LoopIdiomRecognize.cpp 71 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements an idiom recognizer that transforms simple loops into a
// non-loop form.  In cases that this kicks in, it can be a significant
// performance win.
//
// If compiling for code size we avoid idiom recognition if the resulting
// code could be larger than the code for the original loop. One way this could
// happen is if the loop is not removable after idiom recognition due to the
// presence of non-idiom instructions. The initial implementation of the
// heuristics applies to idioms in multi-block loops.
//
//===----------------------------------------------------------------------===//
//
// TODO List:
//
// Future loop memory idioms to recognize:
//   memcmp, memmove, strlen, etc.
// Future floating point idioms to recognize in -ffast-math mode:
//   fpowi
// Future integer operation idioms to recognize:
//   ctpop
//
// Beware that isel's default lowering for ctpop is highly inefficient for
// i64 and larger types when i64 is legal and the value has few bits set.  It
// would be good to enhance isel to emit a loop for ctpop in this case.
//
// This could recognize common matrix multiplies and dot product idioms and
// replace them with calls to BLAS (if linked in??).
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-idiom"

STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");

bool DisableLIRP::All;
static cl::opt<bool, true>
    DisableLIRPAll("disable-" DEBUG_TYPE "-all",
                   cl::desc("Options to disable Loop Idiom Recognize Pass."),
                   cl::location(DisableLIRP::All), cl::init(false),
                   cl::ReallyHidden);

bool DisableLIRP::Memset;
static cl::opt<bool, true>
    DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
                      cl::desc("Proceed with loop idiom recognize pass, but do "
                               "not convert loop(s) to memset."),
                      cl::location(DisableLIRP::Memset), cl::init(false),
                      cl::ReallyHidden);

bool DisableLIRP::Memcpy;
static cl::opt<bool, true>
    DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
                      cl::desc("Proceed with loop idiom recognize pass, but do "
                               "not convert loop(s) to memcpy."),
                      cl::location(DisableLIRP::Memcpy), cl::init(false),
                      cl::ReallyHidden);

static cl::opt<bool> UseLIRCodeSizeHeurs(
    "use-lir-code-size-heurs",
    cl::desc("Use loop idiom recognition code size heuristics when compiling"
             "with -Os/-Oz"),
    cl::init(true), cl::Hidden);

namespace {

class LoopIdiomRecognize {
  Loop *CurLoop = nullptr;
  AliasAnalysis *AA;
  DominatorTree *DT;
  LoopInfo *LI;
  ScalarEvolution *SE;
  TargetLibraryInfo *TLI;
  const TargetTransformInfo *TTI;
  const DataLayout *DL;
  OptimizationRemarkEmitter &ORE;
  bool ApplyCodeSizeHeuristics;
  std::unique_ptr<MemorySSAUpdater> MSSAU;

public:
  explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
                              LoopInfo *LI, ScalarEvolution *SE,
                              TargetLibraryInfo *TLI,
                              const TargetTransformInfo *TTI, MemorySSA *MSSA,
                              const DataLayout *DL,
                              OptimizationRemarkEmitter &ORE)
      : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
    if (MSSA)
      MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
  }

  bool runOnLoop(Loop *L);

private:
  using StoreList = SmallVector<StoreInst *, 8>;
  using StoreListMap = MapVector<Value *, StoreList>;

  StoreListMap StoreRefsForMemset;
  StoreListMap StoreRefsForMemsetPattern;
  StoreList StoreRefsForMemcpy;
  bool HasMemset;
  bool HasMemsetPattern;
  bool HasMemcpy;

  /// Return code for isLegalStore()
  enum LegalStoreKind {
    None = 0,
    Memset,
    MemsetPattern,
    Memcpy,
    UnorderedAtomicMemcpy,
    DontUse // Dummy retval never to be used. Allows catching errors in retval
            // handling.
  };

  /// \name Countable Loop Idiom Handling
  /// @{

  bool runOnCountableLoop();
  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
                      SmallVectorImpl<BasicBlock *> &ExitBlocks);

  void collectStores(BasicBlock *BB);
  LegalStoreKind isLegalStore(StoreInst *SI);
  enum class ForMemset { No, Yes };
  bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
                         ForMemset For);
  bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);

  bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
                               MaybeAlign StoreAlignment, Value *StoredVal,
                               Instruction *TheStore,
                               SmallPtrSetImpl<Instruction *> &Stores,
                               const SCEVAddRecExpr *Ev, const SCEV *BECount,
                               bool NegStride, bool IsLoopMemset = false);
  bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
  bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
                                 bool IsLoopMemset = false);

  /// @}
  /// \name Noncountable Loop Idiom Handling
  /// @{

  bool runOnNoncountableLoop();

  bool recognizePopcount();
  void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
                               PHINode *CntPhi, Value *Var);
  bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
  void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
                                Instruction *CntInst, PHINode *CntPhi,
                                Value *Var, Instruction *DefX,
                                const DebugLoc &DL, bool ZeroCheck,
                                bool IsCntPhiUsedOutsideLoop);

  /// @}
};

class LoopIdiomRecognizeLegacyPass : public LoopPass {
public:
  static char ID;

  explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
    initializeLoopIdiomRecognizeLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (DisableLIRP::All)
      return false;

    if (skipLoop(L))
      return false;

    AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
            *L->getHeader()->getParent());
    const TargetTransformInfo *TTI =
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
            *L->getHeader()->getParent());
    const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
    auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
    MemorySSA *MSSA = nullptr;
    if (MSSAAnalysis)
      MSSA = &MSSAAnalysis->getMSSA();

