ValueEnumerator.cpp 35.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValueEnumerator class.
//
//===----------------------------------------------------------------------===//

#include "ValueEnumerator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <tuple>

using namespace llvm;

namespace {

struct OrderMap {
  DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
  unsigned LastGlobalConstantID = 0;
  unsigned LastGlobalValueID = 0;

  OrderMap() = default;

  bool isGlobalConstant(unsigned ID) const {
    return ID <= LastGlobalConstantID;
  }

  bool isGlobalValue(unsigned ID) const {
    return ID <= LastGlobalValueID && !isGlobalConstant(ID);
  }

  unsigned size() const { return IDs.size(); }
  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }

  std::pair<unsigned, bool> lookup(const Value *V) const {
    return IDs.lookup(V);
  }

  void index(const Value *V) {
    // Explicitly sequence get-size and insert-value operations to avoid UB.
    unsigned ID = IDs.size() + 1;
    IDs[V].first = ID;
  }
};

} // end anonymous namespace

static void orderValue(const Value *V, OrderMap &OM) {
  if (OM.lookup(V).first)
    return;

  if (const Constant *C = dyn_cast<Constant>(V)) {
    if (C->getNumOperands() && !isa<GlobalValue>(C)) {
      for (const Value *Op : C->operands())
        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
          orderValue(Op, OM);
      if (auto *CE = dyn_cast<ConstantExpr>(C))
        if (CE->getOpcode() == Instruction::ShuffleVector)
          orderValue(CE->getShuffleMaskForBitcode(), OM);
    }
  }

  // Note: we cannot cache this lookup above, since inserting into the map
  // changes the map's size, and thus affects the other IDs.
  OM.index(V);
}

static OrderMap orderModule(const Module &M) {
  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
  // and ValueEnumerator::incorporateFunction().
  OrderMap OM;

  // In the reader, initializers of GlobalValues are set *after* all the
  // globals have been read.  Rather than awkwardly modeling this behaviour
  // directly in predictValueUseListOrderImpl(), just assign IDs to
  // initializers of GlobalValues before GlobalValues themselves to model this
  // implicitly.
  for (const GlobalVariable &G : M.globals())
    if (G.hasInitializer())
      if (!isa<GlobalValue>(G.getInitializer()))
        orderValue(G.getInitializer(), OM);
  for (const GlobalAlias &A : M.aliases())
    if (!isa<GlobalValue>(A.getAliasee()))
      orderValue(A.getAliasee(), OM);
  for (const GlobalIFunc &I : M.ifuncs())
    if (!isa<GlobalValue>(I.getResolver()))
      orderValue(I.getResolver(), OM);
  for (const Function &F : M) {
    for (const Use &U : F.operands())
      if (!isa<GlobalValue>(U.get()))
        orderValue(U.get(), OM);
  }
  OM.LastGlobalConstantID = OM.size();

  // Initializers of GlobalValues are processed in
  // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
  // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
  // by giving IDs in reverse order.
  //
  // Since GlobalValues never reference each other directly (just through
  // initializers), their relative IDs only matter for determining order of
  // uses in their initializers.
  for (const Function &F : M)
    orderValue(&F, OM);
  for (const GlobalAlias &A : M.aliases())
    orderValue(&A, OM);
  for (const GlobalIFunc &I : M.ifuncs())
    orderValue(&I, OM);
  for (const GlobalVariable &G : M.globals())
    orderValue(&G, OM);
  OM.LastGlobalValueID = OM.size();

  for (const Function &F : M) {
    if (F.isDeclaration())
      continue;
    // Here we need to match the union of ValueEnumerator::incorporateFunction()
    // and WriteFunction().  Basic blocks are implicitly declared before
    // anything else (by declaring their size).
    for (const BasicBlock &BB : F)
      orderValue(&BB, OM);
    for (const Argument &A : F.args())
      orderValue(&A, OM);
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB) {
        for (const Value *Op : I.operands())
          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
              isa<InlineAsm>(*Op))
            orderValue(Op, OM);
        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
          orderValue(SVI->getShuffleMaskForBitcode(), OM);
      }
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        orderValue(&I, OM);
  }
  return OM;
}

