DependenceAnalysis.cpp 151 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// DependenceAnalysis is an LLVM pass that analyses dependences between memory
// accesses. Currently, it is an (incomplete) implementation of the approach
// described in
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
//
// There's a single entry point that analyzes the dependence between a pair
// of memory references in a function, returning either NULL, for no dependence,
// or a more-or-less detailed description of the dependence between them.
//
// Currently, the implementation cannot propagate constraints between
// coupled RDIV subscripts and lacks a multi-subscript MIV test.
// Both of these are conservative weaknesses;
// that is, not a source of correctness problems.
//
// Since Clang linearizes some array subscripts, the dependence
// analysis is using SCEV->delinearize to recover the representation of multiple
// subscripts, and thus avoid the more expensive and less precise MIV tests. The
// delinearization is controlled by the flag -da-delinearize.
//
// We should pay some careful attention to the possibility of integer overflow
// in the implementation of the various tests. This could happen with Add,
// Subtract, or Multiply, with both APInt's and SCEV's.
//
// Some non-linear subscript pairs can be handled by the GCD test
// (and perhaps other tests).
// Should explore how often these things occur.
//
// Finally, it seems like certain test cases expose weaknesses in the SCEV
// simplification, especially in the handling of sign and zero extensions.
// It could be useful to spend time exploring these.
//
// Please note that this is work in progress and the interface is subject to
// change.
//
//===----------------------------------------------------------------------===//
//                                                                            //
//                   In memory of Ken Kennedy, 1945 - 2007                    //
//                                                                            //
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "da"

//===----------------------------------------------------------------------===//
// statistics

STATISTIC(TotalArrayPairs, "Array pairs tested");
STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
STATISTIC(ZIVapplications, "ZIV applications");
STATISTIC(ZIVindependence, "ZIV independence");
STATISTIC(StrongSIVapplications, "Strong SIV applications");
STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
STATISTIC(StrongSIVindependence, "Strong SIV independence");
STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
STATISTIC(ExactSIVapplications, "Exact SIV applications");
STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
STATISTIC(ExactSIVindependence, "Exact SIV independence");
STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
STATISTIC(DeltaApplications, "Delta applications");
STATISTIC(DeltaSuccesses, "Delta successes");
STATISTIC(DeltaIndependence, "Delta independence");
STATISTIC(DeltaPropagations, "Delta propagations");
STATISTIC(GCDapplications, "GCD applications");
STATISTIC(GCDsuccesses, "GCD successes");
STATISTIC(GCDindependence, "GCD independence");
STATISTIC(BanerjeeApplications, "Banerjee applications");
STATISTIC(BanerjeeIndependence, "Banerjee independence");
STATISTIC(BanerjeeSuccesses, "Banerjee successes");

static cl::opt<bool>
    Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
                cl::desc("Try to delinearize array references."));
static cl::opt<bool> DisableDelinearizationChecks(
    "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
    cl::ZeroOrMore,
    cl::desc(
        "Disable checks that try to statically verify validity of "
        "delinearized subscripts. Enabling this option may result in incorrect "
        "dependence vectors for languages that allow the subscript of one "
        "dimension to underflow or overflow into another dimension."));

//===----------------------------------------------------------------------===//
// basics

DependenceAnalysis::Result
DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
  auto &AA = FAM.getResult<AAManager>(F);
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  return DependenceInfo(&F, &AA, &SE, &LI);
}

AnalysisKey DependenceAnalysis::Key;

INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
                      "Dependence Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
                    true, true)

char DependenceAnalysisWrapperPass::ID = 0;

DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
    : FunctionPass(ID) {
  initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
}

FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
  return new DependenceAnalysisWrapperPass();
}

bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
  return false;
}

DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }

void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }

void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AAResultsWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequiredTransitive<LoopInfoWrapperPass>();
}

// Used to test the dependence analyzer.
// Looks through the function, noting instructions that may access memory.
// Calls depends() on every possible pair and prints out the result.
// Ignores all other instructions.
static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
  auto *F = DA->getFunction();
  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
       ++SrcI) {
    if (SrcI->mayReadOrWriteMemory()) {
      for (inst_iterator DstI = SrcI, DstE = inst_end(F);
           DstI != DstE; ++DstI) {
        if (DstI->mayReadOrWriteMemory()) {
          OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
          OS << "  da analyze - ";
          if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
            D->dump(OS);
            for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
              if (D->isSplitable(Level)) {
                OS << "  da analyze - split level = " << Level;
                OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
                OS << "!\n";
              }
            }
          }
          else
            OS << "none!\n";
        }
      }
    }
  }
}

void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
                                          const Module *) const {
  dumpExampleDependence(OS, info.get());
}

PreservedAnalyses
DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
  OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
  dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
  return PreservedAnalyses::all();
}

//===----------------------------------------------------------------------===//
// Dependence methods

// Returns true if this is an input dependence.
bool Dependence::isInput() const {
  return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
}


// Returns true if this is an output dependence.
bool Dependence::isOutput() const {
  return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
}


// Returns true if this is an flow (aka true)  dependence.
bool Dependence::isFlow() const {
  return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
}


// Returns true if this is an anti dependence.
bool Dependence::isAnti() const {
  return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
}


// Returns true if a particular level is scalar; that is,
// if no subscript in the source or destination mention the induction
// variable associated with the loop at this level.
// Leave this out of line, so it will serve as a virtual method anchor
bool Dependence::isScalar(unsigned level) const {
  return false;
}


//===----------------------------------------------------------------------===//
// FullDependence methods

FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
                               bool PossiblyLoopIndependent,
                               unsigned CommonLevels)
    : Dependence(Source, Destination), Levels(CommonLevels),
      LoopIndependent(PossiblyLoopIndependent) {
  Consistent = true;
  if (CommonLevels)
    DV = std::make_unique<DVEntry[]>(CommonLevels);
}

// The rest are simple getters that hide the implementation.

// getDirection - Returns the direction associated with a particular level.
unsigned FullDependence::getDirection(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Direction;
}


// Returns the distance (or NULL) associated with a particular level.
const SCEV *FullDependence::getDistance(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Distance;
}


// Returns true if a particular level is scalar; that is,
// if no subscript in the source or destination mention the induction
// variable associated with the loop at this level.
bool FullDependence::isScalar(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Scalar;
}


// Returns true if peeling the first iteration from this loop
// will break this dependence.
bool FullDependence::isPeelFirst(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].PeelFirst;
}


// Returns true if peeling the last iteration from this loop
// will break this dependence.
bool FullDependence::isPeelLast(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].PeelLast;
}


// Returns true if splitting this loop will break the dependence.
bool FullDependence::isSplitable(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Splitable;
}


//===----------------------------------------------------------------------===//
// DependenceInfo::Constraint methods

// If constraint is a point <X, Y>, returns X.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getX() const {
  assert(Kind == Point && "Kind should be Point");
  return A;
}


// If constraint is a point <X, Y>, returns Y.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getY() const {
  assert(Kind == Point && "Kind should be Point");
  return B;
}


// If constraint is a line AX + BY = C, returns A.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getA() const {
  assert((Kind == Line || Kind == Distance) &&
         "Kind should be Line (or Distance)");
  return A;
}


// If constraint is a line AX + BY = C, returns B.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getB() const {
  assert((Kind == Line || Kind == Distance) &&
         "Kind should be Line (or Distance)");
  return B;
}


// If constraint is a line AX + BY = C, returns C.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getC() const {
  assert((Kind == Line || Kind == Distance) &&
         "Kind should be Line (or Distance)");
  return C;
}


// If constraint is a distance, returns D.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getD() const {
  assert(Kind == Distance && "Kind should be Distance");
  return SE->getNegativeSCEV(C);
}


// Returns the loop associated with this constraint.
const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
  assert((Kind == Distance || Kind == Line || Kind == Point) &&
         "Kind should be Distance, Line, or Point");
  return AssociatedLoop;
}

void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
                                          const Loop *CurLoop) {
  Kind = Point;
  A = X;
  B = Y;
  AssociatedLoop = CurLoop;
}

void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
                                         const SCEV *CC, const Loop *CurLoop) {
  Kind = Line;
  A = AA;
  B = BB;
  C = CC;
  AssociatedLoop = CurLoop;
}

void DependenceInfo::Constraint::setDistance(const SCEV *D,
                                             const Loop *CurLoop) {
  Kind = Distance;
  A = SE->getOne(D->getType());
  B = SE->getNegativeSCEV(A);
  C = SE->getNegativeSCEV(D);
  AssociatedLoop = CurLoop;
}

void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }

void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
  SE = NewSE;
  Kind = Any;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
// For debugging purposes. Dumps the constraint out to OS.
LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
  if (isEmpty())
    OS << " Empty\n";
  else if (isAny())
    OS << " Any\n";
  else if (isPoint())
    OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
  else if (isDistance())
    OS << " Distance is " << *getD() <<
      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
  else if (isLine())
    OS << " Line is " << *getA() << "*X + " <<
      *getB() << "*Y = " << *getC() << "\n";
  else
    llvm_unreachable("unknown constraint type in Constraint::dump");
}
#endif


// Updates X with the intersection
// of the Constraints X and Y. Returns true if X has changed.
// Corresponds to Figure 4 from the paper
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
  ++DeltaApplications;
  LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
  LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
  LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
  assert(!Y->isPoint() && "Y must not be a Point");
  if (X->isAny()) {
    if (Y->isAny())
      return false;
    *X = *Y;
    return true;
  }
  if (X->isEmpty())
    return false;
  if (Y->isEmpty()) {
    X->setEmpty();
    return true;
  }

  if (X->isDistance() && Y->isDistance()) {
    LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
    if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
      return false;
    if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
      X->setEmpty();
      ++DeltaSuccesses;
      return true;
    }
    // Hmmm, interesting situation.
    // I guess if either is constant, keep it and ignore the other.
    if (isa<SCEVConstant>(Y->getD())) {
      *X = *Y;
      return true;
    }
    return false;
  }

  // At this point, the pseudo-code in Figure 4 of the paper
  // checks if (X->isPoint() && Y->isPoint()).
  // This case can't occur in our implementation,
  // since a Point can only arise as the result of intersecting
  // two Line constraints, and the right-hand value, Y, is never
  // the result of an intersection.
  assert(!(X->isPoint() && Y->isPoint()) &&
         "We shouldn't ever see X->isPoint() && Y->isPoint()");

  if (X->isLine() && Y->isLine()) {
    LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
    const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
    const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
    if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
      // slopes are equal, so lines are parallel
      LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
      Prod1 = SE->getMulExpr(X->getC(), Y->getB());
      Prod2 = SE->getMulExpr(X->getB(), Y->getC());
      if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
        return false;
      if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
        X->setEmpty();
        ++DeltaSuccesses;
        return true;
      }
      return false;
    }
    if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
      // slopes differ, so lines intersect
      LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
      const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
      const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
      const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
      const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
      const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
      const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
      const SCEVConstant *C1A2_C2A1 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
      const SCEVConstant *C1B2_C2B1 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
      const SCEVConstant *A1B2_A2B1 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
      const SCEVConstant *A2B1_A1B2 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
      if (!C1B2_C2B1 || !C1A2_C2A1 ||
          !A1B2_A2B1 || !A2B1_A1B2)
        return false;
      APInt Xtop = C1B2_C2B1->getAPInt();
      APInt Xbot = A1B2_A2B1->getAPInt();
      APInt Ytop = C1A2_C2A1->getAPInt();
      APInt Ybot = A2B1_A1B2->getAPInt();
      LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
      LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
      LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
      LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
      APInt Xq = Xtop; // these need to be initialized, even
      APInt Xr = Xtop; // though they're just going to be overwritten
      APInt::sdivrem(Xtop, Xbot, Xq, Xr);
      APInt Yq = Ytop;
      APInt Yr = Ytop;
      APInt::sdivrem(Ytop, Ybot, Yq, Yr);
      if (Xr != 0 || Yr != 0) {
        X->setEmpty();
        ++DeltaSuccesses;
        return true;
      }
      LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
      if (Xq.slt(0) || Yq.slt(0)) {
        X->setEmpty();
        ++DeltaSuccesses;
        return true;
      }
      if (const SCEVConstant *CUB =
          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
        const APInt &UpperBound = CUB->getAPInt();
        LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
        if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
          X->setEmpty();
          ++DeltaSuccesses;
          return true;
        }
      }
      X->setPoint(SE->getConstant(Xq),
                  SE->getConstant(Yq),
                  X->getAssociatedLoop());
      ++DeltaSuccesses;
      return true;
    }
    return false;
  }

  // if (X->isLine() && Y->isPoint()) This case can't occur.
  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");

  if (X->isPoint() && Y->isLine()) {
    LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
    const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
    const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
    const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
    if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
      return false;
    if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
      X->setEmpty();
      ++DeltaSuccesses;
      return true;
    }
    return false;
  }

  llvm_unreachable("shouldn't reach the end of Constraint intersection");
  return false;
}


//===----------------------------------------------------------------------===//
// DependenceInfo methods