    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass.  Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());

    LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
    return LIR.runOnLoop(L);
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG.
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addPreserved<MemorySSAWrapperPass>();
    getLoopAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char LoopIdiomRecognizeLegacyPass::ID = 0;

PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
                                              LoopStandardAnalysisResults &AR,
                                              LPMUpdater &) {
  if (DisableLIRP::All)
    return PreservedAnalyses::all();

  const auto *DL = &L.getHeader()->getModule()->getDataLayout();

  // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
  // pass.  Function analyses need to be preserved across loop transformations
  // but ORE cannot be preserved (see comment before the pass definition).
  OptimizationRemarkEmitter ORE(L.getHeader()->getParent());

  LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
                         AR.MSSA, DL, ORE);
  if (!LIR.runOnLoop(&L))
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
                      "Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
                    "Recognize loop idioms", false, false)

Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }

static void deleteDeadInstruction(Instruction *I) {
  I->replaceAllUsesWith(UndefValue::get(I->getType()));
  I->eraseFromParent();
}

//===----------------------------------------------------------------------===//
//
//          Implementation of LoopIdiomRecognize
//
//===----------------------------------------------------------------------===//

bool LoopIdiomRecognize::runOnLoop(Loop *L) {
  CurLoop = L;
  // If the loop could not be converted to canonical form, it must have an
  // indirectbr in it, just give up.
  if (!L->getLoopPreheader())
    return false;

  // Disable loop idiom recognition if the function's name is a common idiom.
  StringRef Name = L->getHeader()->getParent()->getName();
  if (Name == "memset" || Name == "memcpy")
    return false;

  // Determine if code size heuristics need to be applied.
  ApplyCodeSizeHeuristics =
      L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;

  HasMemset = TLI->has(LibFunc_memset);
  HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
  HasMemcpy = TLI->has(LibFunc_memcpy);

  if (HasMemset || HasMemsetPattern || HasMemcpy)
    if (SE->hasLoopInvariantBackedgeTakenCount(L))
      return runOnCountableLoop();

  return runOnNoncountableLoop();
}

bool LoopIdiomRecognize::runOnCountableLoop() {
  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
  assert(!isa<SCEVCouldNotCompute>(BECount) &&
         "runOnCountableLoop() called on a loop without a predictable"
         "backedge-taken count");

  // If this loop executes exactly one time, then it should be peeled, not
  // optimized by this pass.
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    if (BECst->getAPInt() == 0)
      return false;

  SmallVector<BasicBlock *, 8> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);

  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
                    << CurLoop->getHeader()->getParent()->getName()
                    << "] Countable Loop %" << CurLoop->getHeader()->getName()
                    << "\n");

  // The following transforms hoist stores/memsets into the loop pre-header.
  // Give up if the loop has instructions that may throw.
  SimpleLoopSafetyInfo SafetyInfo;
  SafetyInfo.computeLoopSafetyInfo(CurLoop);
  if (SafetyInfo.anyBlockMayThrow())
    return false;

  bool MadeChange = false;

  // Scan all the blocks in the loop that are not in subloops.
  for (auto *BB : CurLoop->getBlocks()) {
    // Ignore blocks in subloops.
    if (LI->getLoopFor(BB) != CurLoop)
      continue;

    MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
  }
  return MadeChange;
}

static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
  const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
  return ConstStride->getAPInt();
}

/// getMemSetPatternValue - If a strided store of the specified value is safe to
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
/// be passed in.  Otherwise, return null.
///
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
/// just replicate their input array and then pass on to memset_pattern16.
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
  // FIXME: This could check for UndefValue because it can be merged into any
  // other valid pattern.

  // If the value isn't a constant, we can't promote it to being in a constant
  // array.  We could theoretically do a store to an alloca or something, but
  // that doesn't seem worthwhile.
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return nullptr;

  // Only handle simple values that are a power of two bytes in size.
  uint64_t Size = DL->getTypeSizeInBits(V->getType());
  if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
    return nullptr;

  // Don't care enough about darwin/ppc to implement this.
  if (DL->isBigEndian())
    return nullptr;

  // Convert to size in bytes.
  Size /= 8;

  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
  // if the top and bottom are the same (e.g. for vectors and large integers).
  if (Size > 16)
    return nullptr;

  // If the constant is exactly 16 bytes, just use it.
  if (Size == 16)
    return C;

  // Otherwise, we'll use an array of the constants.
  unsigned ArraySize = 16 / Size;
  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
  return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
}

LoopIdiomRecognize::LegalStoreKind
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
  // Don't touch volatile stores.
  if (SI->isVolatile())
    return LegalStoreKind::None;
  // We only want simple or unordered-atomic stores.
  if (!SI->isUnordered())
    return LegalStoreKind::None;

  // Avoid merging nontemporal stores.
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
    return LegalStoreKind::None;

  Value *StoredVal = SI->getValueOperand();
  Value *StorePtr = SI->getPointerOperand();

  // Don't convert stores of non-integral pointer types to memsets (which stores
  // integers).
  if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
    return LegalStoreKind::None;

  // Reject stores that are so large that they overflow an unsigned.
  // When storing out scalable vectors we bail out for now, since the code
  // below currently only works for constant strides.
  TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
  if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
      (SizeInBits.getFixedSize() >> 32) != 0)
    return LegalStoreKind::None;

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided store.  If we have something else, it's a
  // random store we can't handle.
  const SCEVAddRecExpr *StoreEv =
      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    return LegalStoreKind::None;

  // Check to see if we have a constant stride.
  if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
    return LegalStoreKind::None;

  // See if the store can be turned into a memset.

