tsan_test_util_posix.cpp
12.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//===-- tsan_test_util_posix.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Test utils, Linux, FreeBSD, NetBSD and Darwin implementation.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_atomic.h"
#include "tsan_interface.h"
#include "tsan_posix_util.h"
#include "tsan_test_util.h"
#include "tsan_report.h"
#include "gtest/gtest.h"
#include <assert.h>
#include <pthread.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#define CALLERPC (__builtin_return_address(0))
using namespace __tsan;
static __thread bool expect_report;
static __thread bool expect_report_reported;
static __thread ReportType expect_report_type;
static void *BeforeInitThread(void *param) {
(void)param;
return 0;
}
static void AtExit() {
}
void TestMutexBeforeInit() {
// Mutexes must be usable before __tsan_init();
pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
__interceptor_pthread_mutex_lock(&mtx);
__interceptor_pthread_mutex_unlock(&mtx);
__interceptor_pthread_mutex_destroy(&mtx);
pthread_t thr;
__interceptor_pthread_create(&thr, 0, BeforeInitThread, 0);
__interceptor_pthread_join(thr, 0);
atexit(AtExit);
}
namespace __tsan {
bool OnReport(const ReportDesc *rep, bool suppressed) {
if (expect_report) {
if (rep->typ != expect_report_type) {
printf("Expected report of type %d, got type %d\n",
(int)expect_report_type, (int)rep->typ);
EXPECT_TRUE(false) << "Wrong report type";
return false;
}
} else {
EXPECT_TRUE(false) << "Unexpected report";
return false;
}
expect_report_reported = true;
return true;
}
} // namespace __tsan
static void* allocate_addr(int size, int offset_from_aligned = 0) {
static uintptr_t foo;
static atomic_uintptr_t uniq = {(uintptr_t)&foo}; // Some real address.
const int kAlign = 16;
CHECK(offset_from_aligned < kAlign);
size = (size + 2 * kAlign) & ~(kAlign - 1);
uintptr_t addr = atomic_fetch_add(&uniq, size, memory_order_relaxed);
return (void*)(addr + offset_from_aligned);
}
MemLoc::MemLoc(int offset_from_aligned)
: loc_(allocate_addr(16, offset_from_aligned)) {
}
MemLoc::~MemLoc() {
}
Mutex::Mutex(Type type)
: alive_()
, type_(type) {
}
Mutex::~Mutex() {
CHECK(!alive_);
}
void Mutex::Init() {
CHECK(!alive_);
alive_ = true;
if (type_ == Normal)
CHECK_EQ(__interceptor_pthread_mutex_init((pthread_mutex_t*)mtx_, 0), 0);
#ifndef __APPLE__
else if (type_ == Spin)
CHECK_EQ(pthread_spin_init((pthread_spinlock_t*)mtx_, 0), 0);
#endif
else if (type_ == RW)
CHECK_EQ(__interceptor_pthread_rwlock_init((pthread_rwlock_t*)mtx_, 0), 0);
else
CHECK(0);
}
void Mutex::StaticInit() {
CHECK(!alive_);
CHECK(type_ == Normal);
alive_ = true;
pthread_mutex_t tmp = PTHREAD_MUTEX_INITIALIZER;
memcpy(mtx_, &tmp, sizeof(tmp));
}
void Mutex::Destroy() {
CHECK(alive_);
alive_ = false;
if (type_ == Normal)
CHECK_EQ(__interceptor_pthread_mutex_destroy((pthread_mutex_t*)mtx_), 0);
#ifndef __APPLE__
else if (type_ == Spin)
CHECK_EQ(pthread_spin_destroy((pthread_spinlock_t*)mtx_), 0);
#endif
else if (type_ == RW)
CHECK_EQ(__interceptor_pthread_rwlock_destroy((pthread_rwlock_t*)mtx_), 0);
}
void Mutex::Lock() {
CHECK(alive_);
if (type_ == Normal)
CHECK_EQ(__interceptor_pthread_mutex_lock((pthread_mutex_t*)mtx_), 0);