// For debugging purposes. Dumps a dependence to OS.
void Dependence::dump(raw_ostream &OS) const {
  bool Splitable = false;
  if (isConfused())
    OS << "confused";
  else {
    if (isConsistent())
      OS << "consistent ";
    if (isFlow())
      OS << "flow";
    else if (isOutput())
      OS << "output";
    else if (isAnti())
      OS << "anti";
    else if (isInput())
      OS << "input";
    unsigned Levels = getLevels();
    OS << " [";
    for (unsigned II = 1; II <= Levels; ++II) {
      if (isSplitable(II))
        Splitable = true;
      if (isPeelFirst(II))
        OS << 'p';
      const SCEV *Distance = getDistance(II);
      if (Distance)
        OS << *Distance;
      else if (isScalar(II))
        OS << "S";
      else {
        unsigned Direction = getDirection(II);
        if (Direction == DVEntry::ALL)
          OS << "*";
        else {
          if (Direction & DVEntry::LT)
            OS << "<";
          if (Direction & DVEntry::EQ)
            OS << "=";
          if (Direction & DVEntry::GT)
            OS << ">";
        }
      }
      if (isPeelLast(II))
        OS << 'p';
      if (II < Levels)
        OS << " ";
    }
    if (isLoopIndependent())
      OS << "|<";
    OS << "]";
    if (Splitable)
      OS << " splitable";
  }
  OS << "!\n";
}

// Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
// underlaying objects. If LocA and LocB are known to not alias (for any reason:
// tbaa, non-overlapping regions etc), then it is known there is no dependecy.
// Otherwise the underlying objects are checked to see if they point to
// different identifiable objects.
static AliasResult underlyingObjectsAlias(AAResults *AA,
                                          const DataLayout &DL,
                                          const MemoryLocation &LocA,
                                          const MemoryLocation &LocB) {
  // Check the original locations (minus size) for noalias, which can happen for
  // tbaa, incompatible underlying object locations, etc.
  MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags);
  MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags);
  if (AA->alias(LocAS, LocBS) == NoAlias)
    return NoAlias;

  // Check the underlying objects are the same
  const Value *AObj = getUnderlyingObject(LocA.Ptr);
  const Value *BObj = getUnderlyingObject(LocB.Ptr);

  // If the underlying objects are the same, they must alias
  if (AObj == BObj)
    return MustAlias;

  // We may have hit the recursion limit for underlying objects, or have
  // underlying objects where we don't know they will alias.
  if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
    return MayAlias;

  // Otherwise we know the objects are different and both identified objects so
  // must not alias.
  return NoAlias;
}


// Returns true if the load or store can be analyzed. Atomic and volatile
// operations have properties which this analysis does not understand.
static
bool isLoadOrStore(const Instruction *I) {
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isUnordered();
  else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();
  return false;
}


// Examines the loop nesting of the Src and Dst
// instructions and establishes their shared loops. Sets the variables
// CommonLevels, SrcLevels, and MaxLevels.
// The source and destination instructions needn't be contained in the same
// loop. The routine establishNestingLevels finds the level of most deeply
// nested loop that contains them both, CommonLevels. An instruction that's
// not contained in a loop is at level = 0. MaxLevels is equal to the level
// of the source plus the level of the destination, minus CommonLevels.
// This lets us allocate vectors MaxLevels in length, with room for every
// distinct loop referenced in both the source and destination subscripts.
// The variable SrcLevels is the nesting depth of the source instruction.
// It's used to help calculate distinct loops referenced by the destination.
// Here's the map from loops to levels:
//            0 - unused
//            1 - outermost common loop
//          ... - other common loops
// CommonLevels - innermost common loop
//          ... - loops containing Src but not Dst
//    SrcLevels - innermost loop containing Src but not Dst
//          ... - loops containing Dst but not Src
//    MaxLevels - innermost loops containing Dst but not Src
// Consider the follow code fragment:
//   for (a = ...) {
//     for (b = ...) {
//       for (c = ...) {
//         for (d = ...) {
//           A[] = ...;
//         }
//       }
//       for (e = ...) {
//         for (f = ...) {
//           for (g = ...) {
//             ... = A[];
//           }
//         }
//       }
//     }
//   }
// If we're looking at the possibility of a dependence between the store
// to A (the Src) and the load from A (the Dst), we'll note that they
// have 2 loops in common, so CommonLevels will equal 2 and the direction
// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
// A map from loop names to loop numbers would look like
//     a - 1
//     b - 2 = CommonLevels
//     c - 3
//     d - 4 = SrcLevels
//     e - 5
//     f - 6
//     g - 7 = MaxLevels
void DependenceInfo::establishNestingLevels(const Instruction *Src,
                                            const Instruction *Dst) {
  const BasicBlock *SrcBlock = Src->getParent();
  const BasicBlock *DstBlock = Dst->getParent();
  unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
  unsigned DstLevel = LI->getLoopDepth(DstBlock);
  const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
  const Loop *DstLoop = LI->getLoopFor(DstBlock);
  SrcLevels = SrcLevel;
  MaxLevels = SrcLevel + DstLevel;
  while (SrcLevel > DstLevel) {
    SrcLoop = SrcLoop->getParentLoop();
    SrcLevel--;
  }
  while (DstLevel > SrcLevel) {
    DstLoop = DstLoop->getParentLoop();
    DstLevel--;
  }
  while (SrcLoop != DstLoop) {
    SrcLoop = SrcLoop->getParentLoop();
    DstLoop = DstLoop->getParentLoop();
    SrcLevel--;
  }
  CommonLevels = SrcLevel;
  MaxLevels -= CommonLevels;
}


// Given one of the loops containing the source, return
// its level index in our numbering scheme.
unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
  return SrcLoop->getLoopDepth();
}


// Given one of the loops containing the destination,
// return its level index in our numbering scheme.
unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
  unsigned D = DstLoop->getLoopDepth();
  if (D > CommonLevels)
    return D - CommonLevels + SrcLevels;
  else
    return D;
}


// Returns true if Expression is loop invariant in LoopNest.
bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
                                     const Loop *LoopNest) const {
  if (!LoopNest)
    return true;
  return SE->isLoopInvariant(Expression, LoopNest) &&
    isLoopInvariant(Expression, LoopNest->getParentLoop());
}



// Finds the set of loops from the LoopNest that
// have a level <= CommonLevels and are referred to by the SCEV Expression.
void DependenceInfo::collectCommonLoops(const SCEV *Expression,
                                        const Loop *LoopNest,
                                        SmallBitVector &Loops) const {
  while (LoopNest) {
    unsigned Level = LoopNest->getLoopDepth();
    if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
      Loops.set(Level);
    LoopNest = LoopNest->getParentLoop();
  }
}

void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {

  unsigned widestWidthSeen = 0;
  Type *widestType;

  // Go through each pair and find the widest bit to which we need
  // to extend all of them.
  for (Subscript *Pair : Pairs) {
    const SCEV *Src = Pair->Src;
    const SCEV *Dst = Pair->Dst;
    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    if (SrcTy == nullptr || DstTy == nullptr) {
      assert(SrcTy == DstTy && "This function only unify integer types and "
             "expect Src and Dst share the same type "
             "otherwise.");
      continue;
    }
    if (SrcTy->getBitWidth() > widestWidthSeen) {
      widestWidthSeen = SrcTy->getBitWidth();
      widestType = SrcTy;
    }
    if (DstTy->getBitWidth() > widestWidthSeen) {
      widestWidthSeen = DstTy->getBitWidth();
      widestType = DstTy;
    }
  }


  assert(widestWidthSeen > 0);

  // Now extend each pair to the widest seen.
  for (Subscript *Pair : Pairs) {
    const SCEV *Src = Pair->Src;
    const SCEV *Dst = Pair->Dst;
    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    if (SrcTy == nullptr || DstTy == nullptr) {
      assert(SrcTy == DstTy && "This function only unify integer types and "
             "expect Src and Dst share the same type "
             "otherwise.");
      continue;
    }
    if (SrcTy->getBitWidth() < widestWidthSeen)
      // Sign-extend Src to widestType
      Pair->Src = SE->getSignExtendExpr(Src, widestType);
    if (DstTy->getBitWidth() < widestWidthSeen) {
      // Sign-extend Dst to widestType
      Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
    }
  }
}

// removeMatchingExtensions - Examines a subscript pair.
// If the source and destination are identically sign (or zero)
// extended, it strips off the extension in an effect to simplify
// the actual analysis.
void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
  const SCEV *Src = Pair->Src;
  const SCEV *Dst = Pair->Dst;
  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
      (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
    const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
    const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
    const SCEV *SrcCastOp = SrcCast->getOperand();
    const SCEV *DstCastOp = DstCast->getOperand();
    if (SrcCastOp->getType() == DstCastOp->getType()) {
      Pair->Src = SrcCastOp;
      Pair->Dst = DstCastOp;
    }
  }
}

// Examine the scev and return true iff it's linear.
// Collect any loops mentioned in the set of "Loops".
bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
                                    SmallBitVector &Loops, bool IsSrc) {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec)
    return isLoopInvariant(Expr, LoopNest);
  const SCEV *Start = AddRec->getStart();
  const SCEV *Step = AddRec->getStepRecurrence(*SE);
  const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
  if (!isa<SCEVCouldNotCompute>(UB)) {
    if (SE->getTypeSizeInBits(Start->getType()) <
        SE->getTypeSizeInBits(UB->getType())) {
      if (!AddRec->getNoWrapFlags())
        return false;
    }
  }
  if (!isLoopInvariant(Step, LoopNest))
    return false;
  if (IsSrc)
    Loops.set(mapSrcLoop(AddRec->getLoop()));
  else
    Loops.set(mapDstLoop(AddRec->getLoop()));
  return checkSubscript(Start, LoopNest, Loops, IsSrc);
}

// Examine the scev and return true iff it's linear.
// Collect any loops mentioned in the set of "Loops".
bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
                                       SmallBitVector &Loops) {
  return checkSubscript(Src, LoopNest, Loops, true);
}

// Examine the scev and return true iff it's linear.
// Collect any loops mentioned in the set of "Loops".
bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
                                       SmallBitVector &Loops) {
  return checkSubscript(Dst, LoopNest, Loops, false);
}


// Examines the subscript pair (the Src and Dst SCEVs)
// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
// Collects the associated loops in a set.
DependenceInfo::Subscript::ClassificationKind
DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
                             const SCEV *Dst, const Loop *DstLoopNest,
                             SmallBitVector &Loops) {
  SmallBitVector SrcLoops(MaxLevels + 1);
  SmallBitVector DstLoops(MaxLevels + 1);
  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
    return Subscript::NonLinear;
  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
    return Subscript::NonLinear;
  Loops = SrcLoops;
  Loops |= DstLoops;
  unsigned N = Loops.count();
  if (N == 0)
    return Subscript::ZIV;
  if (N == 1)
    return Subscript::SIV;
  if (N == 2 && (SrcLoops.count() == 0 ||
                 DstLoops.count() == 0 ||
                 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
    return Subscript::RDIV;
  return Subscript::MIV;
}


// A wrapper around SCEV::isKnownPredicate.
// Looks for cases where we're interested in comparing for equality.
// If both X and Y have been identically sign or zero extended,
// it strips off the (confusing) extensions before invoking
// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
// will be similarly updated.
//
// If SCEV::isKnownPredicate can't prove the predicate,
// we try simple subtraction, which seems to help in some cases
// involving symbolics.
bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
                                      const SCEV *Y) const {
  if (Pred == CmpInst::ICMP_EQ ||
      Pred == CmpInst::ICMP_NE) {
    if ((isa<SCEVSignExtendExpr>(X) &&
         isa<SCEVSignExtendExpr>(Y)) ||
        (isa<SCEVZeroExtendExpr>(X) &&
         isa<SCEVZeroExtendExpr>(Y))) {
      const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
      const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
      const SCEV *Xop = CX->getOperand();
      const SCEV *Yop = CY->getOperand();
      if (Xop->getType() == Yop->getType()) {
        X = Xop;
        Y = Yop;
      }
    }
  }
  if (SE->isKnownPredicate(Pred, X, Y))
    return true;
  // If SE->isKnownPredicate can't prove the condition,
  // we try the brute-force approach of subtracting
  // and testing the difference.
  // By testing with SE->isKnownPredicate first, we avoid
  // the possibility of overflow when the arguments are constants.
  const SCEV *Delta = SE->getMinusSCEV(X, Y);
  switch (Pred) {
  case CmpInst::ICMP_EQ:
    return Delta->isZero();
  case CmpInst::ICMP_NE:
    return SE->isKnownNonZero(Delta);
  case CmpInst::ICMP_SGE:
    return SE->isKnownNonNegative(Delta);
  case CmpInst::ICMP_SLE:
    return SE->isKnownNonPositive(Delta);
  case CmpInst::ICMP_SGT:
    return SE->isKnownPositive(Delta);
  case CmpInst::ICMP_SLT:
    return SE->isKnownNegative(Delta);
  default:
    llvm_unreachable("unexpected predicate in isKnownPredicate");
  }
}

/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
/// with some extra checking if S is an AddRec and we can prove less-than using
/// the loop bounds.
bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
  // First unify to the same type
  auto *SType = dyn_cast<IntegerType>(S->getType());
  auto *SizeType = dyn_cast<IntegerType>(Size->getType());
  if (!SType || !SizeType)
    return false;
  Type *MaxType =
      (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
  S = SE->getTruncateOrZeroExtend(S, MaxType);
  Size = SE->getTruncateOrZeroExtend(Size, MaxType);

  // Special check for addrecs using BE taken count
  const SCEV *Bound = SE->getMinusSCEV(S, Size);
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
    if (AddRec->isAffine()) {
      const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
      if (!isa<SCEVCouldNotCompute>(BECount)) {
        const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
        if (SE->isKnownNegative(Limit))
          return true;
      }
    }
  }