  // If the stored value is a byte-wise value (like i32 -1), then it may be
  // turned into a memset of i8 -1, assuming that all the consecutive bytes
  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
  // but it can be turned into memset_pattern if the target supports it.
  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
  Constant *PatternValue = nullptr;

  // Note: memset and memset_pattern on unordered-atomic is yet not supported
  bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();

  // If we're allowed to form a memset, and the stored value would be
  // acceptable for memset, use it.
  if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
      // Verify that the stored value is loop invariant.  If not, we can't
      // promote the memset.
      CurLoop->isLoopInvariant(SplatValue)) {
    // It looks like we can use SplatValue.
    return LegalStoreKind::Memset;
  } else if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
             // Don't create memset_pattern16s with address spaces.
             StorePtr->getType()->getPointerAddressSpace() == 0 &&
             (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
    // It looks like we can use PatternValue!
    return LegalStoreKind::MemsetPattern;
  }

  // Otherwise, see if the store can be turned into a memcpy.
  if (HasMemcpy && !DisableLIRP::Memcpy) {
    // Check to see if the stride matches the size of the store.  If so, then we
    // know that every byte is touched in the loop.
    APInt Stride = getStoreStride(StoreEv);
    unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
    if (StoreSize != Stride && StoreSize != -Stride)
      return LegalStoreKind::None;

    // The store must be feeding a non-volatile load.
    LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());

    // Only allow non-volatile loads
    if (!LI || LI->isVolatile())
      return LegalStoreKind::None;
    // Only allow simple or unordered-atomic loads
    if (!LI->isUnordered())
      return LegalStoreKind::None;

    // See if the pointer expression is an AddRec like {base,+,1} on the current
    // loop, which indicates a strided load.  If we have something else, it's a
    // random load we can't handle.
    const SCEVAddRecExpr *LoadEv =
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
    if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
      return LegalStoreKind::None;

    // The store and load must share the same stride.
    if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
      return LegalStoreKind::None;

    // Success.  This store can be converted into a memcpy.
    UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
    return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
                           : LegalStoreKind::Memcpy;
  }
  // This store can't be transformed into a memset/memcpy.
  return LegalStoreKind::None;
}

void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
  StoreRefsForMemset.clear();
  StoreRefsForMemsetPattern.clear();
  StoreRefsForMemcpy.clear();
  for (Instruction &I : *BB) {
    StoreInst *SI = dyn_cast<StoreInst>(&I);
    if (!SI)
      continue;

    // Make sure this is a strided store with a constant stride.
    switch (isLegalStore(SI)) {
    case LegalStoreKind::None:
      // Nothing to do
      break;
    case LegalStoreKind::Memset: {
      // Find the base pointer.
      Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
      StoreRefsForMemset[Ptr].push_back(SI);
    } break;
    case LegalStoreKind::MemsetPattern: {
      // Find the base pointer.
      Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
      StoreRefsForMemsetPattern[Ptr].push_back(SI);
    } break;
    case LegalStoreKind::Memcpy:
    case LegalStoreKind::UnorderedAtomicMemcpy:
      StoreRefsForMemcpy.push_back(SI);
      break;
    default:
      assert(false && "unhandled return value");
      break;
    }
  }
}

/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count.  This block is known to be in the current
/// loop and not in any subloops.
bool LoopIdiomRecognize::runOnLoopBlock(
    BasicBlock *BB, const SCEV *BECount,
    SmallVectorImpl<BasicBlock *> &ExitBlocks) {
  // We can only promote stores in this block if they are unconditionally
  // executed in the loop.  For a block to be unconditionally executed, it has
  // to dominate all the exit blocks of the loop.  Verify this now.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    if (!DT->dominates(BB, ExitBlocks[i]))
      return false;

  bool MadeChange = false;
  // Look for store instructions, which may be optimized to memset/memcpy.
  collectStores(BB);

  // Look for a single store or sets of stores with a common base, which can be
  // optimized into a memset (memset_pattern).  The latter most commonly happens
  // with structs and handunrolled loops.
  for (auto &SL : StoreRefsForMemset)
    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);

  for (auto &SL : StoreRefsForMemsetPattern)
    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);

  // Optimize the store into a memcpy, if it feeds an similarly strided load.
  for (auto &SI : StoreRefsForMemcpy)
    MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);

  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    Instruction *Inst = &*I++;
    // Look for memset instructions, which may be optimized to a larger memset.
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
      WeakTrackingVH InstPtr(&*I);
      if (!processLoopMemSet(MSI, BECount))
        continue;
      MadeChange = true;

      // If processing the memset invalidated our iterator, start over from the
      // top of the block.
      if (!InstPtr)
        I = BB->begin();
      continue;
    }
  }

  return MadeChange;
}

/// See if this store(s) can be promoted to a memset.
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
                                           const SCEV *BECount, ForMemset For) {
  // Try to find consecutive stores that can be transformed into memsets.
  SetVector<StoreInst *> Heads, Tails;
  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;

  // Do a quadratic search on all of the given stores and find
  // all of the pairs of stores that follow each other.
  SmallVector<unsigned, 16> IndexQueue;
  for (unsigned i = 0, e = SL.size(); i < e; ++i) {
    assert(SL[i]->isSimple() && "Expected only non-volatile stores.");

    Value *FirstStoredVal = SL[i]->getValueOperand();
    Value *FirstStorePtr = SL[i]->getPointerOperand();
    const SCEVAddRecExpr *FirstStoreEv =
        cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
    APInt FirstStride = getStoreStride(FirstStoreEv);
    unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());