static void predictValueUseListOrderImpl(const Value *V, const Function *F,
                                         unsigned ID, const OrderMap &OM,
                                         UseListOrderStack &Stack) {
  // Predict use-list order for this one.
  using Entry = std::pair<const Use *, unsigned>;
  SmallVector<Entry, 64> List;
  for (const Use &U : V->uses())
    // Check if this user will be serialized.
    if (OM.lookup(U.getUser()).first)
      List.push_back(std::make_pair(&U, List.size()));

  if (List.size() < 2)
    // We may have lost some users.
    return;

  bool IsGlobalValue = OM.isGlobalValue(ID);
  llvm::sort(List, [&](const Entry &L, const Entry &R) {
    const Use *LU = L.first;
    const Use *RU = R.first;
    if (LU == RU)
      return false;

    auto LID = OM.lookup(LU->getUser()).first;
    auto RID = OM.lookup(RU->getUser()).first;

    // Global values are processed in reverse order.
    //
    // Moreover, initializers of GlobalValues are set *after* all the globals
    // have been read (despite having earlier IDs).  Rather than awkwardly
    // modeling this behaviour here, orderModule() has assigned IDs to
    // initializers of GlobalValues before GlobalValues themselves.
    if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
      return LID < RID;

    // If ID is 4, then expect: 7 6 5 1 2 3.
    if (LID < RID) {
      if (RID <= ID)
        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
          return true;
      return false;
    }
    if (RID < LID) {
      if (LID <= ID)
        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
          return false;
      return true;
    }

    // LID and RID are equal, so we have different operands of the same user.
    // Assume operands are added in order for all instructions.
    if (LID <= ID)
      if (!IsGlobalValue) // GlobalValue uses don't get reversed.
        return LU->getOperandNo() < RU->getOperandNo();
    return LU->getOperandNo() > RU->getOperandNo();
  });

  if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
        return L.second < R.second;
      }))
    // Order is already correct.
    return;

  // Store the shuffle.
  Stack.emplace_back(V, F, List.size());
  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
  for (size_t I = 0, E = List.size(); I != E; ++I)
    Stack.back().Shuffle[I] = List[I].second;
}

static void predictValueUseListOrder(const Value *V, const Function *F,
                                     OrderMap &OM, UseListOrderStack &Stack) {
  auto &IDPair = OM[V];
  assert(IDPair.first && "Unmapped value");
  if (IDPair.second)
    // Already predicted.
    return;

  // Do the actual prediction.
  IDPair.second = true;
  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);

  // Recursive descent into constants.
  if (const Constant *C = dyn_cast<Constant>(V)) {
    if (C->getNumOperands()) { // Visit GlobalValues.
      for (const Value *Op : C->operands())
        if (isa<Constant>(Op)) // Visit GlobalValues.
          predictValueUseListOrder(Op, F, OM, Stack);
      if (auto *CE = dyn_cast<ConstantExpr>(C))
        if (CE->getOpcode() == Instruction::ShuffleVector)
          predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
                                   Stack);
    }
  }
}

static UseListOrderStack predictUseListOrder(const Module &M) {
  OrderMap OM = orderModule(M);

  // Use-list orders need to be serialized after all the users have been added
  // to a value, or else the shuffles will be incomplete.  Store them per
  // function in a stack.
  //
  // Aside from function order, the order of values doesn't matter much here.
  UseListOrderStack Stack;

  // We want to visit the functions backward now so we can list function-local
  // constants in the last Function they're used in.  Module-level constants
  // have already been visited above.
  for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
    const Function &F = *I;
    if (F.isDeclaration())
      continue;
    for (const BasicBlock &BB : F)
      predictValueUseListOrder(&BB, &F, OM, Stack);
    for (const Argument &A : F.args())
      predictValueUseListOrder(&A, &F, OM, Stack);
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB) {
        for (const Value *Op : I.operands())
          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
            predictValueUseListOrder(Op, &F, OM, Stack);
        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
          predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
                                   Stack);
      }
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        predictValueUseListOrder(&I, &F, OM, Stack);
  }

