DependenceGraphBuilder.cpp 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
//===- DependenceGraphBuilder.cpp ------------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements common steps of the build algorithm for construction
// of dependence graphs such as DDG and PDG.
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DependenceGraphBuilder.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EnumeratedArray.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DDG.h"

using namespace llvm;

#define DEBUG_TYPE "dgb"

STATISTIC(TotalGraphs, "Number of dependence graphs created.");
STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
STATISTIC(TotalConfusedEdges,
          "Number of confused memory dependencies between two nodes.");
STATISTIC(TotalEdgeReversals,
          "Number of times the source and sink of dependence was reversed to "
          "expose cycles in the graph.");

using InstructionListType = SmallVector<Instruction *, 2>;

//===--------------------------------------------------------------------===//
// AbstractDependenceGraphBuilder implementation
//===--------------------------------------------------------------------===//

template <class G>
void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
  // The BBList is expected to be in program order.
  size_t NextOrdinal = 1;
  for (auto *BB : BBList)
    for (auto &I : *BB)
      InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
}

template <class G>
void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
  ++TotalGraphs;
  assert(IMap.empty() && "Expected empty instruction map at start");
  for (BasicBlock *BB : BBList)
    for (Instruction &I : *BB) {
      auto &NewNode = createFineGrainedNode(I);
      IMap.insert(std::make_pair(&I, &NewNode));
      NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
      ++TotalFineGrainedNodes;
    }
}

template <class G>
void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
  // Create a root node that connects to every connected component of the graph.
  // This is done to allow graph iterators to visit all the disjoint components
  // of the graph, in a single walk.
  //
  // This algorithm works by going through each node of the graph and for each
  // node N, do a DFS starting from N. A rooted edge is established between the
  // root node and N (if N is not yet visited). All the nodes reachable from N
  // are marked as visited and are skipped in the DFS of subsequent nodes.
  //
  // Note: This algorithm tries to limit the number of edges out of the root
  // node to some extent, but there may be redundant edges created depending on
  // the iteration order. For example for a graph {A -> B}, an edge from the
  // root node is added to both nodes if B is visited before A. While it does
  // not result in minimal number of edges, this approach saves compile-time
  // while keeping the number of edges in check.
  auto &RootNode = createRootNode();
  df_iterator_default_set<const NodeType *, 4> Visited;
  for (auto *N : Graph) {
    if (*N == RootNode)
      continue;
    for (auto I : depth_first_ext(N, Visited))
      if (I == N)
        createRootedEdge(RootNode, *N);
  }
}

template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
  if (!shouldCreatePiBlocks())
    return;

  LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");

  // The overall algorithm is as follows:
  // 1. Identify SCCs and for each SCC create a pi-block node containing all
  //    the nodes in that SCC.
  // 2. Identify incoming edges incident to the nodes inside of the SCC and
  //    reconnect them to the pi-block node.
  // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
  //    outside of it and reconnect them so that the edges are coming out of the
  //    SCC node instead.

  // Adding nodes as we iterate through the SCCs cause the SCC
  // iterators to get invalidated. To prevent this invalidation, we first
  // collect a list of nodes that are part of an SCC, and then iterate over
  // those lists to create the pi-block nodes. Each element of the list is a
  // list of nodes in an SCC. Note: trivial SCCs containing a single node are
  // ignored.
  SmallVector<NodeListType, 4> ListOfSCCs;
  for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
    if (SCC.size() > 1)
      ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
  }

  for (NodeListType &NL : ListOfSCCs) {
    LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
                      << " nodes in it.\n");

    // SCC iterator may put the nodes in an order that's different from the
    // program order. To preserve original program order, we sort the list of
    // nodes based on ordinal numbers computed earlier.
    llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
      return getOrdinal(*LHS) < getOrdinal(*RHS);
    });

    NodeType &PiNode = createPiBlock(NL);
    ++TotalPiBlockNodes;

    // Build a set to speed up the lookup for edges whose targets
    // are inside the SCC.
    SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());

    // We have the set of nodes in the SCC. We go through the set of nodes
    // that are outside of the SCC and look for edges that cross the two sets.
    for (NodeType *N : Graph) {

      // Skip the SCC node and all the nodes inside of it.
      if (*N == PiNode || NodesInSCC.count(N))
        continue;

      for (NodeType *SCCNode : NL) {

        enum Direction {
          Incoming,      // Incoming edges to the SCC
          Outgoing,      // Edges going ot of the SCC
          DirectionCount // To make the enum usable as an array index.
        };