    // See if we can optimize just this store in isolation.
    if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
      Heads.insert(SL[i]);
      continue;
    }

    Value *FirstSplatValue = nullptr;
    Constant *FirstPatternValue = nullptr;

    if (For == ForMemset::Yes)
      FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
    else
      FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);

    assert((FirstSplatValue || FirstPatternValue) &&
           "Expected either splat value or pattern value.");

    IndexQueue.clear();
    // If a store has multiple consecutive store candidates, search Stores
    // array according to the sequence: from i+1 to e, then from i-1 to 0.
    // This is because usually pairing with immediate succeeding or preceding
    // candidate create the best chance to find memset opportunity.
    unsigned j = 0;
    for (j = i + 1; j < e; ++j)
      IndexQueue.push_back(j);
    for (j = i; j > 0; --j)
      IndexQueue.push_back(j - 1);

    for (auto &k : IndexQueue) {
      assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
      Value *SecondStorePtr = SL[k]->getPointerOperand();
      const SCEVAddRecExpr *SecondStoreEv =
          cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
      APInt SecondStride = getStoreStride(SecondStoreEv);

      if (FirstStride != SecondStride)
        continue;

      Value *SecondStoredVal = SL[k]->getValueOperand();
      Value *SecondSplatValue = nullptr;
      Constant *SecondPatternValue = nullptr;

      if (For == ForMemset::Yes)
        SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
      else
        SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);

      assert((SecondSplatValue || SecondPatternValue) &&
             "Expected either splat value or pattern value.");

      if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
        if (For == ForMemset::Yes) {
          if (isa<UndefValue>(FirstSplatValue))
            FirstSplatValue = SecondSplatValue;
          if (FirstSplatValue != SecondSplatValue)
            continue;
        } else {
          if (isa<UndefValue>(FirstPatternValue))
            FirstPatternValue = SecondPatternValue;
          if (FirstPatternValue != SecondPatternValue)
            continue;
        }
        Tails.insert(SL[k]);
        Heads.insert(SL[i]);
        ConsecutiveChain[SL[i]] = SL[k];
        break;
      }
    }
  }

  // We may run into multiple chains that merge into a single chain. We mark the
  // stores that we transformed so that we don't visit the same store twice.
  SmallPtrSet<Value *, 16> TransformedStores;
  bool Changed = false;

  // For stores that start but don't end a link in the chain:
  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
       it != e; ++it) {
    if (Tails.count(*it))
      continue;

    // We found a store instr that starts a chain. Now follow the chain and try
    // to transform it.
    SmallPtrSet<Instruction *, 8> AdjacentStores;
    StoreInst *I = *it;

    StoreInst *HeadStore = I;
    unsigned StoreSize = 0;

    // Collect the chain into a list.
    while (Tails.count(I) || Heads.count(I)) {
      if (TransformedStores.count(I))
        break;
      AdjacentStores.insert(I);

      StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
      // Move to the next value in the chain.
      I = ConsecutiveChain[I];
    }

    Value *StoredVal = HeadStore->getValueOperand();
    Value *StorePtr = HeadStore->getPointerOperand();
    const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    APInt Stride = getStoreStride(StoreEv);

    // Check to see if the stride matches the size of the stores.  If so, then
    // we know that every byte is touched in the loop.
    if (StoreSize != Stride && StoreSize != -Stride)
      continue;

    bool NegStride = StoreSize == -Stride;

    if (processLoopStridedStore(StorePtr, StoreSize,
                                MaybeAlign(HeadStore->getAlignment()),
                                StoredVal, HeadStore, AdjacentStores, StoreEv,
                                BECount, NegStride)) {
      TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
      Changed = true;
    }
  }

  return Changed;
}

/// processLoopMemSet - See if this memset can be promoted to a large memset.
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
                                           const SCEV *BECount) {
  // We can only handle non-volatile memsets with a constant size.
  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
    return false;

  // If we're not allowed to hack on memset, we fail.
  if (!HasMemset)
    return false;

  Value *Pointer = MSI->getDest();

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided store.  If we have something else, it's a
  // random store we can't handle.
  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
  if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
    return false;

  // Reject memsets that are so large that they overflow an unsigned.
  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
  if ((SizeInBytes >> 32) != 0)
    return false;

  // Check to see if the stride matches the size of the memset.  If so, then we
  // know that every byte is touched in the loop.
  const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
  if (!ConstStride)
    return false;

  APInt Stride = ConstStride->getAPInt();
  if (SizeInBytes != Stride && SizeInBytes != -Stride)
    return false;

  // Verify that the memset value is loop invariant.  If not, we can't promote
  // the memset.
  Value *SplatValue = MSI->getValue();
  if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
    return false;

  SmallPtrSet<Instruction *, 1> MSIs;
  MSIs.insert(MSI);
  bool NegStride = SizeInBytes == -Stride;
  return processLoopStridedStore(
      Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
      SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
}

/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access.  The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
                      const SCEV *BECount, unsigned StoreSize,
                      AliasAnalysis &AA,
                      SmallPtrSetImpl<Instruction *> &IgnoredStores) {
  // Get the location that may be stored across the loop.  Since the access is
  // strided positively through memory, we say that the modified location starts
  // at the pointer and has infinite size.
  LocationSize AccessSize = LocationSize::unknown();

  // If the loop iterates a fixed number of times, we can refine the access size
  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
                                       StoreSize);

  // TODO: For this to be really effective, we have to dive into the pointer
  // operand in the store.  Store to &A[i] of 100 will always return may alias
  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
  // which will then no-alias a store to &A[100].
  MemoryLocation StoreLoc(Ptr, AccessSize);