  // Check using normal isKnownNegative
  const SCEV *LimitedBound =
      SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
  return SE->isKnownNegative(LimitedBound);
}

bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
  bool Inbounds = false;
  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
    Inbounds = SrcGEP->isInBounds();
  if (Inbounds) {
    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
      if (AddRec->isAffine()) {
        // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
        // If both parts are NonNegative, the end result will be NonNegative
        if (SE->isKnownNonNegative(AddRec->getStart()) &&
            SE->isKnownNonNegative(AddRec->getOperand(1)))
          return true;
      }
    }
  }

  return SE->isKnownNonNegative(S);
}

// All subscripts are all the same type.
// Loop bound may be smaller (e.g., a char).
// Should zero extend loop bound, since it's always >= 0.
// This routine collects upper bound and extends or truncates if needed.
// Truncating is safe when subscripts are known not to wrap. Cases without
// nowrap flags should have been rejected earlier.
// Return null if no bound available.
const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
    const SCEV *UB = SE->getBackedgeTakenCount(L);
    return SE->getTruncateOrZeroExtend(UB, T);
  }
  return nullptr;
}


// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
// If the cast fails, returns NULL.
const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
                                                              Type *T) const {
  if (const SCEV *UB = collectUpperBound(L, T))
    return dyn_cast<SCEVConstant>(UB);
  return nullptr;
}


// testZIV -
// When we have a pair of subscripts of the form [c1] and [c2],
// where c1 and c2 are both loop invariant, we attack it using
// the ZIV test. Basically, we test by comparing the two values,
// but there are actually three possible results:
// 1) the values are equal, so there's a dependence
// 2) the values are different, so there's no dependence
// 3) the values might be equal, so we have to assume a dependence.
//
// Return true if dependence disproved.
bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
                             FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  ++ZIVapplications;
  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
    LLVM_DEBUG(dbgs() << "    provably dependent\n");
    return false; // provably dependent
  }
  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
    LLVM_DEBUG(dbgs() << "    provably independent\n");
    ++ZIVindependence;
    return true; // provably independent
  }
  LLVM_DEBUG(dbgs() << "    possibly dependent\n");
  Result.Consistent = false;
  return false; // possibly dependent
}


// strongSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.1
//
// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
// where i is an induction variable, c1 and c2 are loop invariant,
//  and a is a constant, we can solve it exactly using the Strong SIV test.
//
// Can prove independence. Failing that, can compute distance (and direction).
// In the presence of symbolic terms, we can sometimes make progress.
//
// If there's a dependence,
//
//    c1 + a*i = c2 + a*i'
//
// The dependence distance is
//
//    d = i' - i = (c1 - c2)/a
//
// A dependence only exists if d is an integer and abs(d) <= U, where U is the
// loop's upper bound. If a dependence exists, the dependence direction is
// defined as
//
//                { < if d > 0
//    direction = { = if d = 0
//                { > if d < 0
//
// Return true if dependence disproved.
bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
                                   const SCEV *DstConst, const Loop *CurLoop,
                                   unsigned Level, FullDependence &Result,
                                   Constraint &NewConstraint) const {
  LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
  LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
  LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
  LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
  ++StrongSIVapplications;
  assert(0 < Level && Level <= CommonLevels && "level out of range");
  Level--;

  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
  LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");

  // check that |Delta| < iteration count
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
    LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
    const SCEV *AbsDelta =
      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
    const SCEV *AbsCoeff =
      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
    const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
    if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
      // Distance greater than trip count - no dependence
      ++StrongSIVindependence;
      ++StrongSIVsuccesses;
      return true;
    }
  }

  // Can we compute distance?
  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
    APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
    APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
    APInt Distance  = ConstDelta; // these need to be initialized
    APInt Remainder = ConstDelta;
    APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
    LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
    LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
    // Make sure Coeff divides Delta exactly
    if (Remainder != 0) {
      // Coeff doesn't divide Distance, no dependence
      ++StrongSIVindependence;
      ++StrongSIVsuccesses;
      return true;
    }
    Result.DV[Level].Distance = SE->getConstant(Distance);
    NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
    if (Distance.sgt(0))
      Result.DV[Level].Direction &= Dependence::DVEntry::LT;
    else if (Distance.slt(0))
      Result.DV[Level].Direction &= Dependence::DVEntry::GT;
    else
      Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
    ++StrongSIVsuccesses;
  }
  else if (Delta->isZero()) {
    // since 0/X == 0
    Result.DV[Level].Distance = Delta;
    NewConstraint.setDistance(Delta, CurLoop);
    Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
    ++StrongSIVsuccesses;
  }
  else {
    if (Coeff->isOne()) {
      LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
      Result.DV[Level].Distance = Delta; // since X/1 == X
      NewConstraint.setDistance(Delta, CurLoop);
    }
    else {
      Result.Consistent = false;
      NewConstraint.setLine(Coeff,
                            SE->getNegativeSCEV(Coeff),
                            SE->getNegativeSCEV(Delta), CurLoop);
    }

    // maybe we can get a useful direction
    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
    bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
    bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
    bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
    bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
    // The double negatives above are confusing.
    // It helps to read !SE->isKnownNonZero(Delta)
    // as "Delta might be Zero"
    unsigned NewDirection = Dependence::DVEntry::NONE;
    if ((DeltaMaybePositive && CoeffMaybePositive) ||
        (DeltaMaybeNegative && CoeffMaybeNegative))
      NewDirection = Dependence::DVEntry::LT;
    if (DeltaMaybeZero)
      NewDirection |= Dependence::DVEntry::EQ;
    if ((DeltaMaybeNegative && CoeffMaybePositive) ||
        (DeltaMaybePositive && CoeffMaybeNegative))
      NewDirection |= Dependence::DVEntry::GT;
    if (NewDirection < Result.DV[Level].Direction)
      ++StrongSIVsuccesses;
    Result.DV[Level].Direction &= NewDirection;
  }
  return false;
}


// weakCrossingSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
// where i is an induction variable, c1 and c2 are loop invariant,
// and a is a constant, we can solve it exactly using the
// Weak-Crossing SIV test.
//
// Given c1 + a*i = c2 - a*i', we can look for the intersection of
// the two lines, where i = i', yielding
//
//    c1 + a*i = c2 - a*i
//    2a*i = c2 - c1
//    i = (c2 - c1)/2a
//
// If i < 0, there is no dependence.
// If i > upperbound, there is no dependence.
// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
// If i = upperbound, there's a dependence with distance = 0.
// If i is integral, there's a dependence (all directions).
// If the non-integer part = 1/2, there's a dependence (<> directions).
// Otherwise, there's no dependence.
//
// Can prove independence. Failing that,
// can sometimes refine the directions.
// Can determine iteration for splitting.
//
// Return true if dependence disproved.
bool DependenceInfo::weakCrossingSIVtest(
    const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
    const Loop *CurLoop, unsigned Level, FullDependence &Result,
    Constraint &NewConstraint, const SCEV *&SplitIter) const {
  LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++WeakCrossingSIVapplications;
  assert(0 < Level && Level <= CommonLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
  if (Delta->isZero()) {
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
    ++WeakCrossingSIVsuccesses;
    if (!Result.DV[Level].Direction) {
      ++WeakCrossingSIVindependence;
      return true;
    }
    Result.DV[Level].Distance = Delta; // = 0
    return false;
  }
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
  if (!ConstCoeff)
    return false;

  Result.DV[Level].Splitable = true;
  if (SE->isKnownNegative(ConstCoeff)) {
    ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
    assert(ConstCoeff &&
           "dynamic cast of negative of ConstCoeff should yield constant");
    Delta = SE->getNegativeSCEV(Delta);
  }
  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");

  // compute SplitIter for use by DependenceInfo::getSplitIteration()
  SplitIter = SE->getUDivExpr(
      SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
      SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
  LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");

  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
  if (!ConstDelta)
    return false;

  // We're certain that ConstCoeff > 0; therefore,
  // if Delta < 0, then no dependence.
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
  if (SE->isKnownNegative(Delta)) {
    // No dependence, Delta < 0
    ++WeakCrossingSIVindependence;
    ++WeakCrossingSIVsuccesses;
    return true;
  }

  // We're certain that Delta > 0 and ConstCoeff > 0.
  // Check Delta/(2*ConstCoeff) against upper loop bound
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
    const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
                                    ConstantTwo);
    LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
      // Delta too big, no dependence
      ++WeakCrossingSIVindependence;
      ++WeakCrossingSIVsuccesses;
      return true;
    }
    if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
      // i = i' = UB
      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
      ++WeakCrossingSIVsuccesses;
      if (!Result.DV[Level].Direction) {
        ++WeakCrossingSIVindependence;
        return true;
      }
      Result.DV[Level].Splitable = false;
      Result.DV[Level].Distance = SE->getZero(Delta->getType());
      return false;
    }
  }

  // check that Coeff divides Delta
  APInt APDelta = ConstDelta->getAPInt();
  APInt APCoeff = ConstCoeff->getAPInt();
  APInt Distance = APDelta; // these need to be initialzed
  APInt Remainder = APDelta;
  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
  if (Remainder != 0) {
    // Coeff doesn't divide Delta, no dependence
    ++WeakCrossingSIVindependence;
    ++WeakCrossingSIVsuccesses;
    return true;
  }
  LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");

  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
  APInt Two = APInt(Distance.getBitWidth(), 2, true);
  Remainder = Distance.srem(Two);
  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
  if (Remainder != 0) {
    // Equal direction isn't possible
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
    ++WeakCrossingSIVsuccesses;
  }
  return false;
}


// Kirch's algorithm, from
//
//        Optimizing Supercompilers for Supercomputers
//        Michael Wolfe
//        MIT Press, 1989
//
// Program 2.1, page 29.
// Computes the GCD of AM and BM.
// Also finds a solution to the equation ax - by = gcd(a, b).
// Returns true if dependence disproved; i.e., gcd does not divide Delta.
static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
                    const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
  APInt A0(Bits, 1, true), A1(Bits, 0, true);
  APInt B0(Bits, 0, true), B1(Bits, 1, true);
  APInt G0 = AM.abs();
  APInt G1 = BM.abs();
  APInt Q = G0; // these need to be initialized
  APInt R = G0;
  APInt::sdivrem(G0, G1, Q, R);
  while (R != 0) {
    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
    G0 = G1; G1 = R;
    APInt::sdivrem(G0, G1, Q, R);
  }
  G = G1;
  LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
  X = AM.slt(0) ? -A1 : A1;
  Y = BM.slt(0) ? B1 : -B1;

  // make sure gcd divides Delta
  R = Delta.srem(G);
  if (R != 0)
    return true; // gcd doesn't divide Delta, no dependence
  Q = Delta.sdiv(G);
  X *= Q;
  Y *= Q;
  return false;
}

static APInt floorOfQuotient(const APInt &A, const APInt &B) {
  APInt Q = A; // these need to be initialized
  APInt R = A;
  APInt::sdivrem(A, B, Q, R);
  if (R == 0)
    return Q;
  if ((A.sgt(0) && B.sgt(0)) ||
      (A.slt(0) && B.slt(0)))
    return Q;
  else
    return Q - 1;
}

static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
  APInt Q = A; // these need to be initialized
  APInt R = A;
  APInt::sdivrem(A, B, Q, R);
  if (R == 0)
    return Q;
  if ((A.sgt(0) && B.sgt(0)) ||
      (A.slt(0) && B.slt(0)))
    return Q + 1;
  else
    return Q;
}

// exactSIVtest -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
// where i is an induction variable, c1 and c2 are loop invariant, and a1
// and a2 are constant, we can solve it exactly using an algorithm developed
// by Banerjee and Wolfe. See Section 2.5.3 in
//
//        Optimizing Supercompilers for Supercomputers
//        Michael Wolfe
//        MIT Press, 1989
//
// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
// so use them if possible. They're also a bit better with symbolics and,
// in the case of the strong SIV test, can compute Distances.
//
// Return true if dependence disproved.
bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
                                  const SCEV *SrcConst, const SCEV *DstConst,
                                  const Loop *CurLoop, unsigned Level,
                                  FullDependence &Result,
                                  Constraint &NewConstraint) const {
  LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++ExactSIVapplications;
  assert(0 < Level && Level <= CommonLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
                        Delta, CurLoop);
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
    return false;

  // find gcd
  APInt G, X, Y;
  APInt AM = ConstSrcCoeff->getAPInt();
  APInt BM = ConstDstCoeff->getAPInt();
  unsigned Bits = AM.getBitWidth();
  if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
    // gcd doesn't divide Delta, no dependence
    ++ExactSIVindependence;
    ++ExactSIVsuccesses;
    return true;
  }

  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");

  // since SCEV construction normalizes, LM = 0
  APInt UM(Bits, 1, true);
  bool UMvalid = false;
  // UM is perhaps unavailable, let's check
  if (const SCEVConstant *CUB =
      collectConstantUpperBound(CurLoop, Delta->getType())) {
    UM = CUB->getAPInt();
    LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
    UMvalid = true;
  }

  APInt TU(APInt::getSignedMaxValue(Bits));
  APInt TL(APInt::getSignedMinValue(Bits));

  // test(BM/G, LM-X) and test(-BM/G, X-UM)
  APInt TMUL = BM.sdiv(G);
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    if (UMvalid) {
      TU = APIntOps::smin(TU, floorOfQuotient(UM - X, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    }
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    if (UMvalid) {
      TL = APIntOps::smax(TL, ceilingOfQuotient(UM - X, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    }
  }

  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
  TMUL = AM.sdiv(G);
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    if (UMvalid) {
      TU = APIntOps::smin(TU, floorOfQuotient(UM - Y, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    }
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    if (UMvalid) {
      TL = APIntOps::smax(TL, ceilingOfQuotient(UM - Y, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    }
  }
  if (TL.sgt(TU)) {
    ++ExactSIVindependence;
    ++ExactSIVsuccesses;
    return true;
  }

  // explore directions
  unsigned NewDirection = Dependence::DVEntry::NONE;