  // Visit globals last, since the module-level use-list block will be seen
  // before the function bodies are processed.
  for (const GlobalVariable &G : M.globals())
    predictValueUseListOrder(&G, nullptr, OM, Stack);
  for (const Function &F : M)
    predictValueUseListOrder(&F, nullptr, OM, Stack);
  for (const GlobalAlias &A : M.aliases())
    predictValueUseListOrder(&A, nullptr, OM, Stack);
  for (const GlobalIFunc &I : M.ifuncs())
    predictValueUseListOrder(&I, nullptr, OM, Stack);
  for (const GlobalVariable &G : M.globals())
    if (G.hasInitializer())
      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
  for (const GlobalAlias &A : M.aliases())
    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
  for (const GlobalIFunc &I : M.ifuncs())
    predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
  for (const Function &F : M) {
    for (const Use &U : F.operands())
      predictValueUseListOrder(U.get(), nullptr, OM, Stack);
  }

  return Stack;
}

static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
  return V.first->getType()->isIntOrIntVectorTy();
}

ValueEnumerator::ValueEnumerator(const Module &M,
                                 bool ShouldPreserveUseListOrder)
    : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
  if (ShouldPreserveUseListOrder)
    UseListOrders = predictUseListOrder(M);

  // Enumerate the global variables.
  for (const GlobalVariable &GV : M.globals())
    EnumerateValue(&GV);

  // Enumerate the functions.
  for (const Function & F : M) {
    EnumerateValue(&F);
    EnumerateAttributes(F.getAttributes());
  }

  // Enumerate the aliases.
  for (const GlobalAlias &GA : M.aliases())
    EnumerateValue(&GA);

  // Enumerate the ifuncs.
  for (const GlobalIFunc &GIF : M.ifuncs())
    EnumerateValue(&GIF);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Enumerate the global variable initializers and attributes.
  for (const GlobalVariable &GV : M.globals()) {
    if (GV.hasInitializer())
      EnumerateValue(GV.getInitializer());
    if (GV.hasAttributes())
      EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
  }

  // Enumerate the aliasees.
  for (const GlobalAlias &GA : M.aliases())
    EnumerateValue(GA.getAliasee());

  // Enumerate the ifunc resolvers.
  for (const GlobalIFunc &GIF : M.ifuncs())
    EnumerateValue(GIF.getResolver());

  // Enumerate any optional Function data.
  for (const Function &F : M)
    for (const Use &U : F.operands())
      EnumerateValue(U.get());

  // Enumerate the metadata type.
  //
  // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
  // only encodes the metadata type when it's used as a value.
  EnumerateType(Type::getMetadataTy(M.getContext()));

  // Insert constants and metadata that are named at module level into the slot
  // pool so that the module symbol table can refer to them...
  EnumerateValueSymbolTable(M.getValueSymbolTable());
  EnumerateNamedMetadata(M);

  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
  for (const GlobalVariable &GV : M.globals()) {
    MDs.clear();
    GV.getAllMetadata(MDs);
    for (const auto &I : MDs)
      // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
      // to write metadata to the global variable's own metadata block
      // (PR28134).
      EnumerateMetadata(nullptr, I.second);
  }

  // Enumerate types used by function bodies and argument lists.
  for (const Function &F : M) {
    for (const Argument &A : F.args())
      EnumerateType(A.getType());

    // Enumerate metadata attached to this function.
    MDs.clear();
    F.getAllMetadata(MDs);
    for (const auto &I : MDs)
      EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);

    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB) {
        for (const Use &Op : I.operands()) {
          auto *MD = dyn_cast<MetadataAsValue>(&Op);
          if (!MD) {
            EnumerateOperandType(Op);
            continue;
          }

          // Local metadata is enumerated during function-incorporation.
          if (isa<LocalAsMetadata>(MD->getMetadata()))
            continue;

          EnumerateMetadata(&F, MD->getMetadata());
        }
        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
          EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
        EnumerateType(I.getType());
        if (const auto *Call = dyn_cast<CallBase>(&I))
          EnumerateAttributes(Call->getAttributes());

        // Enumerate metadata attached with this instruction.
        MDs.clear();
        I.getAllMetadataOtherThanDebugLoc(MDs);
        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
          EnumerateMetadata(&F, MDs[i].second);

        // Don't enumerate the location directly -- it has a special record
        // type -- but enumerate its operands.
        if (DILocation *L = I.getDebugLoc())
          for (const Metadata *Op : L->operands())
            EnumerateMetadata(&F, Op);
      }
  }

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());

