DependenceGraphBuilder.cpp
19.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
//===- DependenceGraphBuilder.cpp ------------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements common steps of the build algorithm for construction
// of dependence graphs such as DDG and PDG.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DependenceGraphBuilder.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EnumeratedArray.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DDG.h"
using namespace llvm;
#define DEBUG_TYPE "dgb"
STATISTIC(TotalGraphs, "Number of dependence graphs created.");
STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
STATISTIC(TotalConfusedEdges,
"Number of confused memory dependencies between two nodes.");
STATISTIC(TotalEdgeReversals,
"Number of times the source and sink of dependence was reversed to "
"expose cycles in the graph.");
using InstructionListType = SmallVector<Instruction *, 2>;
//===--------------------------------------------------------------------===//
// AbstractDependenceGraphBuilder implementation
//===--------------------------------------------------------------------===//
template <class G>
void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
// The BBList is expected to be in program order.
size_t NextOrdinal = 1;
for (auto *BB : BBList)
for (auto &I : *BB)
InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
}
template <class G>
void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
++TotalGraphs;
assert(IMap.empty() && "Expected empty instruction map at start");
for (BasicBlock *BB : BBList)
for (Instruction &I : *BB) {
auto &NewNode = createFineGrainedNode(I);
IMap.insert(std::make_pair(&I, &NewNode));
NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
++TotalFineGrainedNodes;
}
}
template <class G>
void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
// Create a root node that connects to every connected component of the graph.
// This is done to allow graph iterators to visit all the disjoint components
// of the graph, in a single walk.
//
// This algorithm works by going through each node of the graph and for each
// node N, do a DFS starting from N. A rooted edge is established between the
// root node and N (if N is not yet visited). All the nodes reachable from N
// are marked as visited and are skipped in the DFS of subsequent nodes.
//
// Note: This algorithm tries to limit the number of edges out of the root
// node to some extent, but there may be redundant edges created depending on
// the iteration order. For example for a graph {A -> B}, an edge from the
// root node is added to both nodes if B is visited before A. While it does
// not result in minimal number of edges, this approach saves compile-time
// while keeping the number of edges in check.
auto &RootNode = createRootNode();
df_iterator_default_set<const NodeType *, 4> Visited;
for (auto *N : Graph) {
if (*N == RootNode)
continue;
for (auto I : depth_first_ext(N, Visited))
if (I == N)
createRootedEdge(RootNode, *N);
}
}
template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
if (!shouldCreatePiBlocks())
return;
LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
// The overall algorithm is as follows:
// 1. Identify SCCs and for each SCC create a pi-block node containing all
// the nodes in that SCC.
// 2. Identify incoming edges incident to the nodes inside of the SCC and
// reconnect them to the pi-block node.
// 3. Identify outgoing edges from the nodes inside of the SCC to nodes
// outside of it and reconnect them so that the edges are coming out of the
// SCC node instead.
// Adding nodes as we iterate through the SCCs cause the SCC
// iterators to get invalidated. To prevent this invalidation, we first
// collect a list of nodes that are part of an SCC, and then iterate over
// those lists to create the pi-block nodes. Each element of the list is a
// list of nodes in an SCC. Note: trivial SCCs containing a single node are
// ignored.
SmallVector<NodeListType, 4> ListOfSCCs;
for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
if (SCC.size() > 1)
ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
}
for (NodeListType &NL : ListOfSCCs) {
LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
<< " nodes in it.\n");
// SCC iterator may put the nodes in an order that's different from the
// program order. To preserve original program order, we sort the list of
// nodes based on ordinal numbers computed earlier.
llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
return getOrdinal(*LHS) < getOrdinal(*RHS);
});
NodeType &PiNode = createPiBlock(NL);
++TotalPiBlockNodes;
// Build a set to speed up the lookup for edges whose targets
// are inside the SCC.
SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
// We have the set of nodes in the SCC. We go through the set of nodes
// that are outside of the SCC and look for edges that cross the two sets.
for (NodeType *N : Graph) {
// Skip the SCC node and all the nodes inside of it.
if (*N == PiNode || NodesInSCC.count(N))
continue;
for (NodeType *SCCNode : NL) {
enum Direction {
Incoming, // Incoming edges to the SCC
Outgoing, // Edges going ot of the SCC
DirectionCount // To make the enum usable as an array index.
};
// Use these flags to help us avoid creating redundant edges. If there
// are more than one edges from an outside node to inside nodes, we only
// keep one edge from that node to the pi-block node. Similarly, if
// there are more than one edges from inside nodes to an outside node,
// we only keep one edge from the pi-block node to the outside node.