  // less than
  APInt SaveTU(TU); // save these
  APInt SaveTL(TL);
  LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n");
  TMUL = AM - BM;
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y + 1, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(X - Y + 1, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
  }
  if (TL.sle(TU)) {
    NewDirection |= Dependence::DVEntry::LT;
    ++ExactSIVsuccesses;
  }

  // equal
  TU = SaveTU; // restore
  TL = SaveTL;
  LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n");
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(X - Y, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
  }
  TMUL = BM - AM;
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(Y - X, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
  }
  if (TL.sle(TU)) {
    NewDirection |= Dependence::DVEntry::EQ;
    ++ExactSIVsuccesses;
  }

  // greater than
  TU = SaveTU; // restore
  TL = SaveTL;
  LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n");
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X + 1, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(Y - X + 1, TMUL));
    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
  }
  if (TL.sle(TU)) {
    NewDirection |= Dependence::DVEntry::GT;
    ++ExactSIVsuccesses;
  }

  // finished
  Result.DV[Level].Direction &= NewDirection;
  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
    ++ExactSIVindependence;
  return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
}



// Return true if the divisor evenly divides the dividend.
static
bool isRemainderZero(const SCEVConstant *Dividend,
                     const SCEVConstant *Divisor) {
  const APInt &ConstDividend = Dividend->getAPInt();
  const APInt &ConstDivisor = Divisor->getAPInt();
  return ConstDividend.srem(ConstDivisor) == 0;
}


// weakZeroSrcSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
// where i is an induction variable, c1 and c2 are loop invariant,
// and a is a constant, we can solve it exactly using the
// Weak-Zero SIV test.
//
// Given
//
//    c1 = c2 + a*i
//
// we get
//
//    (c1 - c2)/a = i
//
// If i is not an integer, there's no dependence.
// If i < 0 or > UB, there's no dependence.
// If i = 0, the direction is >= and peeling the
// 1st iteration will break the dependence.
// If i = UB, the direction is <= and peeling the
// last iteration will break the dependence.
// Otherwise, the direction is *.
//
// Can prove independence. Failing that, we can sometimes refine
// the directions. Can sometimes show that first or last
// iteration carries all the dependences (so worth peeling).
//
// (see also weakZeroDstSIVtest)
//
// Return true if dependence disproved.
bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
                                        const SCEV *SrcConst,
                                        const SCEV *DstConst,
                                        const Loop *CurLoop, unsigned Level,
                                        FullDependence &Result,
                                        Constraint &NewConstraint) const {
  // For the WeakSIV test, it's possible the loop isn't common to
  // the Src and Dst loops. If it isn't, then there's no need to
  // record a direction.
  LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++WeakZeroSIVapplications;
  assert(0 < Level && Level <= MaxLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
  NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
                        CurLoop);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
    if (Level < CommonLevels) {
      Result.DV[Level].Direction &= Dependence::DVEntry::GE;
      Result.DV[Level].PeelFirst = true;
      ++WeakZeroSIVsuccesses;
    }
    return false; // dependences caused by first iteration
  }
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
  if (!ConstCoeff)
    return false;
  const SCEV *AbsCoeff =
    SE->isKnownNegative(ConstCoeff) ?
    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
  const SCEV *NewDelta =
    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;

  // check that Delta/SrcCoeff < iteration count
  // really check NewDelta < count*AbsCoeff
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
      ++WeakZeroSIVindependence;
      ++WeakZeroSIVsuccesses;
      return true;
    }
    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
      // dependences caused by last iteration
      if (Level < CommonLevels) {
        Result.DV[Level].Direction &= Dependence::DVEntry::LE;
        Result.DV[Level].PeelLast = true;
        ++WeakZeroSIVsuccesses;
      }
      return false;
    }
  }

  // check that Delta/SrcCoeff >= 0
  // really check that NewDelta >= 0
  if (SE->isKnownNegative(NewDelta)) {
    // No dependence, newDelta < 0
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }

  // if SrcCoeff doesn't divide Delta, then no dependence
  if (isa<SCEVConstant>(Delta) &&
      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }
  return false;
}


// weakZeroDstSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
// where i is an induction variable, c1 and c2 are loop invariant,
// and a is a constant, we can solve it exactly using the
// Weak-Zero SIV test.
//
// Given
//
//    c1 + a*i = c2
//
// we get
//
//    i = (c2 - c1)/a
//
// If i is not an integer, there's no dependence.
// If i < 0 or > UB, there's no dependence.
// If i = 0, the direction is <= and peeling the
// 1st iteration will break the dependence.
// If i = UB, the direction is >= and peeling the
// last iteration will break the dependence.
// Otherwise, the direction is *.
//
// Can prove independence. Failing that, we can sometimes refine
// the directions. Can sometimes show that first or last
// iteration carries all the dependences (so worth peeling).
//
// (see also weakZeroSrcSIVtest)
//
// Return true if dependence disproved.
bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
                                        const SCEV *SrcConst,
                                        const SCEV *DstConst,
                                        const Loop *CurLoop, unsigned Level,
                                        FullDependence &Result,
                                        Constraint &NewConstraint) const {
  // For the WeakSIV test, it's possible the loop isn't common to the
  // Src and Dst loops. If it isn't, then there's no need to record a direction.
  LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++WeakZeroSIVapplications;
  assert(0 < Level && Level <= SrcLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
                        CurLoop);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
    if (Level < CommonLevels) {
      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
      Result.DV[Level].PeelFirst = true;
      ++WeakZeroSIVsuccesses;
    }
    return false; // dependences caused by first iteration
  }
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
  if (!ConstCoeff)
    return false;
  const SCEV *AbsCoeff =
    SE->isKnownNegative(ConstCoeff) ?
    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
  const SCEV *NewDelta =
    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;

  // check that Delta/SrcCoeff < iteration count
  // really check NewDelta < count*AbsCoeff
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
      ++WeakZeroSIVindependence;
      ++WeakZeroSIVsuccesses;
      return true;
    }
    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
      // dependences caused by last iteration
      if (Level < CommonLevels) {
        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
        Result.DV[Level].PeelLast = true;
        ++WeakZeroSIVsuccesses;
      }
      return false;
    }
  }

  // check that Delta/SrcCoeff >= 0
  // really check that NewDelta >= 0
  if (SE->isKnownNegative(NewDelta)) {
    // No dependence, newDelta < 0
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }

  // if SrcCoeff doesn't divide Delta, then no dependence
  if (isa<SCEVConstant>(Delta) &&
      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }
  return false;
}


// exactRDIVtest - Tests the RDIV subscript pair for dependence.
// Things of the form [c1 + a*i] and [c2 + b*j],
// where i and j are induction variable, c1 and c2 are loop invariant,
// and a and b are constants.
// Returns true if any possible dependence is disproved.
// Marks the result as inconsistent.
// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
                                   const SCEV *SrcConst, const SCEV *DstConst,
                                   const Loop *SrcLoop, const Loop *DstLoop,
                                   FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++ExactRDIVapplications;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
    return false;

  // find gcd
  APInt G, X, Y;
  APInt AM = ConstSrcCoeff->getAPInt();
  APInt BM = ConstDstCoeff->getAPInt();
  unsigned Bits = AM.getBitWidth();
  if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
    // gcd doesn't divide Delta, no dependence
    ++ExactRDIVindependence;
    return true;
  }

  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");

  // since SCEV construction seems to normalize, LM = 0
  APInt SrcUM(Bits, 1, true);
  bool SrcUMvalid = false;
  // SrcUM is perhaps unavailable, let's check
  if (const SCEVConstant *UpperBound =
      collectConstantUpperBound(SrcLoop, Delta->getType())) {
    SrcUM = UpperBound->getAPInt();
    LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
    SrcUMvalid = true;
  }

  APInt DstUM(Bits, 1, true);
  bool DstUMvalid = false;
  // UM is perhaps unavailable, let's check
  if (const SCEVConstant *UpperBound =
      collectConstantUpperBound(DstLoop, Delta->getType())) {
    DstUM = UpperBound->getAPInt();
    LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
    DstUMvalid = true;
  }

  APInt TU(APInt::getSignedMaxValue(Bits));
  APInt TL(APInt::getSignedMinValue(Bits));

  // test(BM/G, LM-X) and test(-BM/G, X-UM)
  APInt TMUL = BM.sdiv(G);
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    if (SrcUMvalid) {
      TU = APIntOps::smin(TU, floorOfQuotient(SrcUM - X, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    }
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    if (SrcUMvalid) {
      TL = APIntOps::smax(TL, ceilingOfQuotient(SrcUM - X, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    }
  }

  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
  TMUL = AM.sdiv(G);
  if (TMUL.sgt(0)) {
    TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    if (DstUMvalid) {
      TU = APIntOps::smin(TU, floorOfQuotient(DstUM - Y, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    }
  }
  else {
    TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
    if (DstUMvalid) {
      TL = APIntOps::smax(TL, ceilingOfQuotient(DstUM - Y, TMUL));
      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
    }
  }
  if (TL.sgt(TU))
    ++ExactRDIVindependence;
  return TL.sgt(TU);
}


// symbolicRDIVtest -
// In Section 4.5 of the Practical Dependence Testing paper,the authors
// introduce a special case of Banerjee's Inequalities (also called the
// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
// particularly cases with symbolics. Since it's only able to disprove
// dependence (not compute distances or directions), we'll use it as a
// fall back for the other tests.
//
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
// where i and j are induction variables and c1 and c2 are loop invariants,
// we can use the symbolic tests to disprove some dependences, serving as a
// backup for the RDIV test. Note that i and j can be the same variable,
// letting this test serve as a backup for the various SIV tests.
//
// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
//  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
// loop bounds for the i and j loops, respectively. So, ...
//
// c1 + a1*i = c2 + a2*j
// a1*i - a2*j = c2 - c1
//
// To test for a dependence, we compute c2 - c1 and make sure it's in the
// range of the maximum and minimum possible values of a1*i - a2*j.
// Considering the signs of a1 and a2, we have 4 possible cases:
//
// 1) If a1 >= 0 and a2 >= 0, then
//        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
//              -a2*N2 <= c2 - c1 <= a1*N1
//
// 2) If a1 >= 0 and a2 <= 0, then
//        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
//                  0 <= c2 - c1 <= a1*N1 - a2*N2
//
// 3) If a1 <= 0 and a2 >= 0, then
//        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
//        a1*N1 - a2*N2 <= c2 - c1 <= 0
//
// 4) If a1 <= 0 and a2 <= 0, then
//        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
//        a1*N1         <= c2 - c1 <=       -a2*N2
//
// return true if dependence disproved
bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
                                      const SCEV *C1, const SCEV *C2,
                                      const Loop *Loop1,
                                      const Loop *Loop2) const {
  ++SymbolicRDIVapplications;
  LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
  LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
  LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
  LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
  LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
  LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
  const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
  const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
  LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
  LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
  LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
  LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
  if (SE->isKnownNonNegative(A1)) {
    if (SE->isKnownNonNegative(A2)) {
      // A1 >= 0 && A2 >= 0
      if (N1) {
        // make sure that c2 - c1 <= a1*N1
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      if (N2) {
        // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
    }
    else if (SE->isKnownNonPositive(A2)) {
      // a1 >= 0 && a2 <= 0
      if (N1 && N2) {
        // make sure that c2 - c1 <= a1*N1 - a2*N2
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      // make sure that 0 <= c2 - c1
      if (SE->isKnownNegative(C2_C1)) {
        ++SymbolicRDIVindependence;
        return true;
      }
    }
  }
  else if (SE->isKnownNonPositive(A1)) {
    if (SE->isKnownNonNegative(A2)) {
      // a1 <= 0 && a2 >= 0
      if (N1 && N2) {
        // make sure that a1*N1 - a2*N2 <= c2 - c1
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      // make sure that c2 - c1 <= 0
      if (SE->isKnownPositive(C2_C1)) {
        ++SymbolicRDIVindependence;
        return true;
      }
    }
    else if (SE->isKnownNonPositive(A2)) {
      // a1 <= 0 && a2 <= 0
      if (N1) {
        // make sure that a1*N1 <= c2 - c1
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      if (N2) {
        // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
    }
  }
  return false;
}


// testSIV -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
// a2 are constant, we attack it with an SIV test. While they can all be
// solved with the Exact SIV test, it's worthwhile to use simpler tests when
// they apply; they're cheaper and sometimes more precise.
//
// Return true if dependence disproved.
bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
                             FullDependence &Result, Constraint &NewConstraint,
                             const SCEV *&SplitIter) const {
  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
  if (SrcAddRec && DstAddRec) {
    const SCEV *SrcConst = SrcAddRec->getStart();
    const SCEV *DstConst = DstAddRec->getStart();
    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
    const Loop *CurLoop = SrcAddRec->getLoop();
    assert(CurLoop == DstAddRec->getLoop() &&
           "both loops in SIV should be same");
    Level = mapSrcLoop(CurLoop);
    bool disproven;
    if (SrcCoeff == DstCoeff)
      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                                Level, Result, NewConstraint);
    else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
      disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                                      Level, Result, NewConstraint, SplitIter);
    else
      disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
                               Level, Result, NewConstraint);
    return disproven ||
      gcdMIVtest(Src, Dst, Result) ||
      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
  }
  if (SrcAddRec) {
    const SCEV *SrcConst = SrcAddRec->getStart();
    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
    const SCEV *DstConst = Dst;
    const Loop *CurLoop = SrcAddRec->getLoop();
    Level = mapSrcLoop(CurLoop);
    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                              Level, Result, NewConstraint) ||
      gcdMIVtest(Src, Dst, Result);
  }
  if (DstAddRec) {
    const SCEV *DstConst = DstAddRec->getStart();
    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
    const SCEV *SrcConst = Src;
    const Loop *CurLoop = DstAddRec->getLoop();
    Level = mapDstLoop(CurLoop);
    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
                              CurLoop, Level, Result, NewConstraint) ||
      gcdMIVtest(Src, Dst, Result);
  }
  llvm_unreachable("SIV test expected at least one AddRec");
  return false;
}