#ifndef __APPLE__
else if (type_ == Spin)
CHECK_EQ(pthread_spin_lock((pthread_spinlock_t*)mtx_), 0);
#endif
else if (type_ == RW)
CHECK_EQ(__interceptor_pthread_rwlock_wrlock((pthread_rwlock_t*)mtx_), 0);
}
bool Mutex::TryLock() {
CHECK(alive_);
if (type_ == Normal)
return __interceptor_pthread_mutex_trylock((pthread_mutex_t*)mtx_) == 0;
#ifndef __APPLE__
else if (type_ == Spin)
return pthread_spin_trylock((pthread_spinlock_t*)mtx_) == 0;
#endif
else if (type_ == RW)
return __interceptor_pthread_rwlock_trywrlock((pthread_rwlock_t*)mtx_) == 0;
return false;
}
void Mutex::Unlock() {
CHECK(alive_);
if (type_ == Normal)
CHECK_EQ(__interceptor_pthread_mutex_unlock((pthread_mutex_t*)mtx_), 0);
#ifndef __APPLE__
else if (type_ == Spin)
CHECK_EQ(pthread_spin_unlock((pthread_spinlock_t*)mtx_), 0);
#endif
else if (type_ == RW)
CHECK_EQ(__interceptor_pthread_rwlock_unlock((pthread_rwlock_t*)mtx_), 0);
}
void Mutex::ReadLock() {
CHECK(alive_);
CHECK(type_ == RW);
CHECK_EQ(__interceptor_pthread_rwlock_rdlock((pthread_rwlock_t*)mtx_), 0);
}
bool Mutex::TryReadLock() {
CHECK(alive_);
CHECK(type_ == RW);
return __interceptor_pthread_rwlock_tryrdlock((pthread_rwlock_t*)mtx_) == 0;
}
void Mutex::ReadUnlock() {
CHECK(alive_);
CHECK(type_ == RW);
CHECK_EQ(__interceptor_pthread_rwlock_unlock((pthread_rwlock_t*)mtx_), 0);
}
struct Event {
enum Type {
SHUTDOWN,
READ,
WRITE,
VPTR_UPDATE,
CALL,
RETURN,
MUTEX_CREATE,
MUTEX_DESTROY,
MUTEX_LOCK,
MUTEX_TRYLOCK,
MUTEX_UNLOCK,
MUTEX_READLOCK,
MUTEX_TRYREADLOCK,
MUTEX_READUNLOCK,
MEMCPY,
MEMSET
};
Type type;
void *ptr;
uptr arg;
uptr arg2;
bool res;
bool expect_report;
ReportType report_type;
explicit Event(Type type, const void *ptr = 0, uptr arg = 0, uptr arg2 = 0)
: type(type),
ptr(const_cast<void *>(ptr)),
arg(arg),
arg2(arg2),
res(),
expect_report(),
report_type() {}
void ExpectReport(ReportType type) {
expect_report = true;
report_type = type;
}
};
struct ScopedThread::Impl {
pthread_t thread;
bool main;
bool detached;
atomic_uintptr_t event; // Event*
static void *ScopedThreadCallback(void *arg);
void send(Event *ev);
void HandleEvent(Event *ev);
};
void ScopedThread::Impl::HandleEvent(Event *ev) {
CHECK_EQ(expect_report, false);
expect_report = ev->expect_report;
expect_report_reported = false;
expect_report_type = ev->report_type;
switch (ev->type) {
case Event::READ:
case Event::WRITE: {
void (*tsan_mop)(void *addr, void *pc) = 0;
if (ev->type == Event::READ) {
switch (ev->arg /*size*/) {
case 1:
tsan_mop = __tsan_read1_pc;
break;
case 2:
tsan_mop = __tsan_read2_pc;
break;
case 4:
tsan_mop = __tsan_read4_pc;
break;
case 8:
tsan_mop = __tsan_read8_pc;
break;
case 16:
tsan_mop = __tsan_read16_pc;
break;
}
} else {
switch (ev->arg /*size*/) {
case 1:
tsan_mop = __tsan_write1_pc;
break;
case 2:
tsan_mop = __tsan_write2_pc;
break;
case 4:
tsan_mop = __tsan_write4_pc;
break;
case 8:
tsan_mop = __tsan_write8_pc;
break;
case 16:
tsan_mop = __tsan_write16_pc;
break;
}
}
CHECK_NE(tsan_mop, 0);
#if defined(__FreeBSD__) || defined(__APPLE__) || defined(__NetBSD__)
const int ErrCode = ESOCKTNOSUPPORT;
#else
const int ErrCode = ECHRNG;
#endif
errno = ErrCode;
tsan_mop(ev->ptr, (void *)ev->arg2);
CHECK_EQ(ErrCode, errno); // In no case must errno be changed.