  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
       ++BI)
    for (Instruction &I : **BI)
      if (IgnoredStores.count(&I) == 0 &&
          isModOrRefSet(
              intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
        return true;

  return false;
}

// If we have a negative stride, Start refers to the end of the memory location
// we're trying to memset.  Therefore, we need to recompute the base pointer,
// which is just Start - BECount*Size.
static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
                                        Type *IntPtr, unsigned StoreSize,
                                        ScalarEvolution *SE) {
  const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
  if (StoreSize != 1)
    Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
                           SCEV::FlagNUW);
  return SE->getMinusSCEV(Start, Index);
}

/// Compute the number of bytes as a SCEV from the backedge taken count.
///
/// This also maps the SCEV into the provided type and tries to handle the
/// computation in a way that will fold cleanly.
static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
                               unsigned StoreSize, Loop *CurLoop,
                               const DataLayout *DL, ScalarEvolution *SE) {
  const SCEV *NumBytesS;
  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
  // pointer size if it isn't already.
  //
  // If we're going to need to zero extend the BE count, check if we can add
  // one to it prior to zero extending without overflow. Provided this is safe,
  // it allows better simplification of the +1.
  if (DL->getTypeSizeInBits(BECount->getType()) <
          DL->getTypeSizeInBits(IntPtr) &&
      SE->isLoopEntryGuardedByCond(
          CurLoop, ICmpInst::ICMP_NE, BECount,
          SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
    NumBytesS = SE->getZeroExtendExpr(
        SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
        IntPtr);
  } else {
    NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
                               SE->getOne(IntPtr), SCEV::FlagNUW);
  }

  // And scale it based on the store size.
  if (StoreSize != 1) {
    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
                               SCEV::FlagNUW);
  }
  return NumBytesS;
}

/// processLoopStridedStore - We see a strided store of some value.  If we can
/// transform this into a memset or memset_pattern in the loop preheader, do so.
bool LoopIdiomRecognize::processLoopStridedStore(
    Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
    Value *StoredVal, Instruction *TheStore,
    SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
    const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
  Constant *PatternValue = nullptr;

  if (!SplatValue)
    PatternValue = getMemSetPatternValue(StoredVal, DL);

  assert((SplatValue || PatternValue) &&
         "Expected either splat value or pattern value.");

  // The trip count of the loop and the base pointer of the addrec SCEV is
  // guaranteed to be loop invariant, which means that it should dominate the
  // header.  This allows us to insert code for it in the preheader.
  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  IRBuilder<> Builder(Preheader->getTerminator());
  SCEVExpander Expander(*SE, *DL, "loop-idiom");
  SCEVExpanderCleaner ExpCleaner(Expander, *DT);

  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
  Type *IntIdxTy = DL->getIndexType(DestPtr->getType());

  bool Changed = false;
  const SCEV *Start = Ev->getStart();
  // Handle negative strided loops.
  if (NegStride)
    Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);

  // TODO: ideally we should still be able to generate memset if SCEV expander
  // is taught to generate the dependencies at the latest point.
  if (!isSafeToExpand(Start, *SE))
    return Changed;

  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
  // this into a memset in the loop preheader now if we want.  However, this
  // would be unsafe to do if there is anything else in the loop that may read
  // or write to the aliased location.  Check for any overlap by generating the
  // base pointer and checking the region.
  Value *BasePtr =
      Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());

  // From here on out, conservatively report to the pass manager that we've
  // changed the IR, even if we later clean up these added instructions. There
  // may be structural differences e.g. in the order of use lists not accounted
  // for in just a textual dump of the IR. This is written as a variable, even
  // though statically all the places this dominates could be replaced with
  // 'true', with the hope that anyone trying to be clever / "more precise" with
  // the return value will read this comment, and leave them alone.
  Changed = true;

  if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
                            StoreSize, *AA, Stores))
    return Changed;

  if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
    return Changed;

  // Okay, everything looks good, insert the memset.

  const SCEV *NumBytesS =
      getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);

  // TODO: ideally we should still be able to generate memset if SCEV expander
  // is taught to generate the dependencies at the latest point.
  if (!isSafeToExpand(NumBytesS, *SE))
    return Changed;

  Value *NumBytes =
      Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());

  CallInst *NewCall;
  if (SplatValue) {
    NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
                                   MaybeAlign(StoreAlignment));
  } else {
    // Everything is emitted in default address space
    Type *Int8PtrTy = DestInt8PtrTy;

    Module *M = TheStore->getModule();
    StringRef FuncName = "memset_pattern16";
    FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
                                                Int8PtrTy, Int8PtrTy, IntIdxTy);
    inferLibFuncAttributes(M, FuncName, *TLI);

    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
    // an constant array of 16-bytes.  Plop the value into a mergable global.
    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
                                            GlobalValue::PrivateLinkage,
                                            PatternValue, ".memset_pattern");
    GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
    GV->setAlignment(Align(16));
    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
    NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
  }
  NewCall->setDebugLoc(TheStore->getDebugLoc());

  if (MSSAU) {
    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
        NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
    MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
  }

  LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
                    << "    from store to: " << *Ev << " at: " << *TheStore
                    << "\n");

  ORE.emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
                              NewCall->getDebugLoc(), Preheader)
           << "Transformed loop-strided store into a call to "
           << ore::NV("NewFunction", NewCall->getCalledFunction())
           << "() function";
  });