// testRDIV -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
// where i and j are induction variables, c1 and c2 are loop invariant,
// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
// It doesn't make sense to talk about distance or direction in this case,
// so there's no point in making special versions of the Strong SIV test or
// the Weak-crossing SIV test.
//
// With minor algebra, this test can also be used for things like
// [c1 + a1*i + a2*j][c2].
//
// Return true if dependence disproved.
bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
                              FullDependence &Result) const {
  // we have 3 possible situations here:
  //   1) [a*i + b] and [c*j + d]
  //   2) [a*i + c*j + b] and [d]
  //   3) [b] and [a*i + c*j + d]
  // We need to find what we've got and get organized

  const SCEV *SrcConst, *DstConst;
  const SCEV *SrcCoeff, *DstCoeff;
  const Loop *SrcLoop, *DstLoop;

  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
  if (SrcAddRec && DstAddRec) {
    SrcConst = SrcAddRec->getStart();
    SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
    SrcLoop = SrcAddRec->getLoop();
    DstConst = DstAddRec->getStart();
    DstCoeff = DstAddRec->getStepRecurrence(*SE);
    DstLoop = DstAddRec->getLoop();
  }
  else if (SrcAddRec) {
    if (const SCEVAddRecExpr *tmpAddRec =
        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
      SrcConst = tmpAddRec->getStart();
      SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
      SrcLoop = tmpAddRec->getLoop();
      DstConst = Dst;
      DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
      DstLoop = SrcAddRec->getLoop();
    }
    else
      llvm_unreachable("RDIV reached by surprising SCEVs");
  }
  else if (DstAddRec) {
    if (const SCEVAddRecExpr *tmpAddRec =
        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
      DstConst = tmpAddRec->getStart();
      DstCoeff = tmpAddRec->getStepRecurrence(*SE);
      DstLoop = tmpAddRec->getLoop();
      SrcConst = Src;
      SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
      SrcLoop = DstAddRec->getLoop();
    }
    else
      llvm_unreachable("RDIV reached by surprising SCEVs");
  }
  else
    llvm_unreachable("RDIV expected at least one AddRec");
  return exactRDIVtest(SrcCoeff, DstCoeff,
                       SrcConst, DstConst,
                       SrcLoop, DstLoop,
                       Result) ||
    gcdMIVtest(Src, Dst, Result) ||
    symbolicRDIVtest(SrcCoeff, DstCoeff,
                     SrcConst, DstConst,
                     SrcLoop, DstLoop);
}


// Tests the single-subscript MIV pair (Src and Dst) for dependence.
// Return true if dependence disproved.
// Can sometimes refine direction vectors.
bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
                             const SmallBitVector &Loops,
                             FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  Result.Consistent = false;
  return gcdMIVtest(Src, Dst, Result) ||
    banerjeeMIVtest(Src, Dst, Loops, Result);
}


// Given a product, e.g., 10*X*Y, returns the first constant operand,
// in this case 10. If there is no constant part, returns NULL.
static
const SCEVConstant *getConstantPart(const SCEV *Expr) {
  if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
    return Constant;
  else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
    if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
      return Constant;
  return nullptr;
}


//===----------------------------------------------------------------------===//
// gcdMIVtest -
// Tests an MIV subscript pair for dependence.
// Returns true if any possible dependence is disproved.
// Marks the result as inconsistent.
// Can sometimes disprove the equal direction for 1 or more loops,
// as discussed in Michael Wolfe's book,
// High Performance Compilers for Parallel Computing, page 235.
//
// We spend some effort (code!) to handle cases like
// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
// but M and N are just loop-invariant variables.
// This should help us handle linearized subscripts;
// also makes this test a useful backup to the various SIV tests.
//
// It occurs to me that the presence of loop-invariant variables
// changes the nature of the test from "greatest common divisor"
// to "a common divisor".
bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
                                FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "starting gcd\n");
  ++GCDapplications;
  unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
  APInt RunningGCD = APInt::getNullValue(BitWidth);

  // Examine Src coefficients.
  // Compute running GCD and record source constant.
  // Because we're looking for the constant at the end of the chain,
  // we can't quit the loop just because the GCD == 1.
  const SCEV *Coefficients = Src;
  while (const SCEVAddRecExpr *AddRec =
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
    // If the coefficient is the product of a constant and other stuff,
    // we can use the constant in the GCD computation.
    const auto *Constant = getConstantPart(Coeff);
    if (!Constant)
      return false;
    APInt ConstCoeff = Constant->getAPInt();
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
    Coefficients = AddRec->getStart();
  }
  const SCEV *SrcConst = Coefficients;

  // Examine Dst coefficients.
  // Compute running GCD and record destination constant.
  // Because we're looking for the constant at the end of the chain,
  // we can't quit the loop just because the GCD == 1.
  Coefficients = Dst;
  while (const SCEVAddRecExpr *AddRec =
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
    // If the coefficient is the product of a constant and other stuff,
    // we can use the constant in the GCD computation.
    const auto *Constant = getConstantPart(Coeff);
    if (!Constant)
      return false;
    APInt ConstCoeff = Constant->getAPInt();
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
    Coefficients = AddRec->getStart();
  }
  const SCEV *DstConst = Coefficients;

  APInt ExtraGCD = APInt::getNullValue(BitWidth);
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
    // If Delta is a sum of products, we may be able to make further progress.
    for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
      const SCEV *Operand = Sum->getOperand(Op);
      if (isa<SCEVConstant>(Operand)) {
        assert(!Constant && "Surprised to find multiple constants");
        Constant = cast<SCEVConstant>(Operand);
      }
      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
        // Search for constant operand to participate in GCD;
        // If none found; return false.
        const SCEVConstant *ConstOp = getConstantPart(Product);
        if (!ConstOp)
          return false;
        APInt ConstOpValue = ConstOp->getAPInt();
        ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
                                                   ConstOpValue.abs());
      }
      else
        return false;
    }
  }
  if (!Constant)
    return false;
  APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
  LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
  if (ConstDelta == 0)
    return false;
  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
  LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
  APInt Remainder = ConstDelta.srem(RunningGCD);
  if (Remainder != 0) {
    ++GCDindependence;
    return true;
  }

  // Try to disprove equal directions.
  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
  // the code above can't disprove the dependence because the GCD = 1.
  // So we consider what happen if i = i' and what happens if j = j'.
  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
  // which is infeasible, so we can disallow the = direction for the i level.
  // Setting j = j' doesn't help matters, so we end up with a direction vector
  // of [<>, *]
  //
  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
  // we need to remember that the constant part is 5 and the RunningGCD should
  // be initialized to ExtraGCD = 30.
  LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');

  bool Improved = false;
  Coefficients = Src;
  while (const SCEVAddRecExpr *AddRec =
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
    Coefficients = AddRec->getStart();
    const Loop *CurLoop = AddRec->getLoop();
    RunningGCD = ExtraGCD;
    const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
    const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
    const SCEV *Inner = Src;
    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
      AddRec = cast<SCEVAddRecExpr>(Inner);
      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
      if (CurLoop == AddRec->getLoop())
        ; // SrcCoeff == Coeff
      else {
        // If the coefficient is the product of a constant and other stuff,
        // we can use the constant in the GCD computation.
        Constant = getConstantPart(Coeff);
        if (!Constant)
          return false;
        APInt ConstCoeff = Constant->getAPInt();
        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
      }
      Inner = AddRec->getStart();
    }
    Inner = Dst;
    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
      AddRec = cast<SCEVAddRecExpr>(Inner);
      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
      if (CurLoop == AddRec->getLoop())
        DstCoeff = Coeff;
      else {
        // If the coefficient is the product of a constant and other stuff,
        // we can use the constant in the GCD computation.
        Constant = getConstantPart(Coeff);
        if (!Constant)
          return false;
        APInt ConstCoeff = Constant->getAPInt();
        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
      }
      Inner = AddRec->getStart();
    }
    Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
    // If the coefficient is the product of a constant and other stuff,
    // we can use the constant in the GCD computation.
    Constant = getConstantPart(Delta);
    if (!Constant)
      // The difference of the two coefficients might not be a product
      // or constant, in which case we give up on this direction.
      continue;
    APInt ConstCoeff = Constant->getAPInt();
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
    LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
    if (RunningGCD != 0) {
      Remainder = ConstDelta.srem(RunningGCD);
      LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
      if (Remainder != 0) {
        unsigned Level = mapSrcLoop(CurLoop);
        Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
        Improved = true;
      }
    }
  }
  if (Improved)
    ++GCDsuccesses;
  LLVM_DEBUG(dbgs() << "all done\n");
  return false;
}


//===----------------------------------------------------------------------===//
// banerjeeMIVtest -
// Use Banerjee's Inequalities to test an MIV subscript pair.
// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
// Generally follows the discussion in Section 2.5.2 of
//
//    Optimizing Supercompilers for Supercomputers
//    Michael Wolfe
//
// The inequalities given on page 25 are simplified in that loops are
// normalized so that the lower bound is always 0 and the stride is always 1.
// For example, Wolfe gives
//
//     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
//
// where A_k is the coefficient of the kth index in the source subscript,
// B_k is the coefficient of the kth index in the destination subscript,
// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
// index, and N_k is the stride of the kth index. Since all loops are normalized
// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
// equation to
//
//     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
//            = (A^-_k - B_k)^- (U_k - 1)  - B_k
//
// Similar simplifications are possible for the other equations.
//
// When we can't determine the number of iterations for a loop,
// we use NULL as an indicator for the worst case, infinity.
// When computing the upper bound, NULL denotes +inf;
// for the lower bound, NULL denotes -inf.
//
// Return true if dependence disproved.
bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
                                     const SmallBitVector &Loops,
                                     FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "starting Banerjee\n");
  ++BanerjeeApplications;
  LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
  const SCEV *A0;
  CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
  LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
  const SCEV *B0;
  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
  BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
  const SCEV *Delta = SE->getMinusSCEV(B0, A0);
  LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');

  // Compute bounds for all the * directions.
  LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
  for (unsigned K = 1; K <= MaxLevels; ++K) {
    Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
    Bound[K].Direction = Dependence::DVEntry::ALL;
    Bound[K].DirSet = Dependence::DVEntry::NONE;
    findBoundsALL(A, B, Bound, K);
#ifndef NDEBUG
    LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
    if (Bound[K].Lower[Dependence::DVEntry::ALL])
      LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
    else
      LLVM_DEBUG(dbgs() << "-inf\t");
    if (Bound[K].Upper[Dependence::DVEntry::ALL])
      LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
    else
      LLVM_DEBUG(dbgs() << "+inf\n");
#endif
  }

  // Test the *, *, *, ... case.
  bool Disproved = false;
  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
    // Explore the direction vector hierarchy.
    unsigned DepthExpanded = 0;
    unsigned NewDeps = exploreDirections(1, A, B, Bound,
                                         Loops, DepthExpanded, Delta);
    if (NewDeps > 0) {
      bool Improved = false;
      for (unsigned K = 1; K <= CommonLevels; ++K) {
        if (Loops[K]) {
          unsigned Old = Result.DV[K - 1].Direction;
          Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
          Improved |= Old != Result.DV[K - 1].Direction;
          if (!Result.DV[K - 1].Direction) {
            Improved = false;
            Disproved = true;
            break;
          }
        }
      }
      if (Improved)
        ++BanerjeeSuccesses;
    }
    else {
      ++BanerjeeIndependence;
      Disproved = true;
    }
  }
  else {
    ++BanerjeeIndependence;
    Disproved = true;
  }
  delete [] Bound;
  delete [] A;
  delete [] B;
  return Disproved;
}


// Hierarchically expands the direction vector
// search space, combining the directions of discovered dependences
// in the DirSet field of Bound. Returns the number of distinct
// dependences discovered. If the dependence is disproved,
// it will return 0.
unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
                                           CoefficientInfo *B, BoundInfo *Bound,
                                           const SmallBitVector &Loops,
                                           unsigned &DepthExpanded,
                                           const SCEV *Delta) const {
  if (Level > CommonLevels) {
    // record result
    LLVM_DEBUG(dbgs() << "\t[");
    for (unsigned K = 1; K <= CommonLevels; ++K) {
      if (Loops[K]) {
        Bound[K].DirSet |= Bound[K].Direction;
#ifndef NDEBUG
        switch (Bound[K].Direction) {
        case Dependence::DVEntry::LT:
          LLVM_DEBUG(dbgs() << " <");
          break;
        case Dependence::DVEntry::EQ:
          LLVM_DEBUG(dbgs() << " =");
          break;
        case Dependence::DVEntry::GT:
          LLVM_DEBUG(dbgs() << " >");
          break;
        case Dependence::DVEntry::ALL:
          LLVM_DEBUG(dbgs() << " *");
          break;
        default:
          llvm_unreachable("unexpected Bound[K].Direction");
        }
#endif
      }
    }
    LLVM_DEBUG(dbgs() << " ]\n");
    return 1;
  }
  if (Loops[Level]) {
    if (Level > DepthExpanded) {
      DepthExpanded = Level;
      // compute bounds for <, =, > at current level
      findBoundsLT(A, B, Bound, Level);
      findBoundsGT(A, B, Bound, Level);
      findBoundsEQ(A, B, Bound, Level);
#ifndef NDEBUG
      LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
      LLVM_DEBUG(dbgs() << "\t    <\t");
      if (Bound[Level].Lower[Dependence::DVEntry::LT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
                          << '\t');
      else
        LLVM_DEBUG(dbgs() << "-inf\t");
      if (Bound[Level].Upper[Dependence::DVEntry::LT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
                          << '\n');
      else
        LLVM_DEBUG(dbgs() << "+inf\n");
      LLVM_DEBUG(dbgs() << "\t    =\t");
      if (Bound[Level].Lower[Dependence::DVEntry::EQ])
        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
                          << '\t');
      else
        LLVM_DEBUG(dbgs() << "-inf\t");
      if (Bound[Level].Upper[Dependence::DVEntry::EQ])
        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
                          << '\n');
      else
        LLVM_DEBUG(dbgs() << "+inf\n");
      LLVM_DEBUG(dbgs() << "\t    >\t");
      if (Bound[Level].Lower[Dependence::DVEntry::GT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
                          << '\t');
      else
        LLVM_DEBUG(dbgs() << "-inf\t");
      if (Bound[Level].Upper[Dependence::DVEntry::GT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
                          << '\n');
      else
        LLVM_DEBUG(dbgs() << "+inf\n");
#endif
    }

    unsigned NewDeps = 0;