// There is a flag defined for each direction (incoming vs outgoing) and
// for each type of edge supported, using a two-dimensional boolean
// array.
using EdgeKind = typename EdgeType::EdgeKind;
EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
false, false};
auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
const EdgeKind K) {
switch (K) {
case EdgeKind::RegisterDefUse:
createDefUseEdge(Src, Dst);
break;
case EdgeKind::MemoryDependence:
createMemoryEdge(Src, Dst);
break;
case EdgeKind::Rooted:
createRootedEdge(Src, Dst);
break;
default:
llvm_unreachable("Unsupported type of edge.");
}
};
auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
const Direction Dir) {
if (!Src->hasEdgeTo(*Dst))
return;
LLVM_DEBUG(dbgs()
<< "reconnecting("
<< (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
<< ":\nSrc:" << *Src << "\nDst:" << *Dst
<< "\nNew:" << *New << "\n");
assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
"Invalid direction.");
SmallVector<EdgeType *, 10> EL;
Src->findEdgesTo(*Dst, EL);
for (EdgeType *OldEdge : EL) {
EdgeKind Kind = OldEdge->getKind();
if (!EdgeAlreadyCreated[Dir][Kind]) {
if (Dir == Direction::Incoming) {
createEdgeOfKind(*Src, *New, Kind);
LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
} else if (Dir == Direction::Outgoing) {
createEdgeOfKind(*New, *Dst, Kind);
LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
}
EdgeAlreadyCreated[Dir][Kind] = true;
}
Src->removeEdge(*OldEdge);
destroyEdge(*OldEdge);
LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
}
};
// Process incoming edges incident to the pi-block node.
reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
// Process edges that are coming out of the pi-block node.
reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
}
}
}
// Ordinal maps are no longer needed.
InstOrdinalMap.clear();
NodeOrdinalMap.clear();
LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
}
template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
for (NodeType *N : Graph) {
InstructionListType SrcIList;
N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
// Use a set to mark the targets that we link to N, so we don't add
// duplicate def-use edges when more than one instruction in a target node
// use results of instructions that are contained in N.
SmallPtrSet<NodeType *, 4> VisitedTargets;
for (Instruction *II : SrcIList) {
for (User *U : II->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI)
continue;
NodeType *DstNode = nullptr;
if (IMap.find(UI) != IMap.end())
DstNode = IMap.find(UI)->second;
// In the case of loops, the scope of the subgraph is all the
// basic blocks (and instructions within them) belonging to the loop. We
// simply ignore all the edges coming from (or going into) instructions
// or basic blocks outside of this range.
if (!DstNode) {
LLVM_DEBUG(
dbgs()
<< "skipped def-use edge since the sink" << *UI
<< " is outside the range of instructions being considered.\n");
continue;
}
// Self dependencies are ignored because they are redundant and
// uninteresting.
if (DstNode == N) {
LLVM_DEBUG(dbgs()
<< "skipped def-use edge since the sink and the source ("
<< N << ") are the same.\n");
continue;
}
if (VisitedTargets.insert(DstNode).second) {
createDefUseEdge(*N, *DstNode);
++TotalDefUseEdges;
}
}
}
}
}
template <class G>
void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
using DGIterator = typename G::iterator;
auto isMemoryAccess = [](const Instruction *I) {
return I->mayReadOrWriteMemory();
};
for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
InstructionListType SrcIList;
(*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
if (SrcIList.empty())
continue;
for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
if (**SrcIt == **DstIt)
continue;
InstructionListType DstIList;
(*DstIt)->collectInstructions(isMemoryAccess, DstIList);
if (DstIList.empty())
continue;
bool ForwardEdgeCreated = false;
bool BackwardEdgeCreated = false;
for (Instruction *ISrc : SrcIList) {
for (Instruction *IDst : DstIList) {
auto D = DI.depends(ISrc, IDst, true);
if (!D)
continue;
// If we have a dependence with its left-most non-'=' direction
// being '>' we need to reverse the direction of the edge, because
// the source of the dependence cannot occur after the sink. For
// confused dependencies, we will create edges in both directions to
// represent the possibility of a cycle.
auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
if (!ForwardEdgeCreated) {
createMemoryEdge(Src, Dst);
++TotalMemoryEdges;
}
if (!BackwardEdgeCreated) {
createMemoryEdge(Dst, Src);
++TotalMemoryEdges;
}
ForwardEdgeCreated = BackwardEdgeCreated = true;
++TotalConfusedEdges;
};
auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
if (!ForwardEdgeCreated) {
createMemoryEdge(Src, Dst);
++TotalMemoryEdges;
}
ForwardEdgeCreated = true;
};
auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
if (!BackwardEdgeCreated) {
createMemoryEdge(Dst, Src);
++TotalMemoryEdges;
}
BackwardEdgeCreated = true;
};
if (D->isConfused())
createConfusedEdges(**SrcIt, **DstIt);
else if (D->isOrdered() && !D->isLoopIndependent()) {
bool ReversedEdge = false;
for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
if (D->getDirection(Level) == Dependence::DVEntry::EQ)
continue;
else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
createBackwardEdge(**SrcIt, **DstIt);
ReversedEdge = true;
++TotalEdgeReversals;
break;
} else if (D->getDirection(Level) == Dependence::DVEntry::LT)
break;
else {
createConfusedEdges(**SrcIt, **DstIt);
break;
}
}
if (!ReversedEdge)
createForwardEdge(**SrcIt, **DstIt);
} else
createForwardEdge(**SrcIt, **DstIt);
// Avoid creating duplicate edges.