  // Organize metadata ordering.
  organizeMetadata();
}

unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
  assert(I != InstructionMap.end() && "Instruction is not mapped!");
  return I->second;
}

unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
  unsigned ComdatID = Comdats.idFor(C);
  assert(ComdatID && "Comdat not found!");
  return ComdatID;
}

void ValueEnumerator::setInstructionID(const Instruction *I) {
  InstructionMap[I] = InstructionCount++;
}

unsigned ValueEnumerator::getValueID(const Value *V) const {
  if (auto *MD = dyn_cast<MetadataAsValue>(V))
    return getMetadataID(MD->getMetadata());

  ValueMapType::const_iterator I = ValueMap.find(V);
  assert(I != ValueMap.end() && "Value not in slotcalculator!");
  return I->second-1;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
  print(dbgs(), ValueMap, "Default");
  dbgs() << '\n';
  print(dbgs(), MetadataMap, "MetaData");
  dbgs() << '\n';
}
#endif

void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
                            const char *Name) const {
  OS << "Map Name: " << Name << "\n";
  OS << "Size: " << Map.size() << "\n";
  for (ValueMapType::const_iterator I = Map.begin(),
         E = Map.end(); I != E; ++I) {
    const Value *V = I->first;
    if (V->hasName())
      OS << "Value: " << V->getName();
    else
      OS << "Value: [null]\n";
    V->print(errs());
    errs() << '\n';

    OS << " Uses(" << V->getNumUses() << "):";
    for (const Use &U : V->uses()) {
      if (&U != &*V->use_begin())
        OS << ",";
      if(U->hasName())
        OS << " " << U->getName();
      else
        OS << " [null]";

    }
    OS <<  "\n\n";
  }
}

void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
                            const char *Name) const {
  OS << "Map Name: " << Name << "\n";
  OS << "Size: " << Map.size() << "\n";
  for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
    const Metadata *MD = I->first;
    OS << "Metadata: slot = " << I->second.ID << "\n";
    OS << "Metadata: function = " << I->second.F << "\n";
    MD->print(OS);
    OS << "\n";
  }
}

/// OptimizeConstants - Reorder constant pool for denser encoding.
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;

  if (ShouldPreserveUseListOrder)
    // Optimizing constants makes the use-list order difficult to predict.
    // Disable it for now when trying to preserve the order.
    return;

  std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
                   [this](const std::pair<const Value *, unsigned> &LHS,
                          const std::pair<const Value *, unsigned> &RHS) {
    // Sort by plane.
    if (LHS.first->getType() != RHS.first->getType())
      return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
    // Then by frequency.
    return LHS.second > RHS.second;
  });

  // Ensure that integer and vector of integer constants are at the start of the
  // constant pool.  This is important so that GEP structure indices come before
  // gep constant exprs.
  std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
                        isIntOrIntVectorValue);

  // Rebuild the modified portion of ValueMap.
  for (; CstStart != CstEnd; ++CstStart)
    ValueMap[Values[CstStart].first] = CstStart+1;
}

/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
       VI != VE; ++VI)
    EnumerateValue(VI->getValue());
}

/// Insert all of the values referenced by named metadata in the specified
/// module.
void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
  for (const auto &I : M.named_metadata())
    EnumerateNamedMDNode(&I);
}

void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
    EnumerateMetadata(nullptr, MD->getOperand(i));
}

unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
  return F ? getValueID(F) + 1 : 0;
}

void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
  EnumerateMetadata(getMetadataFunctionID(F), MD);
}

void ValueEnumerator::EnumerateFunctionLocalMetadata(
    const Function &F, const LocalAsMetadata *Local) {
  EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
}

void ValueEnumerator::dropFunctionFromMetadata(
    MetadataMapType::value_type &FirstMD) {
  SmallVector<const MDNode *, 64> Worklist;
  auto push = [&Worklist](MetadataMapType::value_type &MD) {
    auto &Entry = MD.second;

    // Nothing to do if this metadata isn't tagged.
    if (!Entry.F)
      return;

    // Drop the function tag.
    Entry.F = 0;

    // If this is has an ID and is an MDNode, then its operands have entries as
    // well.  We need to drop the function from them too.
    if (Entry.ID)
      if (auto *N = dyn_cast<MDNode>(MD.first))
        Worklist.push_back(N);
  };
  push(FirstMD);
  while (!Worklist.empty())
    for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
      if (!Op)
        continue;
      auto MD = MetadataMap.find(Op);
      if (MD != MetadataMap.end())
        push(*MD);
    }
}

void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
  // It's vital for reader efficiency that uniqued subgraphs are done in
  // post-order; it's expensive when their operands have forward references.
  // If a distinct node is referenced from a uniqued node, it'll be delayed
  // until the uniqued subgraph has been completely traversed.
  SmallVector<const MDNode *, 32> DelayedDistinctNodes;