    // test bounds for <, *, *, ...
    if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
                                   Loops, DepthExpanded, Delta);

    // Test bounds for =, *, *, ...
    if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
                                   Loops, DepthExpanded, Delta);

    // test bounds for >, *, *, ...
    if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
                                   Loops, DepthExpanded, Delta);

    Bound[Level].Direction = Dependence::DVEntry::ALL;
    return NewDeps;
  }
  else
    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
}


// Returns true iff the current bounds are plausible.
bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
                                BoundInfo *Bound, const SCEV *Delta) const {
  Bound[Level].Direction = DirKind;
  if (const SCEV *LowerBound = getLowerBound(Bound))
    if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
      return false;
  if (const SCEV *UpperBound = getUpperBound(Bound))
    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
      return false;
  return true;
}


// Computes the upper and lower bounds for level K
// using the * direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
//    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^*_k = (A^-_k - B^+_k)U_k
//    UB^*_k = (A^+_k - B^-_k)U_k
//
// We must be careful to handle the case where the upper bound is unknown.
// Note that the lower bound is always <= 0
// and the upper bound is always >= 0.
void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
                                   BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    Bound[K].Lower[Dependence::DVEntry::ALL] =
      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
                     Bound[K].Iterations);
    Bound[K].Upper[Dependence::DVEntry::ALL] =
      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
                     Bound[K].Iterations);
  }
  else {
    // If the difference is 0, we won't need to know the number of iterations.
    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
      Bound[K].Lower[Dependence::DVEntry::ALL] =
          SE->getZero(A[K].Coeff->getType());
    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
      Bound[K].Upper[Dependence::DVEntry::ALL] =
          SE->getZero(A[K].Coeff->getType());
  }
}


// Computes the upper and lower bounds for level K
// using the = direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
//    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^=_k = (A_k - B_k)^- U_k
//    UB^=_k = (A_k - B_k)^+ U_k
//
// We must be careful to handle the case where the upper bound is unknown.
// Note that the lower bound is always <= 0
// and the upper bound is always >= 0.
void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
                                  BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
    const SCEV *NegativePart = getNegativePart(Delta);
    Bound[K].Lower[Dependence::DVEntry::EQ] =
      SE->getMulExpr(NegativePart, Bound[K].Iterations);
    const SCEV *PositivePart = getPositivePart(Delta);
    Bound[K].Upper[Dependence::DVEntry::EQ] =
      SE->getMulExpr(PositivePart, Bound[K].Iterations);
  }
  else {
    // If the positive/negative part of the difference is 0,
    // we won't need to know the number of iterations.
    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
    const SCEV *NegativePart = getNegativePart(Delta);
    if (NegativePart->isZero())
      Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
    const SCEV *PositivePart = getPositivePart(Delta);
    if (PositivePart->isZero())
      Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
  }
}


// Computes the upper and lower bounds for level K
// using the < direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
//    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
//    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
//
// We must be careful to handle the case where the upper bound is unknown.
void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
                                  BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    const SCEV *Iter_1 = SE->getMinusSCEV(
        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
    const SCEV *NegPart =
      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
    Bound[K].Lower[Dependence::DVEntry::LT] =
      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
    const SCEV *PosPart =
      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
    Bound[K].Upper[Dependence::DVEntry::LT] =
      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
  }
  else {
    // If the positive/negative part of the difference is 0,
    // we won't need to know the number of iterations.
    const SCEV *NegPart =
      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
    if (NegPart->isZero())
      Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
    const SCEV *PosPart =
      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
    if (PosPart->isZero())
      Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
  }
}


// Computes the upper and lower bounds for level K
// using the > direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
//    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
//    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
//
// We must be careful to handle the case where the upper bound is unknown.
void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
                                  BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    const SCEV *Iter_1 = SE->getMinusSCEV(
        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
    const SCEV *NegPart =
      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
    Bound[K].Lower[Dependence::DVEntry::GT] =
      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
    const SCEV *PosPart =
      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
    Bound[K].Upper[Dependence::DVEntry::GT] =
      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
  }
  else {
    // If the positive/negative part of the difference is 0,
    // we won't need to know the number of iterations.
    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
    if (NegPart->isZero())
      Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
    if (PosPart->isZero())
      Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
  }
}


// X^+ = max(X, 0)
const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
  return SE->getSMaxExpr(X, SE->getZero(X->getType()));
}


// X^- = min(X, 0)
const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
  return SE->getSMinExpr(X, SE->getZero(X->getType()));
}


// Walks through the subscript,
// collecting each coefficient, the associated loop bounds,
// and recording its positive and negative parts for later use.
DependenceInfo::CoefficientInfo *
DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
                                 const SCEV *&Constant) const {
  const SCEV *Zero = SE->getZero(Subscript->getType());
  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
  for (unsigned K = 1; K <= MaxLevels; ++K) {
    CI[K].Coeff = Zero;
    CI[K].PosPart = Zero;
    CI[K].NegPart = Zero;
    CI[K].Iterations = nullptr;
  }
  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
    const Loop *L = AddRec->getLoop();
    unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
    CI[K].Coeff = AddRec->getStepRecurrence(*SE);
    CI[K].PosPart = getPositivePart(CI[K].Coeff);
    CI[K].NegPart = getNegativePart(CI[K].Coeff);
    CI[K].Iterations = collectUpperBound(L, Subscript->getType());
    Subscript = AddRec->getStart();
  }
  Constant = Subscript;
#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
  for (unsigned K = 1; K <= MaxLevels; ++K) {
    LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
    LLVM_DEBUG(dbgs() << "\tPos Part = ");
    LLVM_DEBUG(dbgs() << *CI[K].PosPart);
    LLVM_DEBUG(dbgs() << "\tNeg Part = ");
    LLVM_DEBUG(dbgs() << *CI[K].NegPart);
    LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
    if (CI[K].Iterations)
      LLVM_DEBUG(dbgs() << *CI[K].Iterations);
    else
      LLVM_DEBUG(dbgs() << "+inf");
    LLVM_DEBUG(dbgs() << '\n');
  }
  LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
#endif
  return CI;
}


// Looks through all the bounds info and
// computes the lower bound given the current direction settings
// at each level. If the lower bound for any level is -inf,
// the result is -inf.
const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
    if (Bound[K].Lower[Bound[K].Direction])
      Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
    else
      Sum = nullptr;
  }
  return Sum;
}


// Looks through all the bounds info and
// computes the upper bound given the current direction settings
// at each level. If the upper bound at any level is +inf,
// the result is +inf.
const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
    if (Bound[K].Upper[Bound[K].Direction])
      Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
    else
      Sum = nullptr;
  }
  return Sum;
}


//===----------------------------------------------------------------------===//
// Constraint manipulation for Delta test.

// Given a linear SCEV,
// return the coefficient (the step)
// corresponding to the specified loop.
// If there isn't one, return 0.
// For example, given a*i + b*j + c*k, finding the coefficient
// corresponding to the j loop would yield b.
const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
                                            const Loop *TargetLoop) const {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec)
    return SE->getZero(Expr->getType());
  if (AddRec->getLoop() == TargetLoop)
    return AddRec->getStepRecurrence(*SE);
  return findCoefficient(AddRec->getStart(), TargetLoop);
}


// Given a linear SCEV,
// return the SCEV given by zeroing out the coefficient
// corresponding to the specified loop.
// For example, given a*i + b*j + c*k, zeroing the coefficient
// corresponding to the j loop would yield a*i + c*k.
const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
                                            const Loop *TargetLoop) const {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec)
    return Expr; // ignore
  if (AddRec->getLoop() == TargetLoop)
    return AddRec->getStart();
  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
                           AddRec->getStepRecurrence(*SE),
                           AddRec->getLoop(),
                           AddRec->getNoWrapFlags());
}


// Given a linear SCEV Expr,
// return the SCEV given by adding some Value to the
// coefficient corresponding to the specified TargetLoop.
// For example, given a*i + b*j + c*k, adding 1 to the coefficient
// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
                                             const Loop *TargetLoop,
                                             const SCEV *Value) const {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec) // create a new addRec
    return SE->getAddRecExpr(Expr,
                             Value,
                             TargetLoop,
                             SCEV::FlagAnyWrap); // Worst case, with no info.
  if (AddRec->getLoop() == TargetLoop) {
    const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
    if (Sum->isZero())
      return AddRec->getStart();
    return SE->getAddRecExpr(AddRec->getStart(),
                             Sum,
                             AddRec->getLoop(),
                             AddRec->getNoWrapFlags());
  }
  if (SE->isLoopInvariant(AddRec, TargetLoop))
    return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
  return SE->getAddRecExpr(
      addToCoefficient(AddRec->getStart(), TargetLoop, Value),
      AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
      AddRec->getNoWrapFlags());
}


// Review the constraints, looking for opportunities
// to simplify a subscript pair (Src and Dst).
// Return true if some simplification occurs.
// If the simplification isn't exact (that is, if it is conservative
// in terms of dependence), set consistent to false.
// Corresponds to Figure 5 from the paper
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
                               SmallBitVector &Loops,
                               SmallVectorImpl<Constraint> &Constraints,
                               bool &Consistent) {
  bool Result = false;
  for (unsigned LI : Loops.set_bits()) {
    LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
    LLVM_DEBUG(Constraints[LI].dump(dbgs()));
    if (Constraints[LI].isDistance())
      Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
    else if (Constraints[LI].isLine())
      Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
    else if (Constraints[LI].isPoint())
      Result |= propagatePoint(Src, Dst, Constraints[LI]);
  }
  return Result;
}


// Attempt to propagate a distance
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
// If the simplification isn't exact (that is, if it is conservative
// in terms of dependence), set consistent to false.
bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
                                       Constraint &CurConstraint,
                                       bool &Consistent) {
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
  const SCEV *A_K = findCoefficient(Src, CurLoop);
  if (A_K->isZero())
    return false;
  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
  Src = SE->getMinusSCEV(Src, DA_K);
  Src = zeroCoefficient(Src, CurLoop);
  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
  if (!findCoefficient(Dst, CurLoop)->isZero())
    Consistent = false;
  return true;
}


// Attempt to propagate a line
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
// If the simplification isn't exact (that is, if it is conservative
// in terms of dependence), set consistent to false.
bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
                                   Constraint &CurConstraint,
                                   bool &Consistent) {
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
  const SCEV *A = CurConstraint.getA();
  const SCEV *B = CurConstraint.getB();
  const SCEV *C = CurConstraint.getC();
  LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
                    << "\n");
  LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
  if (A->isZero()) {
    const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
    if (!Bconst || !Cconst) return false;
    APInt Beta = Bconst->getAPInt();
    APInt Charlie = Cconst->getAPInt();
    APInt CdivB = Charlie.sdiv(Beta);
    assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
    const SCEV *AP_K = findCoefficient(Dst, CurLoop);
    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
    Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
    Dst = zeroCoefficient(Dst, CurLoop);
    if (!findCoefficient(Src, CurLoop)->isZero())
      Consistent = false;
  }
  else if (B->isZero()) {
    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
    if (!Aconst || !Cconst) return false;
    APInt Alpha = Aconst->getAPInt();
    APInt Charlie = Cconst->getAPInt();
    APInt CdivA = Charlie.sdiv(Alpha);
    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
    const SCEV *A_K = findCoefficient(Src, CurLoop);
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
    Src = zeroCoefficient(Src, CurLoop);
    if (!findCoefficient(Dst, CurLoop)->isZero())
      Consistent = false;
  }
  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
    if (!Aconst || !Cconst) return false;
    APInt Alpha = Aconst->getAPInt();
    APInt Charlie = Cconst->getAPInt();
    APInt CdivA = Charlie.sdiv(Alpha);
    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
    const SCEV *A_K = findCoefficient(Src, CurLoop);
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
    Src = zeroCoefficient(Src, CurLoop);
    Dst = addToCoefficient(Dst, CurLoop, A_K);
    if (!findCoefficient(Dst, CurLoop)->isZero())
      Consistent = false;
  }
  else {
    // paper is incorrect here, or perhaps just misleading
    const SCEV *A_K = findCoefficient(Src, CurLoop);
    Src = SE->getMulExpr(Src, A);
    Dst = SE->getMulExpr(Dst, A);
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
    Src = zeroCoefficient(Src, CurLoop);
    Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
    if (!findCoefficient(Dst, CurLoop)->isZero())
      Consistent = false;
  }
  LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
  return true;
}


