Check for a match and fill the vector if there is one.
    if (Data[I].Hash == FuncHash) {
      return std::move(Data[I]);
    }
  }
  return error(instrprof_error::hash_mismatch);
}

Error IndexedInstrProfReader::getFunctionCounts(StringRef FuncName,
                                                uint64_t FuncHash,
                                                std::vector<uint64_t> &Counts) {
  Expected<InstrProfRecord> Record = getInstrProfRecord(FuncName, FuncHash);
  if (Error E = Record.takeError())
    return error(std::move(E));

  Counts = Record.get().Counts;
  return success();
}

Error IndexedInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
  ArrayRef<NamedInstrProfRecord> Data;

  Error E = Index->getRecords(Data);
  if (E)
    return error(std::move(E));

  Record = Data[RecordIndex++];
  if (RecordIndex >= Data.size()) {
    Index->advanceToNextKey();
    RecordIndex = 0;
  }
  return success();
}

void InstrProfReader::accumulateCounts(CountSumOrPercent &Sum, bool IsCS) {
  uint64_t NumFuncs = 0;
  for (const auto &Func : *this) {
    if (isIRLevelProfile()) {
      bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
      if (FuncIsCS != IsCS)
        continue;
    }
    Func.accumulateCounts(Sum);
    ++NumFuncs;
  }
  Sum.NumEntries = NumFuncs;
}