break;
}
case Event::VPTR_UPDATE:
__tsan_vptr_update((void**)ev->ptr, (void*)ev->arg);
break;
case Event::CALL:
__tsan_func_entry((void*)((uptr)ev->ptr));
break;
case Event::RETURN:
__tsan_func_exit();
break;
case Event::MUTEX_CREATE:
static_cast<Mutex*>(ev->ptr)->Init();
break;
case Event::MUTEX_DESTROY:
static_cast<Mutex*>(ev->ptr)->Destroy();
break;
case Event::MUTEX_LOCK:
static_cast<Mutex*>(ev->ptr)->Lock();
break;
case Event::MUTEX_TRYLOCK:
ev->res = static_cast<Mutex*>(ev->ptr)->TryLock();
break;
case Event::MUTEX_UNLOCK:
static_cast<Mutex*>(ev->ptr)->Unlock();
break;
case Event::MUTEX_READLOCK:
static_cast<Mutex*>(ev->ptr)->ReadLock();
break;
case Event::MUTEX_TRYREADLOCK:
ev->res = static_cast<Mutex*>(ev->ptr)->TryReadLock();
break;
case Event::MUTEX_READUNLOCK:
static_cast<Mutex*>(ev->ptr)->ReadUnlock();
break;
case Event::MEMCPY:
__interceptor_memcpy(ev->ptr, (void*)ev->arg, ev->arg2);
break;
case Event::MEMSET:
__interceptor_memset(ev->ptr, ev->arg, ev->arg2);
break;
default: CHECK(0);
}
if (expect_report && !expect_report_reported) {
printf("Missed expected report of type %d\n", (int)ev->report_type);
EXPECT_TRUE(false) << "Missed expected race";
}
expect_report = false;
}
void *ScopedThread::Impl::ScopedThreadCallback(void *arg) {
__tsan_func_entry(CALLERPC);
Impl *impl = (Impl*)arg;
for (;;) {
Event* ev = (Event*)atomic_load(&impl->event, memory_order_acquire);
if (ev == 0) {
sched_yield();
continue;
}
if (ev->type == Event::SHUTDOWN) {
atomic_store(&impl->event, 0, memory_order_release);
break;
}
impl->HandleEvent(ev);
atomic_store(&impl->event, 0, memory_order_release);
}
__tsan_func_exit();
return 0;
}
void ScopedThread::Impl::send(Event *e) {
if (main) {
HandleEvent(e);
} else {
CHECK_EQ(atomic_load(&event, memory_order_relaxed), 0);
atomic_store(&event, (uintptr_t)e, memory_order_release);
while (atomic_load(&event, memory_order_acquire) != 0)
sched_yield();
}
}
ScopedThread::ScopedThread(bool detached, bool main) {
impl_ = new Impl;
impl_->main = main;
impl_->detached = detached;
atomic_store(&impl_->event, 0, memory_order_relaxed);
if (!main) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(
&attr, detached ? PTHREAD_CREATE_DETACHED : PTHREAD_CREATE_JOINABLE);
pthread_attr_setstacksize(&attr, 64*1024);
__interceptor_pthread_create(&impl_->thread, &attr,
ScopedThread::Impl::ScopedThreadCallback, impl_);
}
}
ScopedThread::~ScopedThread() {
if (!impl_->main) {
Event event(Event::SHUTDOWN);
impl_->send(&event);
if (!impl_->detached)
__interceptor_pthread_join(impl_->thread, 0);
}
delete impl_;
}
void ScopedThread::Detach() {
CHECK(!impl_->main);
CHECK(!impl_->detached);
impl_->detached = true;
__interceptor_pthread_detach(impl_->thread);
}
void ScopedThread::Access(void *addr, bool is_write,
int size, bool expect_race) {
Event event(is_write ? Event::WRITE : Event::READ, addr, size,
(uptr)CALLERPC);
if (expect_race)
event.ExpectReport(ReportTypeRace);
impl_->send(&event);
}
void ScopedThread::VptrUpdate(const MemLoc &vptr,
const MemLoc &new_val,
bool expect_race) {
Event event(Event::VPTR_UPDATE, vptr.loc(), (uptr)new_val.loc());
if (expect_race)
event.ExpectReport(ReportTypeRace);
impl_->send(&event);
}
void ScopedThread::Call(void(*pc)()) {
Event event(Event::CALL, (void*)((uintptr_t)pc));
impl_->send(&event);
}
void ScopedThread::Return() {
Event event(Event::RETURN);
impl_->send(&event);
}
void ScopedThread::Create(const Mutex &m) {
Event event(Event::MUTEX_CREATE, &m);
impl_->send(&event);
}
void ScopedThread::Destroy(const Mutex &m) {
Event event(Event::MUTEX_DESTROY, &m);
impl_->send(&event);
}
void ScopedThread::Lock(const Mutex &m) {
Event event(Event::MUTEX_LOCK, &m);
impl_->send(&event);
}
bool ScopedThread::TryLock(const Mutex &m) {
Event event(Event::MUTEX_TRYLOCK, &m);
impl_->send(&event);
return event.res;
}
void ScopedThread::Unlock(const Mutex &m) {
Event event(Event::MUTEX_UNLOCK, &m);
impl_->send(&event);
}
void ScopedThread::ReadLock(const Mutex &m) {
Event event(Event::MUTEX_READLOCK, &m);
impl_->send(&event);
}
bool ScopedThread::TryReadLock(const Mutex &m) {
Event event(Event::MUTEX_TRYREADLOCK, &m);
impl_->send(&event);
return event.res;
}
void ScopedThread::ReadUnlock(const Mutex &m) {
Event event(Event::MUTEX_READUNLOCK, &m);
impl_->send(&event);
}
void ScopedThread::Memcpy(void *dst, const void *src, int size,
bool expect_race) {
Event event(Event::MEMCPY, dst, (uptr)src, size);
if (expect_race)
event.ExpectReport(ReportTypeRace);
impl_->send(&event);
}
void ScopedThread::Memset(void *dst, int val, int size,
bool expect_race) {
Event event(Event::MEMSET, dst, val, size);
if (expect_race)
event.ExpectReport(ReportTypeRace);
impl_->send(&event);
}