// Attempt to propagate a point
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
                                    Constraint &CurConstraint) {
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
  const SCEV *A_K = findCoefficient(Src, CurLoop);
  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
  Src = zeroCoefficient(Src, CurLoop);
  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
  Dst = zeroCoefficient(Dst, CurLoop);
  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
  return true;
}


// Update direction vector entry based on the current constraint.
void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
                                     const Constraint &CurConstraint) const {
  LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
  LLVM_DEBUG(CurConstraint.dump(dbgs()));
  if (CurConstraint.isAny())
    ; // use defaults
  else if (CurConstraint.isDistance()) {
    // this one is consistent, the others aren't
    Level.Scalar = false;
    Level.Distance = CurConstraint.getD();
    unsigned NewDirection = Dependence::DVEntry::NONE;
    if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
      NewDirection = Dependence::DVEntry::EQ;
    if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
      NewDirection |= Dependence::DVEntry::LT;
    if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
      NewDirection |= Dependence::DVEntry::GT;
    Level.Direction &= NewDirection;
  }
  else if (CurConstraint.isLine()) {
    Level.Scalar = false;
    Level.Distance = nullptr;
    // direction should be accurate
  }
  else if (CurConstraint.isPoint()) {
    Level.Scalar = false;
    Level.Distance = nullptr;
    unsigned NewDirection = Dependence::DVEntry::NONE;
    if (!isKnownPredicate(CmpInst::ICMP_NE,
                          CurConstraint.getY(),
                          CurConstraint.getX()))
      // if X may be = Y
      NewDirection |= Dependence::DVEntry::EQ;
    if (!isKnownPredicate(CmpInst::ICMP_SLE,
                          CurConstraint.getY(),
                          CurConstraint.getX()))
      // if Y may be > X
      NewDirection |= Dependence::DVEntry::LT;
    if (!isKnownPredicate(CmpInst::ICMP_SGE,
                          CurConstraint.getY(),
                          CurConstraint.getX()))
      // if Y may be < X
      NewDirection |= Dependence::DVEntry::GT;
    Level.Direction &= NewDirection;
  }
  else
    llvm_unreachable("constraint has unexpected kind");
}

/// Check if we can delinearize the subscripts. If the SCEVs representing the
/// source and destination array references are recurrences on a nested loop,
/// this function flattens the nested recurrences into separate recurrences
/// for each loop level.
bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
                                    SmallVectorImpl<Subscript> &Pair) {
  assert(isLoadOrStore(Src) && "instruction is not load or store");
  assert(isLoadOrStore(Dst) && "instruction is not load or store");
  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  Loop *SrcLoop = LI->getLoopFor(Src->getParent());
  Loop *DstLoop = LI->getLoopFor(Dst->getParent());
  const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
  const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
  const SCEVUnknown *SrcBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
  const SCEVUnknown *DstBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));

  if (!SrcBase || !DstBase || SrcBase != DstBase)
    return false;

  SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;

  if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
                               SrcSubscripts, DstSubscripts) &&
      !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
                                    SrcSubscripts, DstSubscripts))
    return false;

  int Size = SrcSubscripts.size();
  LLVM_DEBUG({
    dbgs() << "\nSrcSubscripts: ";
    for (int I = 0; I < Size; I++)
      dbgs() << *SrcSubscripts[I];
    dbgs() << "\nDstSubscripts: ";
    for (int I = 0; I < Size; I++)
      dbgs() << *DstSubscripts[I];
  });

  // The delinearization transforms a single-subscript MIV dependence test into
  // a multi-subscript SIV dependence test that is easier to compute. So we
  // resize Pair to contain as many pairs of subscripts as the delinearization
  // has found, and then initialize the pairs following the delinearization.
  Pair.resize(Size);
  for (int I = 0; I < Size; ++I) {
    Pair[I].Src = SrcSubscripts[I];
    Pair[I].Dst = DstSubscripts[I];
    unifySubscriptType(&Pair[I]);
  }

  return true;
}

bool DependenceInfo::tryDelinearizeFixedSize(
    Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
    const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
    SmallVectorImpl<const SCEV *> &DstSubscripts) {

  // In general we cannot safely assume that the subscripts recovered from GEPs
  // are in the range of values defined for their corresponding array
  // dimensions. For example some C language usage/interpretation make it
  // impossible to verify this at compile-time. As such we give up here unless
  // we can assume that the subscripts do not overlap into neighboring
  // dimensions and that the number of dimensions matches the number of
  // subscripts being recovered.
  if (!DisableDelinearizationChecks)
    return false;

  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  const SCEVUnknown *SrcBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
  const SCEVUnknown *DstBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
  assert(SrcBase && DstBase && SrcBase == DstBase &&
         "expected src and dst scev unknowns to be equal");

  // Check the simple case where the array dimensions are fixed size.
  auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
  auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
  if (!SrcGEP || !DstGEP)
    return false;

  SmallVector<int, 4> SrcSizes, DstSizes;
  SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes);
  SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes);

  // Check that the two size arrays are non-empty and equal in length and
  // value.
  if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
      SrcSizes.size() != DstSizes.size() ||
      !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
    SrcSubscripts.clear();
    DstSubscripts.clear();
    return false;
  }

  Value *SrcBasePtr = SrcGEP->getOperand(0);
  Value *DstBasePtr = DstGEP->getOperand(0);
  while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
    SrcBasePtr = PCast->getOperand(0);
  while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
    DstBasePtr = PCast->getOperand(0);

  // Check that for identical base pointers we do not miss index offsets
  // that have been added before this GEP is applied.
  if (SrcBasePtr == SrcBase->getValue() && DstBasePtr == DstBase->getValue()) {
    assert(SrcSubscripts.size() == DstSubscripts.size() &&
           SrcSubscripts.size() == SrcSizes.size() + 1 &&
           "Expected equal number of entries in the list of sizes and "
           "subscripts.");
    LLVM_DEBUG({
      dbgs() << "Delinearized subscripts of fixed-size array\n"
             << "SrcGEP:" << *SrcGEP << "\n"
             << "DstGEP:" << *DstGEP << "\n";
    });
    return true;
  }

  SrcSubscripts.clear();
  DstSubscripts.clear();
  return false;
}

bool DependenceInfo::tryDelinearizeParametricSize(
    Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
    const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
    SmallVectorImpl<const SCEV *> &DstSubscripts) {

  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  const SCEVUnknown *SrcBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
  const SCEVUnknown *DstBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
  assert(SrcBase && DstBase && SrcBase == DstBase &&
         "expected src and dst scev unknowns to be equal");

  const SCEV *ElementSize = SE->getElementSize(Src);
  if (ElementSize != SE->getElementSize(Dst))
    return false;

  const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
  const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);

  const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
  const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
  if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
    return false;

  // First step: collect parametric terms in both array references.
  SmallVector<const SCEV *, 4> Terms;
  SE->collectParametricTerms(SrcAR, Terms);
  SE->collectParametricTerms(DstAR, Terms);

  // Second step: find subscript sizes.
  SmallVector<const SCEV *, 4> Sizes;
  SE->findArrayDimensions(Terms, Sizes, ElementSize);

  // Third step: compute the access functions for each subscript.
  SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
  SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);

  // Fail when there is only a subscript: that's a linearized access function.
  if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
      SrcSubscripts.size() != DstSubscripts.size())
    return false;

  size_t Size = SrcSubscripts.size();

  // Statically check that the array bounds are in-range. The first subscript we
  // don't have a size for and it cannot overflow into another subscript, so is
  // always safe. The others need to be 0 <= subscript[i] < bound, for both src
  // and dst.
  // FIXME: It may be better to record these sizes and add them as constraints
  // to the dependency checks.
  if (!DisableDelinearizationChecks)
    for (size_t I = 1; I < Size; ++I) {
      if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
        return false;

      if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
        return false;

      if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
        return false;

      if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
        return false;
    }

  return true;
}

//===----------------------------------------------------------------------===//

#ifndef NDEBUG
// For debugging purposes, dump a small bit vector to dbgs().
static void dumpSmallBitVector(SmallBitVector &BV) {
  dbgs() << "{";
  for (unsigned VI : BV.set_bits()) {
    dbgs() << VI;
    if (BV.find_next(VI) >= 0)
      dbgs() << ' ';
  }
  dbgs() << "}\n";
}
#endif

bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                                FunctionAnalysisManager::Invalidator &Inv) {
  // Check if the analysis itself has been invalidated.
  auto PAC = PA.getChecker<DependenceAnalysis>();
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
    return true;

  // Check transitive dependencies.
  return Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
         Inv.invalidate<LoopAnalysis>(F, PA);
}

// depends -
// Returns NULL if there is no dependence.
// Otherwise, return a Dependence with as many details as possible.
// Corresponds to Section 3.1 in the paper
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
//
// Care is required to keep the routine below, getSplitIteration(),
// up to date with respect to this routine.
std::unique_ptr<Dependence>
DependenceInfo::depends(Instruction *Src, Instruction *Dst,
                        bool PossiblyLoopIndependent) {
  if (Src == Dst)
    PossiblyLoopIndependent = false;

  if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
    // if both instructions don't reference memory, there's no dependence
    return nullptr;

  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
    // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
    LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
    return std::make_unique<Dependence>(Src, Dst);
  }

  assert(isLoadOrStore(Src) && "instruction is not load or store");
  assert(isLoadOrStore(Dst) && "instruction is not load or store");
  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);

  switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
                                 MemoryLocation::get(Dst),
                                 MemoryLocation::get(Src))) {
  case MayAlias:
  case PartialAlias:
    // cannot analyse objects if we don't understand their aliasing.
    LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
    return std::make_unique<Dependence>(Src, Dst);
  case NoAlias:
    // If the objects noalias, they are distinct, accesses are independent.
    LLVM_DEBUG(dbgs() << "no alias\n");
    return nullptr;
  case MustAlias:
    break; // The underlying objects alias; test accesses for dependence.
  }

  // establish loop nesting levels
  establishNestingLevels(Src, Dst);
  LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
  LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");

  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
  ++TotalArrayPairs;

  unsigned Pairs = 1;
  SmallVector<Subscript, 2> Pair(Pairs);
  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
  LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
  LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
  Pair[0].Src = SrcSCEV;
  Pair[0].Dst = DstSCEV;

  if (Delinearize) {
    if (tryDelinearize(Src, Dst, Pair)) {
      LLVM_DEBUG(dbgs() << "    delinearized\n");
      Pairs = Pair.size();
    }
  }

  for (unsigned P = 0; P < Pairs; ++P) {
    Pair[P].Loops.resize(MaxLevels + 1);
    Pair[P].GroupLoops.resize(MaxLevels + 1);
    Pair[P].Group.resize(Pairs);
    removeMatchingExtensions(&Pair[P]);
    Pair[P].Classification =
      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
                   Pair[P].Loops);
    Pair[P].GroupLoops = Pair[P].Loops;
    Pair[P].Group.set(P);
    LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
    LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
    LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
    LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
    LLVM_DEBUG(dbgs() << "\tloops = ");
    LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
  }

  SmallBitVector Separable(Pairs);
  SmallBitVector Coupled(Pairs);

  // Partition subscripts into separable and minimally-coupled groups
  // Algorithm in paper is algorithmically better;
  // this may be faster in practice. Check someday.
  //
  // Here's an example of how it works. Consider this code:
  //
  //   for (i = ...) {
  //     for (j = ...) {
  //       for (k = ...) {
  //         for (l = ...) {
  //           for (m = ...) {
  //             A[i][j][k][m] = ...;
  //             ... = A[0][j][l][i + j];
  //           }
  //         }
  //       }
  //     }
  //   }
  //
  // There are 4 subscripts here:
  //    0 [i] and [0]
  //    1 [j] and [j]
  //    2 [k] and [l]
  //    3 [m] and [i + j]
  //
  // We've already classified each subscript pair as ZIV, SIV, etc.,
  // and collected all the loops mentioned by pair P in Pair[P].Loops.
  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
  // and set Pair[P].Group = {P}.
  //
  //      Src Dst    Classification Loops  GroupLoops Group
  //    0 [i] [0]         SIV       {1}      {1}        {0}
  //    1 [j] [j]         SIV       {2}      {2}        {1}
  //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
  //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
  //
  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
  //
  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
  // to either Separable or Coupled).
  //
  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
  // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
  // so Pair[3].Group = {0, 1, 3} and Done = false.
  //
  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
  // Since Done remains true, we add 2 to the set of Separable pairs.
  //
  // Finally, we consider 3. There's nothing to compare it with,
  // so Done remains true and we add it to the Coupled set.
  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
  //
  // In the end, we've got 1 separable subscript and 1 coupled group.
  for (unsigned SI = 0; SI < Pairs; ++SI) {
    if (Pair[SI].Classification == Subscript::NonLinear) {
      // ignore these, but collect loops for later
      ++NonlinearSubscriptPairs;
      collectCommonLoops(Pair[SI].Src,
                         LI->getLoopFor(Src->getParent()),
                         Pair[SI].Loops);
      collectCommonLoops(Pair[SI].Dst,
                         LI->getLoopFor(Dst->getParent()),
                         Pair[SI].Loops);
      Result.Consistent = false;
    } else if (Pair[SI].Classification == Subscript::ZIV) {
      // always separable
      Separable.set(SI);
    }
    else {
      // SIV, RDIV, or MIV, so check for coupled group
      bool Done = true;
      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
        SmallBitVector Intersection = Pair[SI].GroupLoops;
        Intersection &= Pair[SJ].GroupLoops;
        if (Intersection.any()) {
          // accumulate set of all the loops in group
          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
          // accumulate set of all subscripts in group
          Pair[SJ].Group |= Pair[SI].Group;
          Done = false;
        }
      }
      if (Done) {
        if (Pair[SI].Group.count() == 1) {
          Separable.set(SI);
          ++SeparableSubscriptPairs;
        }
        else {
          Coupled.set(SI);
          ++CoupledSubscriptPairs;
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "    Separable = ");
  LLVM_DEBUG(dumpSmallBitVector(Separable));
  LLVM_DEBUG(dbgs() << "    Coupled = ");
  LLVM_DEBUG(dumpSmallBitVector(Coupled));