        // Use these flags to help us avoid creating redundant edges. If there
        // are more than one edges from an outside node to inside nodes, we only
        // keep one edge from that node to the pi-block node. Similarly, if
        // there are more than one edges from inside nodes to an outside node,
        // we only keep one edge from the pi-block node to the outside node.
        // There is a flag defined for each direction (incoming vs outgoing) and
        // for each type of edge supported, using a two-dimensional boolean
        // array.
        using EdgeKind = typename EdgeType::EdgeKind;
        EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
            false, false};

        auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
                                       const EdgeKind K) {
          switch (K) {
          case EdgeKind::RegisterDefUse:
            createDefUseEdge(Src, Dst);
            break;
          case EdgeKind::MemoryDependence:
            createMemoryEdge(Src, Dst);
            break;
          case EdgeKind::Rooted:
            createRootedEdge(Src, Dst);
            break;
          default:
            llvm_unreachable("Unsupported type of edge.");
          }
        };

        auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
                                  const Direction Dir) {
          if (!Src->hasEdgeTo(*Dst))
            return;
          LLVM_DEBUG(dbgs()
                     << "reconnecting("
                     << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
                     << ":\nSrc:" << *Src << "\nDst:" << *Dst
                     << "\nNew:" << *New << "\n");
          assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
                 "Invalid direction.");

          SmallVector<EdgeType *, 10> EL;
          Src->findEdgesTo(*Dst, EL);
          for (EdgeType *OldEdge : EL) {
            EdgeKind Kind = OldEdge->getKind();
            if (!EdgeAlreadyCreated[Dir][Kind]) {
              if (Dir == Direction::Incoming) {
                createEdgeOfKind(*Src, *New, Kind);
                LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
              } else if (Dir == Direction::Outgoing) {
                createEdgeOfKind(*New, *Dst, Kind);
                LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
              }
              EdgeAlreadyCreated[Dir][Kind] = true;
            }
            Src->removeEdge(*OldEdge);
            destroyEdge(*OldEdge);
            LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
          }
        };

        // Process incoming edges incident to the pi-block node.
        reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);

        // Process edges that are coming out of the pi-block node.
        reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
      }
    }
  }

  // Ordinal maps are no longer needed.
  InstOrdinalMap.clear();
  NodeOrdinalMap.clear();

  LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
}

template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
  for (NodeType *N : Graph) {
    InstructionListType SrcIList;
    N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);

    // Use a set to mark the targets that we link to N, so we don't add
    // duplicate def-use edges when more than one instruction in a target node
    // use results of instructions that are contained in N.
    SmallPtrSet<NodeType *, 4> VisitedTargets;

    for (Instruction *II : SrcIList) {
      for (User *U : II->users()) {
        Instruction *UI = dyn_cast<Instruction>(U);
        if (!UI)
          continue;
        NodeType *DstNode = nullptr;
        if (IMap.find(UI) != IMap.end())
          DstNode = IMap.find(UI)->second;

        // In the case of loops, the scope of the subgraph is all the
        // basic blocks (and instructions within them) belonging to the loop. We
        // simply ignore all the edges coming from (or going into) instructions
        // or basic blocks outside of this range.
        if (!DstNode) {
          LLVM_DEBUG(
              dbgs()
              << "skipped def-use edge since the sink" << *UI
              << " is outside the range of instructions being considered.\n");
          continue;
        }

        // Self dependencies are ignored because they are redundant and
        // uninteresting.
        if (DstNode == N) {
          LLVM_DEBUG(dbgs()
                     << "skipped def-use edge since the sink and the source ("
                     << N << ") are the same.\n");
          continue;
        }

        if (VisitedTargets.insert(DstNode).second) {
          createDefUseEdge(*N, *DstNode);
          ++TotalDefUseEdges;
        }
      }
    }
  }
}

template <class G>
void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
  using DGIterator = typename G::iterator;
  auto isMemoryAccess = [](const Instruction *I) {
    return I->mayReadOrWriteMemory();
  };
  for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
    InstructionListType SrcIList;
    (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
    if (SrcIList.empty())
      continue;

    for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
      if (**SrcIt == **DstIt)
        continue;
      InstructionListType DstIList;
      (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
      if (DstIList.empty())
        continue;
      bool ForwardEdgeCreated = false;
      bool BackwardEdgeCreated = false;
      for (Instruction *ISrc : SrcIList) {
        for (Instruction *IDst : DstIList) {
          auto D = DI.depends(ISrc, IDst, true);
          if (!D)
            continue;

          // If we have a dependence with its left-most non-'=' direction
          // being '>' we need to reverse the direction of the edge, because
          // the source of the dependence cannot occur after the sink. For
          // confused dependencies, we will create edges in both directions to
          // represent the possibility of a cycle.

          auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
            if (!ForwardEdgeCreated) {
              createMemoryEdge(Src, Dst);
              ++TotalMemoryEdges;
            }
            if (!BackwardEdgeCreated) {
              createMemoryEdge(Dst, Src);
              ++TotalMemoryEdges;
            }
            ForwardEdgeCreated = BackwardEdgeCreated = true;
            ++TotalConfusedEdges;
          };

          auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
            if (!ForwardEdgeCreated) {
              createMemoryEdge(Src, Dst);
              ++TotalMemoryEdges;
            }
            ForwardEdgeCreated = true;
          };

          auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
            if (!BackwardEdgeCreated) {
              createMemoryEdge(Dst, Src);
              ++TotalMemoryEdges;
            }
            BackwardEdgeCreated = true;
          };

          if (D->isConfused())
            createConfusedEdges(**SrcIt, **DstIt);
          else if (D->isOrdered() && !D->isLoopIndependent()) {
            bool ReversedEdge = false;
            for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
              if (D->getDirection(Level) == Dependence::DVEntry::EQ)
                continue;
              else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
                createBackwardEdge(**SrcIt, **DstIt);
                ReversedEdge = true;
                ++TotalEdgeReversals;
                break;
              } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
                break;
              else {
                createConfusedEdges(**SrcIt, **DstIt);
                break;
              }
            }
            if (!ReversedEdge)
              createForwardEdge(**SrcIt, **DstIt);
          } else
            createForwardEdge(**SrcIt, **DstIt);