  // Okay, the memset has been formed.  Zap the original store and anything that
  // feeds into it.
  for (auto *I : Stores) {
    if (MSSAU)
      MSSAU->removeMemoryAccess(I, true);
    deleteDeadInstruction(I);
  }
  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  ++NumMemSet;
  ExpCleaner.markResultUsed();
  return true;
}

/// If the stored value is a strided load in the same loop with the same stride
/// this may be transformable into a memcpy.  This kicks in for stuff like
/// for (i) A[i] = B[i];
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
                                                    const SCEV *BECount) {
  assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");

  Value *StorePtr = SI->getPointerOperand();
  const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
  APInt Stride = getStoreStride(StoreEv);
  unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
  bool NegStride = StoreSize == -Stride;

  // The store must be feeding a non-volatile load.
  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
  assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided load.  If we have something else, it's a
  // random load we can't handle.
  const SCEVAddRecExpr *LoadEv =
      cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));

  // The trip count of the loop and the base pointer of the addrec SCEV is
  // guaranteed to be loop invariant, which means that it should dominate the
  // header.  This allows us to insert code for it in the preheader.
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  IRBuilder<> Builder(Preheader->getTerminator());
  SCEVExpander Expander(*SE, *DL, "loop-idiom");

  SCEVExpanderCleaner ExpCleaner(Expander, *DT);

  bool Changed = false;
  const SCEV *StrStart = StoreEv->getStart();
  unsigned StrAS = SI->getPointerAddressSpace();
  Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));

  // Handle negative strided loops.
  if (NegStride)
    StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);

  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
  // this into a memcpy in the loop preheader now if we want.  However, this
  // would be unsafe to do if there is anything else in the loop that may read
  // or write the memory region we're storing to.  This includes the load that
  // feeds the stores.  Check for an alias by generating the base address and
  // checking everything.
  Value *StoreBasePtr = Expander.expandCodeFor(
      StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());

  // From here on out, conservatively report to the pass manager that we've
  // changed the IR, even if we later clean up these added instructions. There
  // may be structural differences e.g. in the order of use lists not accounted
  // for in just a textual dump of the IR. This is written as a variable, even
  // though statically all the places this dominates could be replaced with
  // 'true', with the hope that anyone trying to be clever / "more precise" with
  // the return value will read this comment, and leave them alone.
  Changed = true;

  SmallPtrSet<Instruction *, 1> Stores;
  Stores.insert(SI);
  if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
                            StoreSize, *AA, Stores))
    return Changed;

  const SCEV *LdStart = LoadEv->getStart();
  unsigned LdAS = LI->getPointerAddressSpace();

  // Handle negative strided loops.
  if (NegStride)
    LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);

  // For a memcpy, we have to make sure that the input array is not being
  // mutated by the loop.
  Value *LoadBasePtr = Expander.expandCodeFor(
      LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());

  if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
                            StoreSize, *AA, Stores))
    return Changed;

  if (avoidLIRForMultiBlockLoop())
    return Changed;

  // Okay, everything is safe, we can transform this!

  const SCEV *NumBytesS =
      getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);

  Value *NumBytes =
      Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());

  CallInst *NewCall = nullptr;
  // Check whether to generate an unordered atomic memcpy:
  //  If the load or store are atomic, then they must necessarily be unordered
  //  by previous checks.
  if (!SI->isAtomic() && !LI->isAtomic())
    NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
                                   LI->getAlign(), NumBytes);
  else {
    // We cannot allow unaligned ops for unordered load/store, so reject
    // anything where the alignment isn't at least the element size.
    const Align StoreAlign = SI->getAlign();
    const Align LoadAlign = LI->getAlign();
    if (StoreAlign < StoreSize || LoadAlign < StoreSize)
      return Changed;

    // If the element.atomic memcpy is not lowered into explicit
    // loads/stores later, then it will be lowered into an element-size
    // specific lib call. If the lib call doesn't exist for our store size, then
    // we shouldn't generate the memcpy.
    if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
      return Changed;

    // Create the call.
    // Note that unordered atomic loads/stores are *required* by the spec to
    // have an alignment but non-atomic loads/stores may not.
    NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
        StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
        StoreSize);
  }
  NewCall->setDebugLoc(SI->getDebugLoc());

  if (MSSAU) {
    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
        NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
    MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
  }

  LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
                    << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
                    << "    from store ptr=" << *StoreEv << " at: " << *SI
                    << "\n");

  ORE.emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
                              NewCall->getDebugLoc(), Preheader)
           << "Formed a call to "
           << ore::NV("NewFunction", NewCall->getCalledFunction())
           << "() function";
  });

  // Okay, the memcpy has been formed.  Zap the original store and anything that
  // feeds into it.
  if (MSSAU)
    MSSAU->removeMemoryAccess(SI, true);
  deleteDeadInstruction(SI);
  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  ++NumMemCpy;
  ExpCleaner.markResultUsed();
  return true;
}

// When compiling for codesize we avoid idiom recognition for a multi-block loop
// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
//
bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
                                                   bool IsLoopMemset) {
  if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
    if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
      LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
                        << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
                        << " avoided: multi-block top-level loop\n");
      return true;
    }
  }

  return false;
}

bool LoopIdiomRecognize::runOnNoncountableLoop() {
  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
                    << CurLoop->getHeader()->getParent()->getName()
                    << "] Noncountable Loop %"
                    << CurLoop->getHeader()->getName() << "\n");

  return recognizePopcount() || recognizeAndInsertFFS();
}

/// Check if the given conditional branch is based on the comparison between
/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
/// true), the control yields to the loop entry. If the branch matches the
/// behavior, the variable involved in the comparison is returned. This function
/// will be called to see if the precondition and postcondition of the loop are
/// in desirable form.
static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
                             bool JmpOnZero = false) {
  if (!BI || !BI->isConditional())
    return nullptr;