  Constraint NewConstraint;
  NewConstraint.setAny(SE);

  // test separable subscripts
  for (unsigned SI : Separable.set_bits()) {
    LLVM_DEBUG(dbgs() << "testing subscript " << SI);
    switch (Pair[SI].Classification) {
    case Subscript::ZIV:
      LLVM_DEBUG(dbgs() << ", ZIV\n");
      if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
        return nullptr;
      break;
    case Subscript::SIV: {
      LLVM_DEBUG(dbgs() << ", SIV\n");
      unsigned Level;
      const SCEV *SplitIter = nullptr;
      if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
                  SplitIter))
        return nullptr;
      break;
    }
    case Subscript::RDIV:
      LLVM_DEBUG(dbgs() << ", RDIV\n");
      if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
        return nullptr;
      break;
    case Subscript::MIV:
      LLVM_DEBUG(dbgs() << ", MIV\n");
      if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
        return nullptr;
      break;
    default:
      llvm_unreachable("subscript has unexpected classification");
    }
  }

  if (Coupled.count()) {
    // test coupled subscript groups
    LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
    LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
    for (unsigned II = 0; II <= MaxLevels; ++II)
      Constraints[II].setAny(SE);
    for (unsigned SI : Coupled.set_bits()) {
      LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
      SmallBitVector Group(Pair[SI].Group);
      SmallBitVector Sivs(Pairs);
      SmallBitVector Mivs(Pairs);
      SmallBitVector ConstrainedLevels(MaxLevels + 1);
      SmallVector<Subscript *, 4> PairsInGroup;
      for (unsigned SJ : Group.set_bits()) {
        LLVM_DEBUG(dbgs() << SJ << " ");
        if (Pair[SJ].Classification == Subscript::SIV)
          Sivs.set(SJ);
        else
          Mivs.set(SJ);
        PairsInGroup.push_back(&Pair[SJ]);
      }
      unifySubscriptType(PairsInGroup);
      LLVM_DEBUG(dbgs() << "}\n");
      while (Sivs.any()) {
        bool Changed = false;
        for (unsigned SJ : Sivs.set_bits()) {
          LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
          // SJ is an SIV subscript that's part of the current coupled group
          unsigned Level;
          const SCEV *SplitIter = nullptr;
          LLVM_DEBUG(dbgs() << "SIV\n");
          if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
                      SplitIter))
            return nullptr;
          ConstrainedLevels.set(Level);
          if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
            if (Constraints[Level].isEmpty()) {
              ++DeltaIndependence;
              return nullptr;
            }
            Changed = true;
          }
          Sivs.reset(SJ);
        }
        if (Changed) {
          // propagate, possibly creating new SIVs and ZIVs
          LLVM_DEBUG(dbgs() << "    propagating\n");
          LLVM_DEBUG(dbgs() << "\tMivs = ");
          LLVM_DEBUG(dumpSmallBitVector(Mivs));
          for (unsigned SJ : Mivs.set_bits()) {
            // SJ is an MIV subscript that's part of the current coupled group
            LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
                          Constraints, Result.Consistent)) {
              LLVM_DEBUG(dbgs() << "\t    Changed\n");
              ++DeltaPropagations;
              Pair[SJ].Classification =
                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
                             Pair[SJ].Loops);
              switch (Pair[SJ].Classification) {
              case Subscript::ZIV:
                LLVM_DEBUG(dbgs() << "ZIV\n");
                if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
                  return nullptr;
                Mivs.reset(SJ);
                break;
              case Subscript::SIV:
                Sivs.set(SJ);
                Mivs.reset(SJ);
                break;
              case Subscript::RDIV:
              case Subscript::MIV:
                break;
              default:
                llvm_unreachable("bad subscript classification");
              }
            }
          }
        }
      }

      // test & propagate remaining RDIVs
      for (unsigned SJ : Mivs.set_bits()) {
        if (Pair[SJ].Classification == Subscript::RDIV) {
          LLVM_DEBUG(dbgs() << "RDIV test\n");
          if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
            return nullptr;
          // I don't yet understand how to propagate RDIV results
          Mivs.reset(SJ);
        }
      }

      // test remaining MIVs
      // This code is temporary.
      // Better to somehow test all remaining subscripts simultaneously.
      for (unsigned SJ : Mivs.set_bits()) {
        if (Pair[SJ].Classification == Subscript::MIV) {
          LLVM_DEBUG(dbgs() << "MIV test\n");
          if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
            return nullptr;
        }
        else
          llvm_unreachable("expected only MIV subscripts at this point");
      }

      // update Result.DV from constraint vector
      LLVM_DEBUG(dbgs() << "    updating\n");
      for (unsigned SJ : ConstrainedLevels.set_bits()) {
        if (SJ > CommonLevels)
          break;
        updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
        if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
          return nullptr;
      }
    }
  }

  // Make sure the Scalar flags are set correctly.
  SmallBitVector CompleteLoops(MaxLevels + 1);
  for (unsigned SI = 0; SI < Pairs; ++SI)
    CompleteLoops |= Pair[SI].Loops;
  for (unsigned II = 1; II <= CommonLevels; ++II)
    if (CompleteLoops[II])
      Result.DV[II - 1].Scalar = false;

  if (PossiblyLoopIndependent) {
    // Make sure the LoopIndependent flag is set correctly.
    // All directions must include equal, otherwise no
    // loop-independent dependence is possible.
    for (unsigned II = 1; II <= CommonLevels; ++II) {
      if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
        Result.LoopIndependent = false;
        break;
      }
    }
  }
  else {
    // On the other hand, if all directions are equal and there's no
    // loop-independent dependence possible, then no dependence exists.
    bool AllEqual = true;
    for (unsigned II = 1; II <= CommonLevels; ++II) {
      if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
        AllEqual = false;
        break;
      }
    }
    if (AllEqual)
      return nullptr;
  }

  return std::make_unique<FullDependence>(std::move(Result));
}

//===----------------------------------------------------------------------===//
// getSplitIteration -
// Rather than spend rarely-used space recording the splitting iteration
// during the Weak-Crossing SIV test, we re-compute it on demand.
// The re-computation is basically a repeat of the entire dependence test,
// though simplified since we know that the dependence exists.
// It's tedious, since we must go through all propagations, etc.
//
// Care is required to keep this code up to date with respect to the routine
// above, depends().
//
// Generally, the dependence analyzer will be used to build
// a dependence graph for a function (basically a map from instructions
// to dependences). Looking for cycles in the graph shows us loops
// that cannot be trivially vectorized/parallelized.
//
// We can try to improve the situation by examining all the dependences
// that make up the cycle, looking for ones we can break.
// Sometimes, peeling the first or last iteration of a loop will break
// dependences, and we've got flags for those possibilities.
// Sometimes, splitting a loop at some other iteration will do the trick,
// and we've got a flag for that case. Rather than waste the space to
// record the exact iteration (since we rarely know), we provide
// a method that calculates the iteration. It's a drag that it must work
// from scratch, but wonderful in that it's possible.
//
// Here's an example:
//
//    for (i = 0; i < 10; i++)
//        A[i] = ...
//        ... = A[11 - i]
//
// There's a loop-carried flow dependence from the store to the load,
// found by the weak-crossing SIV test. The dependence will have a flag,
// indicating that the dependence can be broken by splitting the loop.
// Calling getSplitIteration will return 5.
// Splitting the loop breaks the dependence, like so:
//
//    for (i = 0; i <= 5; i++)
//        A[i] = ...
//        ... = A[11 - i]
//    for (i = 6; i < 10; i++)
//        A[i] = ...
//        ... = A[11 - i]
//
// breaks the dependence and allows us to vectorize/parallelize
// both loops.
const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
                                              unsigned SplitLevel) {
  assert(Dep.isSplitable(SplitLevel) &&
         "Dep should be splitable at SplitLevel");
  Instruction *Src = Dep.getSrc();
  Instruction *Dst = Dep.getDst();
  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
  assert(isLoadOrStore(Src));
  assert(isLoadOrStore(Dst));
  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
                                MemoryLocation::get(Dst),
                                MemoryLocation::get(Src)) == MustAlias);

  // establish loop nesting levels
  establishNestingLevels(Src, Dst);

  FullDependence Result(Src, Dst, false, CommonLevels);

  unsigned Pairs = 1;
  SmallVector<Subscript, 2> Pair(Pairs);
  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
  Pair[0].Src = SrcSCEV;
  Pair[0].Dst = DstSCEV;

  if (Delinearize) {
    if (tryDelinearize(Src, Dst, Pair)) {
      LLVM_DEBUG(dbgs() << "    delinearized\n");
      Pairs = Pair.size();
    }
  }

  for (unsigned P = 0; P < Pairs; ++P) {
    Pair[P].Loops.resize(MaxLevels + 1);
    Pair[P].GroupLoops.resize(MaxLevels + 1);
    Pair[P].Group.resize(Pairs);
    removeMatchingExtensions(&Pair[P]);
    Pair[P].Classification =
      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
                   Pair[P].Loops);
    Pair[P].GroupLoops = Pair[P].Loops;
    Pair[P].Group.set(P);
  }

  SmallBitVector Separable(Pairs);
  SmallBitVector Coupled(Pairs);

  // partition subscripts into separable and minimally-coupled groups
  for (unsigned SI = 0; SI < Pairs; ++SI) {
    if (Pair[SI].Classification == Subscript::NonLinear) {
      // ignore these, but collect loops for later
      collectCommonLoops(Pair[SI].Src,
                         LI->getLoopFor(Src->getParent()),
                         Pair[SI].Loops);
      collectCommonLoops(Pair[SI].Dst,
                         LI->getLoopFor(Dst->getParent()),
                         Pair[SI].Loops);
      Result.Consistent = false;
    }
    else if (Pair[SI].Classification == Subscript::ZIV)
      Separable.set(SI);
    else {
      // SIV, RDIV, or MIV, so check for coupled group
      bool Done = true;
      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
        SmallBitVector Intersection = Pair[SI].GroupLoops;
        Intersection &= Pair[SJ].GroupLoops;
        if (Intersection.any()) {
          // accumulate set of all the loops in group
          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
          // accumulate set of all subscripts in group
          Pair[SJ].Group |= Pair[SI].Group;
          Done = false;
        }
      }
      if (Done) {
        if (Pair[SI].Group.count() == 1)
          Separable.set(SI);
        else
          Coupled.set(SI);
      }
    }
  }

  Constraint NewConstraint;
  NewConstraint.setAny(SE);

  // test separable subscripts
  for (unsigned SI : Separable.set_bits()) {
    switch (Pair[SI].Classification) {
    case Subscript::SIV: {
      unsigned Level;
      const SCEV *SplitIter = nullptr;
      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
                     Result, NewConstraint, SplitIter);
      if (Level == SplitLevel) {
        assert(SplitIter != nullptr);
        return SplitIter;
      }
      break;
    }
    case Subscript::ZIV:
    case Subscript::RDIV:
    case Subscript::MIV:
      break;
    default:
      llvm_unreachable("subscript has unexpected classification");
    }
  }

  if (Coupled.count()) {
    // test coupled subscript groups
    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
    for (unsigned II = 0; II <= MaxLevels; ++II)
      Constraints[II].setAny(SE);
    for (unsigned SI : Coupled.set_bits()) {
      SmallBitVector Group(Pair[SI].Group);
      SmallBitVector Sivs(Pairs);
      SmallBitVector Mivs(Pairs);
      SmallBitVector ConstrainedLevels(MaxLevels + 1);
      for (unsigned SJ : Group.set_bits()) {
        if (Pair[SJ].Classification == Subscript::SIV)
          Sivs.set(SJ);
        else
          Mivs.set(SJ);
      }
      while (Sivs.any()) {
        bool Changed = false;
        for (unsigned SJ : Sivs.set_bits()) {
          // SJ is an SIV subscript that's part of the current coupled group
          unsigned Level;
          const SCEV *SplitIter = nullptr;
          (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
                         Result, NewConstraint, SplitIter);
          if (Level == SplitLevel && SplitIter)
            return SplitIter;
          ConstrainedLevels.set(Level);
          if (intersectConstraints(&Constraints[Level], &NewConstraint))
            Changed = true;
          Sivs.reset(SJ);
        }
        if (Changed) {
          // propagate, possibly creating new SIVs and ZIVs
          for (unsigned SJ : Mivs.set_bits()) {
            // SJ is an MIV subscript that's part of the current coupled group
            if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
                          Pair[SJ].Loops, Constraints, Result.Consistent)) {
              Pair[SJ].Classification =
                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
                             Pair[SJ].Loops);
              switch (Pair[SJ].Classification) {
              case Subscript::ZIV:
                Mivs.reset(SJ);
                break;
              case Subscript::SIV:
                Sivs.set(SJ);
                Mivs.reset(SJ);
                break;
              case Subscript::RDIV:
              case Subscript::MIV:
                break;
              default:
                llvm_unreachable("bad subscript classification");
              }
            }
          }
        }
      }
    }
  }
  llvm_unreachable("somehow reached end of routine");
  return nullptr;
}