          // Avoid creating duplicate edges.
          if (ForwardEdgeCreated && BackwardEdgeCreated)
            break;
        }

        // If we've created edges in both directions, there is no more
        // unique edge that we can create between these two nodes, so we
        // can exit early.
        if (ForwardEdgeCreated && BackwardEdgeCreated)
          break;
      }
    }
  }
}

template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
  if (!shouldSimplify())
    return;
  LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");

  // This algorithm works by first collecting a set of candidate nodes that have
  // an out-degree of one (in terms of def-use edges), and then ignoring those
  // whose targets have an in-degree more than one. Each node in the resulting
  // set can then be merged with its corresponding target and put back into the
  // worklist until no further merge candidates are available.
  SmallPtrSet<NodeType *, 32> CandidateSourceNodes;

  // A mapping between nodes and their in-degree. To save space, this map
  // only contains nodes that are targets of nodes in the CandidateSourceNodes.
  DenseMap<NodeType *, unsigned> TargetInDegreeMap;

  for (NodeType *N : Graph) {
    if (N->getEdges().size() != 1)
      continue;
    EdgeType &Edge = N->back();
    if (!Edge.isDefUse())
      continue;
    CandidateSourceNodes.insert(N);

    // Insert an element into the in-degree map and initialize to zero. The
    // count will get updated in the next step.
    TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
  }

  LLVM_DEBUG({
    dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
           << "\nNode with single outgoing def-use edge:\n";
    for (NodeType *N : CandidateSourceNodes) {
      dbgs() << N << "\n";
    }
  });

  for (NodeType *N : Graph) {
    for (EdgeType *E : *N) {
      NodeType *Tgt = &E->getTargetNode();
      auto TgtIT = TargetInDegreeMap.find(Tgt);
      if (TgtIT != TargetInDegreeMap.end())
        ++(TgtIT->second);
    }
  }

  LLVM_DEBUG({
    dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
           << "\nContent of in-degree map:\n";
    for (auto &I : TargetInDegreeMap) {
      dbgs() << I.first << " --> " << I.second << "\n";
    }
  });

  SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
                                       CandidateSourceNodes.end());
  while (!Worklist.empty()) {
    NodeType &Src = *Worklist.pop_back_val();
    // As nodes get merged, we need to skip any node that has been removed from
    // the candidate set (see below).
    if (!CandidateSourceNodes.erase(&Src))
      continue;

    assert(Src.getEdges().size() == 1 &&
           "Expected a single edge from the candidate src node.");
    NodeType &Tgt = Src.back().getTargetNode();
    assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
           "Expected target to be in the in-degree map.");

    if (TargetInDegreeMap[&Tgt] != 1)
      continue;

    if (!areNodesMergeable(Src, Tgt))
      continue;

    // Do not merge if there is also an edge from target to src (immediate
    // cycle).
    if (Tgt.hasEdgeTo(Src))
      continue;

    LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");

    mergeNodes(Src, Tgt);

    // If the target node is in the candidate set itself, we need to put the
    // src node back into the worklist again so it gives the target a chance
    // to get merged into it. For example if we have:
    // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
    // then after merging (a) and (b) together, we need to put (a,b) back in
    // the worklist so that (c) can get merged in as well resulting in
    // {(a,b,c) -> d}
    // We also need to remove the old target (b), from the worklist. We first
    // remove it from the candidate set here, and skip any item from the
    // worklist that is not in the set.
    if (CandidateSourceNodes.erase(&Tgt)) {
      Worklist.push_back(&Src);
      CandidateSourceNodes.insert(&Src);
      LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
    }
  }
  LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
}

template <class G>
void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {

  // If we don't create pi-blocks, then we may not have a DAG.
  if (!shouldCreatePiBlocks())
    return;

  SmallVector<NodeType *, 64> NodesInPO;
  using NodeKind = typename NodeType::NodeKind;
  for (NodeType *N : post_order(&Graph)) {
    if (N->getKind() == NodeKind::PiBlock) {
      // Put members of the pi-block right after the pi-block itself, for
      // convenience.
      const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
      NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
                       PiBlockMembers.end());
    }
    NodesInPO.push_back(N);
  }

  size_t OldSize = Graph.Nodes.size();
  Graph.Nodes.clear();
  for (NodeType *N : reverse(NodesInPO))
    Graph.Nodes.push_back(N);
  if (Graph.Nodes.size() != OldSize)
    assert(false &&
           "Expected the number of nodes to stay the same after the sort");
}

template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
template class llvm::DependenceGraphInfo<DDGNode>;