if (ForwardEdgeCreated && BackwardEdgeCreated)
break;
}
// If we've created edges in both directions, there is no more
// unique edge that we can create between these two nodes, so we
// can exit early.
if (ForwardEdgeCreated && BackwardEdgeCreated)
break;
}
}
}
}
template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
if (!shouldSimplify())
return;
LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");
// This algorithm works by first collecting a set of candidate nodes that have
// an out-degree of one (in terms of def-use edges), and then ignoring those
// whose targets have an in-degree more than one. Each node in the resulting
// set can then be merged with its corresponding target and put back into the
// worklist until no further merge candidates are available.
SmallPtrSet<NodeType *, 32> CandidateSourceNodes;
// A mapping between nodes and their in-degree. To save space, this map
// only contains nodes that are targets of nodes in the CandidateSourceNodes.
DenseMap<NodeType *, unsigned> TargetInDegreeMap;
for (NodeType *N : Graph) {
if (N->getEdges().size() != 1)
continue;
EdgeType &Edge = N->back();
if (!Edge.isDefUse())
continue;
CandidateSourceNodes.insert(N);
// Insert an element into the in-degree map and initialize to zero. The
// count will get updated in the next step.
TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
}
LLVM_DEBUG({
dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
<< "\nNode with single outgoing def-use edge:\n";
for (NodeType *N : CandidateSourceNodes) {
dbgs() << N << "\n";
}
});
for (NodeType *N : Graph) {
for (EdgeType *E : *N) {
NodeType *Tgt = &E->getTargetNode();
auto TgtIT = TargetInDegreeMap.find(Tgt);
if (TgtIT != TargetInDegreeMap.end())
++(TgtIT->second);
}
}
LLVM_DEBUG({
dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
<< "\nContent of in-degree map:\n";
for (auto &I : TargetInDegreeMap) {
dbgs() << I.first << " --> " << I.second << "\n";
}
});
SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
CandidateSourceNodes.end());
while (!Worklist.empty()) {
NodeType &Src = *Worklist.pop_back_val();
// As nodes get merged, we need to skip any node that has been removed from
// the candidate set (see below).
if (!CandidateSourceNodes.erase(&Src))
continue;
assert(Src.getEdges().size() == 1 &&
"Expected a single edge from the candidate src node.");
NodeType &Tgt = Src.back().getTargetNode();
assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
"Expected target to be in the in-degree map.");
if (TargetInDegreeMap[&Tgt] != 1)
continue;
if (!areNodesMergeable(Src, Tgt))
continue;
// Do not merge if there is also an edge from target to src (immediate
// cycle).
if (Tgt.hasEdgeTo(Src))
continue;
LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");
mergeNodes(Src, Tgt);
// If the target node is in the candidate set itself, we need to put the
// src node back into the worklist again so it gives the target a chance
// to get merged into it. For example if we have:
// {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
// then after merging (a) and (b) together, we need to put (a,b) back in
// the worklist so that (c) can get merged in as well resulting in
// {(a,b,c) -> d}
// We also need to remove the old target (b), from the worklist. We first
// remove it from the candidate set here, and skip any item from the
// worklist that is not in the set.
if (CandidateSourceNodes.erase(&Tgt)) {
Worklist.push_back(&Src);
CandidateSourceNodes.insert(&Src);
LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
}
}
LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
}
template <class G>
void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
// If we don't create pi-blocks, then we may not have a DAG.
if (!shouldCreatePiBlocks())
return;
SmallVector<NodeType *, 64> NodesInPO;
using NodeKind = typename NodeType::NodeKind;
for (NodeType *N : post_order(&Graph)) {
if (N->getKind() == NodeKind::PiBlock) {
// Put members of the pi-block right after the pi-block itself, for
// convenience.
const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
PiBlockMembers.end());
}
NodesInPO.push_back(N);
}
size_t OldSize = Graph.Nodes.size();
Graph.Nodes.clear();
for (NodeType *N : reverse(NodesInPO))
Graph.Nodes.push_back(N);
if (Graph.Nodes.size() != OldSize)
assert(false &&
"Expected the number of nodes to stay the same after the sort");
}
template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
template class llvm::DependenceGraphInfo<DDGNode>;