  // Start by enumerating MD, and then work through its transitive operands in
  // post-order.  This requires a depth-first search.
  SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
  if (const MDNode *N = enumerateMetadataImpl(F, MD))
    Worklist.push_back(std::make_pair(N, N->op_begin()));

  while (!Worklist.empty()) {
    const MDNode *N = Worklist.back().first;

    // Enumerate operands until we hit a new node.  We need to traverse these
    // nodes' operands before visiting the rest of N's operands.
    MDNode::op_iterator I = std::find_if(
        Worklist.back().second, N->op_end(),
        [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
    if (I != N->op_end()) {
      auto *Op = cast<MDNode>(*I);
      Worklist.back().second = ++I;

      // Delay traversing Op if it's a distinct node and N is uniqued.
      if (Op->isDistinct() && !N->isDistinct())
        DelayedDistinctNodes.push_back(Op);
      else
        Worklist.push_back(std::make_pair(Op, Op->op_begin()));
      continue;
    }

    // All the operands have been visited.  Now assign an ID.
    Worklist.pop_back();
    MDs.push_back(N);
    MetadataMap[N].ID = MDs.size();

    // Flush out any delayed distinct nodes; these are all the distinct nodes
    // that are leaves in last uniqued subgraph.
    if (Worklist.empty() || Worklist.back().first->isDistinct()) {
      for (const MDNode *N : DelayedDistinctNodes)
        Worklist.push_back(std::make_pair(N, N->op_begin()));
      DelayedDistinctNodes.clear();
    }
  }
}

const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
  if (!MD)
    return nullptr;

  assert(
      (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
      "Invalid metadata kind");

  auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
  MDIndex &Entry = Insertion.first->second;
  if (!Insertion.second) {
    // Already mapped.  If F doesn't match the function tag, drop it.
    if (Entry.hasDifferentFunction(F))
      dropFunctionFromMetadata(*Insertion.first);
    return nullptr;
  }

  // Don't assign IDs to metadata nodes.
  if (auto *N = dyn_cast<MDNode>(MD))
    return N;

  // Save the metadata.
  MDs.push_back(MD);
  Entry.ID = MDs.size();

  // Enumerate the constant, if any.
  if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
    EnumerateValue(C->getValue());

  return nullptr;
}

/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
/// information reachable from the metadata.
void ValueEnumerator::EnumerateFunctionLocalMetadata(
    unsigned F, const LocalAsMetadata *Local) {
  assert(F && "Expected a function");

  // Check to see if it's already in!
  MDIndex &Index = MetadataMap[Local];
  if (Index.ID) {
    assert(Index.F == F && "Expected the same function");
    return;
  }

  MDs.push_back(Local);
  Index.F = F;
  Index.ID = MDs.size();

  EnumerateValue(Local->getValue());
}

static unsigned getMetadataTypeOrder(const Metadata *MD) {
  // Strings are emitted in bulk and must come first.
  if (isa<MDString>(MD))
    return 0;

  // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
  // to the front since we can detect it.
  auto *N = dyn_cast<MDNode>(MD);
  if (!N)
    return 1;

  // The reader is fast forward references for distinct node operands, but slow
  // when uniqued operands are unresolved.
  return N->isDistinct() ? 2 : 3;
}

void ValueEnumerator::organizeMetadata() {
  assert(MetadataMap.size() == MDs.size() &&
         "Metadata map and vector out of sync");

  if (MDs.empty())
    return;

  // Copy out the index information from MetadataMap in order to choose a new
  // order.
  SmallVector<MDIndex, 64> Order;
  Order.reserve(MetadataMap.size());
  for (const Metadata *MD : MDs)
    Order.push_back(MetadataMap.lookup(MD));

  // Partition:
  //   - by function, then
  //   - by isa<MDString>
  // and then sort by the original/current ID.  Since the IDs are guaranteed to
  // be unique, the result of std::sort will be deterministic.  There's no need
  // for std::stable_sort.
  llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
    return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
           std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
  });

  // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
  // and fix up MetadataMap.
  std::vector<const Metadata *> OldMDs;
  MDs.swap(OldMDs);
  MDs.reserve(OldMDs.size());
  for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
    auto *MD = Order[I].get(OldMDs);
    MDs.push_back(MD);
    MetadataMap[MD].ID = I + 1;
    if (isa<MDString>(MD))
      ++NumMDStrings;
  }

  // Return early if there's nothing for the functions.
  if (MDs.size() == Order.size())
    return;

  // Build the function metadata ranges.
  MDRange R;
  FunctionMDs.reserve(OldMDs.size());
  unsigned PrevF = 0;
  for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
       ++I) {
    unsigned F = Order[I].F;
    if (!PrevF) {
      PrevF = F;
    } else if (PrevF != F) {
      R.Last = FunctionMDs.size();
      std::swap(R, FunctionMDInfo[PrevF]);
      R.First = FunctionMDs.size();

      ID = MDs.size();
      PrevF = F;
    }

    auto *MD = Order[I].get(OldMDs);
    FunctionMDs.push_back(MD);
    MetadataMap[MD].ID = ++ID;
    if (isa<MDString>(MD))
      ++R.NumStrings;
  }
  R.Last = FunctionMDs.size();
  FunctionMDInfo[PrevF] = R;
}

void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
  NumModuleMDs = MDs.size();

  auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
  NumMDStrings = R.NumStrings;
  MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
             FunctionMDs.begin() + R.Last);
}

void ValueEnumerator::EnumerateValue(const Value *V) {
  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
  assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");

  // Check to see if it's already in!
  unsigned &ValueID = ValueMap[V];
  if (ValueID) {
    // Increment use count.
    Values[ValueID-1].second++;
    return;
  }

  if (auto *GO = dyn_cast<GlobalObject>(V))
    if (const Comdat *C = GO->getComdat())
      Comdats.insert(C);

  // Enumerate the type of this value.
  EnumerateType(V->getType());

  if (const Constant *C = dyn_cast<Constant>(V)) {
    if (isa<GlobalValue>(C)) {
      // Initializers for globals are handled explicitly elsewhere.
    } else if (C->getNumOperands()) {
      // If a constant has operands, enumerate them.  This makes sure that if a
      // constant has uses (for example an array of const ints), that they are
      // inserted also.

      // We prefer to enumerate them with values before we enumerate the user
      // itself.  This makes it more likely that we can avoid forward references
      // in the reader.  We know that there can be no cycles in the constants
      // graph that don't go through a global variable.
      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
           I != E; ++I)
        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
          EnumerateValue(*I);
      if (auto *CE = dyn_cast<ConstantExpr>(C))
        if (CE->getOpcode() == Instruction::ShuffleVector)
          EnumerateValue(CE->getShuffleMaskForBitcode());

      // Finally, add the value.  Doing this could make the ValueID reference be
      // dangling, don't reuse it.
      Values.push_back(std::make_pair(V, 1U));
      ValueMap[V] = Values.size();
      return;
    }
  }

  // Add the value.
  Values.push_back(std::make_pair(V, 1U));
  ValueID = Values.size();
}


void ValueEnumerator::EnumerateType(Type *Ty) {
  unsigned *TypeID = &TypeMap[Ty];

  // We've already seen this type.
  if (*TypeID)
    return;

  // If it is a non-anonymous struct, mark the type as being visited so that we
  // don't recursively visit it.  This is safe because we allow forward
  // references of these in the bitcode reader.
  if (StructType *STy = dyn_cast<StructType>(Ty))
    if (!STy->isLiteral())
      *TypeID = ~0U;

  // Enumerate all of the subtypes before we enumerate this type.  This ensures
  // that the type will be enumerated in an order that can be directly built.
  for (Type *SubTy : Ty->subtypes())
    EnumerateType(SubTy);

  // Refresh the TypeID pointer in case the table rehashed.
  TypeID = &TypeMap[Ty];

  // Check to see if we got the pointer another way.  This can happen when
  // enumerating recursive types that hit the base case deeper than they start.
  //
  // If this is actually a struct that we are treating as forward ref'able,
  // then emit the definition now that all of its contents are available.
  if (*TypeID && *TypeID != ~0U)
    return;

  // Add this type now that its contents are all happily enumerated.
  Types.push_back(Ty);