  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
  if (!Cond)
    return nullptr;

  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
  if (!CmpZero || !CmpZero->isZero())
    return nullptr;

  BasicBlock *TrueSucc = BI->getSuccessor(0);
  BasicBlock *FalseSucc = BI->getSuccessor(1);
  if (JmpOnZero)
    std::swap(TrueSucc, FalseSucc);

  ICmpInst::Predicate Pred = Cond->getPredicate();
  if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
      (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
    return Cond->getOperand(0);

  return nullptr;
}

// Check if the recurrence variable `VarX` is in the right form to create
// the idiom. Returns the value coerced to a PHINode if so.
static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
                                 BasicBlock *LoopEntry) {
  auto *PhiX = dyn_cast<PHINode>(VarX);
  if (PhiX && PhiX->getParent() == LoopEntry &&
      (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
    return PhiX;
  return nullptr;
}

/// Return true iff the idiom is detected in the loop.
///
/// Additionally:
/// 1) \p CntInst is set to the instruction counting the population bit.
/// 2) \p CntPhi is set to the corresponding phi node.
/// 3) \p Var is set to the value whose population bits are being counted.
///
/// The core idiom we are trying to detect is:
/// \code
///    if (x0 != 0)
///      goto loop-exit // the precondition of the loop
///    cnt0 = init-val;
///    do {
///       x1 = phi (x0, x2);
///       cnt1 = phi(cnt0, cnt2);
///
///       cnt2 = cnt1 + 1;
///        ...
///       x2 = x1 & (x1 - 1);
///        ...
///    } while(x != 0);
///
/// loop-exit:
/// \endcode
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
                                Instruction *&CntInst, PHINode *&CntPhi,
                                Value *&Var) {
  // step 1: Check to see if the look-back branch match this pattern:
  //    "if (a!=0) goto loop-entry".
  BasicBlock *LoopEntry;
  Instruction *DefX2, *CountInst;
  Value *VarX1, *VarX0;
  PHINode *PhiX, *CountPhi;

  DefX2 = CountInst = nullptr;
  VarX1 = VarX0 = nullptr;
  PhiX = CountPhi = nullptr;
  LoopEntry = *(CurLoop->block_begin());

  // step 1: Check if the loop-back branch is in desirable form.
  {
    if (Value *T = matchCondition(
            dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
      DefX2 = dyn_cast<Instruction>(T);
    else
      return false;
  }

  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
  {
    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
      return false;

    BinaryOperator *SubOneOp;

    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
      VarX1 = DefX2->getOperand(1);
    else {
      VarX1 = DefX2->getOperand(0);
      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
    }
    if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
      return false;

    ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
    if (!Dec ||
        !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
          (SubOneOp->getOpcode() == Instruction::Add &&
           Dec->isMinusOne()))) {
      return false;
    }
  }

  // step 3: Check the recurrence of variable X
  PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
  if (!PhiX)
    return false;

  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
  {
    CountInst = nullptr;
    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
                              IterE = LoopEntry->end();
         Iter != IterE; Iter++) {
      Instruction *Inst = &*Iter;
      if (Inst->getOpcode() != Instruction::Add)
        continue;

      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
      if (!Inc || !Inc->isOne())
        continue;

      PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
      if (!Phi)
        continue;

      // Check if the result of the instruction is live of the loop.
      bool LiveOutLoop = false;
      for (User *U : Inst->users()) {
        if ((cast<Instruction>(U))->getParent() != LoopEntry) {
          LiveOutLoop = true;
          break;
        }
      }

      if (LiveOutLoop) {
        CountInst = Inst;
        CountPhi = Phi;
        break;
      }
    }

    if (!CountInst)
      return false;
  }

  // step 5: check if the precondition is in this form:
  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
  {
    auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
    Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
      return false;

    CntInst = CountInst;
    CntPhi = CountPhi;
    Var = T;
  }

  return true;
}

/// Return true if the idiom is detected in the loop.
///
/// Additionally:
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
///       or nullptr if there is no such.
/// 2) \p CntPhi is set to the corresponding phi node
///       or nullptr if there is no such.
/// 3) \p Var is set to the value whose CTLZ could be used.
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
///
/// The core idiom we are trying to detect is:
/// \code
///    if (x0 == 0)
///      goto loop-exit // the precondition of the loop
///    cnt0 = init-val;
///    do {
///       x = phi (x0, x.next);   //PhiX
///       cnt = phi(cnt0, cnt.next);
///
///       cnt.next = cnt + 1;
///        ...
///       x.next = x >> 1;   // DefX
///        ...
///    } while(x.next != 0);
///
/// loop-exit:
/// \endcode
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
                                      Intrinsic::ID &IntrinID, Value *&InitX,
                                      Instruction *&CntInst, PHINode *&CntPhi,
                                      Instruction *&DefX) {
  BasicBlock *LoopEntry;
  Value *VarX = nullptr;

  DefX = nullptr;
  CntInst = nullptr;
  CntPhi = nullptr;
  LoopEntry = *(CurLoop->block_begin());

  // step 1: Check if the loop-back branch is in desirable form.
  if (Value *T = matchCondition(
          dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
    DefX = dyn_cast<Instruction>(T);
  else
    return false;

  // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
  if (!DefX || !DefX->isShift())
    return false;
  IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
                                                     Intrinsic::ctlz;
  ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
  if (!Shft || !Shft->isOne())
    return false;
  VarX = DefX->getOperand(0);