  *TypeID = Types.size();
}

// Enumerate the types for the specified value.  If the value is a constant,
// walk through it, enumerating the types of the constant.
void ValueEnumerator::EnumerateOperandType(const Value *V) {
  EnumerateType(V->getType());

  assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");

  const Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return;

  // If this constant is already enumerated, ignore it, we know its type must
  // be enumerated.
  if (ValueMap.count(C))
    return;

  // This constant may have operands, make sure to enumerate the types in
  // them.
  for (const Value *Op : C->operands()) {
    // Don't enumerate basic blocks here, this happens as operands to
    // blockaddress.
    if (isa<BasicBlock>(Op))
      continue;

    EnumerateOperandType(Op);
  }
  if (auto *CE = dyn_cast<ConstantExpr>(C))
    if (CE->getOpcode() == Instruction::ShuffleVector)
      EnumerateOperandType(CE->getShuffleMaskForBitcode());
}

void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
  if (PAL.isEmpty()) return;  // null is always 0.

  // Do a lookup.
  unsigned &Entry = AttributeListMap[PAL];
  if (Entry == 0) {
    // Never saw this before, add it.
    AttributeLists.push_back(PAL);
    Entry = AttributeLists.size();
  }

  // Do lookups for all attribute groups.
  for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
    AttributeSet AS = PAL.getAttributes(i);
    if (!AS.hasAttributes())
      continue;
    IndexAndAttrSet Pair = {i, AS};
    unsigned &Entry = AttributeGroupMap[Pair];
    if (Entry == 0) {
      AttributeGroups.push_back(Pair);
      Entry = AttributeGroups.size();
    }
  }
}

void ValueEnumerator::incorporateFunction(const Function &F) {
  InstructionCount = 0;
  NumModuleValues = Values.size();

  // Add global metadata to the function block.  This doesn't include
  // LocalAsMetadata.
  incorporateFunctionMetadata(F);

  // Adding function arguments to the value table.
  for (const auto &I : F.args()) {
    EnumerateValue(&I);
    if (I.hasAttribute(Attribute::ByVal))
      EnumerateType(I.getParamByValType());
  }
  FirstFuncConstantID = Values.size();

  // Add all function-level constants to the value table.
  for (const BasicBlock &BB : F) {
    for (const Instruction &I : BB) {
      for (const Use &OI : I.operands()) {
        if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
          EnumerateValue(OI);
      }
      if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
        EnumerateValue(SVI->getShuffleMaskForBitcode());
    }
    BasicBlocks.push_back(&BB);
    ValueMap[&BB] = BasicBlocks.size();
  }

  // Optimize the constant layout.
  OptimizeConstants(FirstFuncConstantID, Values.size());

  // Add the function's parameter attributes so they are available for use in
  // the function's instruction.
  EnumerateAttributes(F.getAttributes());

  FirstInstID = Values.size();

  SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
  // Add all of the instructions.
  for (const BasicBlock &BB : F) {
    for (const Instruction &I : BB) {
      for (const Use &OI : I.operands()) {
        if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
          if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
            // Enumerate metadata after the instructions they might refer to.
            FnLocalMDVector.push_back(Local);
      }

      if (!I.getType()->isVoidTy())
        EnumerateValue(&I);
    }
  }

  // Add all of the function-local metadata.
  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
    // At this point, every local values have been incorporated, we shouldn't
    // have a metadata operand that references a value that hasn't been seen.
    assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
           "Missing value for metadata operand");
    EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
  }
}

void ValueEnumerator::purgeFunction() {
  /// Remove purged values from the ValueMap.
  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
    ValueMap.erase(Values[i].first);
  for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
    MetadataMap.erase(MDs[i]);
  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
    ValueMap.erase(BasicBlocks[i]);

  Values.resize(NumModuleValues);
  MDs.resize(NumModuleMDs);
  BasicBlocks.clear();
  NumMDStrings = 0;
}

static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
  unsigned Counter = 0;
  for (const BasicBlock &BB : *F)
    IDMap[&BB] = ++Counter;
}

/// getGlobalBasicBlockID - This returns the function-specific ID for the
/// specified basic block.  This is relatively expensive information, so it
/// should only be used by rare constructs such as address-of-label.
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
  unsigned &Idx = GlobalBasicBlockIDs[BB];
  if (Idx != 0)
    return Idx-1;

  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
  return getGlobalBasicBlockID(BB);
}

uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
  return Log2_32_Ceil(getTypes().size() + 1);
}