  // step 3: Check the recurrence of variable X
  PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
  if (!PhiX)
    return false;

  InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());

  // Make sure the initial value can't be negative otherwise the ashr in the
  // loop might never reach zero which would make the loop infinite.
  if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
    return false;

  // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
  // TODO: We can skip the step. If loop trip count is known (CTLZ),
  //       then all uses of "cnt.next" could be optimized to the trip count
  //       plus "cnt0". Currently it is not optimized.
  //       This step could be used to detect POPCNT instruction:
  //       cnt.next = cnt + (x.next & 1)
  for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
                            IterE = LoopEntry->end();
       Iter != IterE; Iter++) {
    Instruction *Inst = &*Iter;
    if (Inst->getOpcode() != Instruction::Add)
      continue;

    ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
    if (!Inc || !Inc->isOne())
      continue;

    PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
    if (!Phi)
      continue;

    CntInst = Inst;
    CntPhi = Phi;
    break;
  }
  if (!CntInst)
    return false;

  return true;
}

/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
/// trip count returns true; otherwise, returns false.
bool LoopIdiomRecognize::recognizeAndInsertFFS() {
  // Give up if the loop has multiple blocks or multiple backedges.
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
    return false;

  Intrinsic::ID IntrinID;
  Value *InitX;
  Instruction *DefX = nullptr;
  PHINode *CntPhi = nullptr;
  Instruction *CntInst = nullptr;
  // Help decide if transformation is profitable. For ShiftUntilZero idiom,
  // this is always 6.
  size_t IdiomCanonicalSize = 6;

  if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
                                 CntInst, CntPhi, DefX))
    return false;

  bool IsCntPhiUsedOutsideLoop = false;
  for (User *U : CntPhi->users())
    if (!CurLoop->contains(cast<Instruction>(U))) {
      IsCntPhiUsedOutsideLoop = true;
      break;
    }
  bool IsCntInstUsedOutsideLoop = false;
  for (User *U : CntInst->users())
    if (!CurLoop->contains(cast<Instruction>(U))) {
      IsCntInstUsedOutsideLoop = true;
      break;
    }
  // If both CntInst and CntPhi are used outside the loop the profitability
  // is questionable.
  if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
    return false;

  // For some CPUs result of CTLZ(X) intrinsic is undefined
  // when X is 0. If we can not guarantee X != 0, we need to check this
  // when expand.
  bool ZeroCheck = false;
  // It is safe to assume Preheader exist as it was checked in
  // parent function RunOnLoop.
  BasicBlock *PH = CurLoop->getLoopPreheader();

  // If we are using the count instruction outside the loop, make sure we
  // have a zero check as a precondition. Without the check the loop would run
  // one iteration for before any check of the input value. This means 0 and 1
  // would have identical behavior in the original loop and thus
  if (!IsCntPhiUsedOutsideLoop) {
    auto *PreCondBB = PH->getSinglePredecessor();
    if (!PreCondBB)
      return false;
    auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
    if (!PreCondBI)
      return false;
    if (matchCondition(PreCondBI, PH) != InitX)
      return false;
    ZeroCheck = true;
  }

  // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
  // profitable if we delete the loop.

  // the loop has only 6 instructions:
  //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
  //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
  //  %shr = ashr %n.addr.0, 1
  //  %tobool = icmp eq %shr, 0
  //  %inc = add nsw %i.0, 1
  //  br i1 %tobool

  const Value *Args[] = {
      InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
                       : ConstantInt::getFalse(InitX->getContext())};

  // @llvm.dbg doesn't count as they have no semantic effect.
  auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
  uint32_t HeaderSize =
      std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());

  IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
  int Cost =
    TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
  if (HeaderSize != IdiomCanonicalSize &&
      Cost > TargetTransformInfo::TCC_Basic)
    return false;

  transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
                           DefX->getDebugLoc(), ZeroCheck,
                           IsCntPhiUsedOutsideLoop);
  return true;
}

/// Recognizes a population count idiom in a non-countable loop.
///
/// If detected, transforms the relevant code to issue the popcount intrinsic
/// function call, and returns true; otherwise, returns false.
bool LoopIdiomRecognize::recognizePopcount() {
  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
    return false;

  // Counting population are usually conducted by few arithmetic instructions.
  // Such instructions can be easily "absorbed" by vacant slots in a
  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
  // in a compact loop.

  // Give up if the loop has multiple blocks or multiple backedges.
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
    return false;

  BasicBlock *LoopBody = *(CurLoop->block_begin());
  if (LoopBody->size() >= 20) {
    // The loop is too big, bail out.
    return false;
  }

  // It should have a preheader containing nothing but an unconditional branch.
  BasicBlock *PH = CurLoop->getLoopPreheader();
  if (!PH || &PH->front() != PH->getTerminator())
    return false;
  auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
  if (!EntryBI || EntryBI->isConditional())
    return false;

  // It should have a precondition block where the generated popcount intrinsic
  // function can be inserted.
  auto *PreCondBB = PH->getSinglePredecessor();
  if (!PreCondBB)
    return false;
  auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
  if (!PreCondBI || PreCondBI->isUnconditional())
    return false;

  Instruction *CntInst;
  PHINode *CntPhi;
  Value *Val;
  if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
    return false;

  transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
  return true;
}

static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
                                       const DebugLoc &DL) {
  Value *Ops[] = {Val};
  Type *Tys[] = {Val->getType()};

  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
  Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
  CI->setDebugLoc(DL);

  return CI;
}

static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
                                    const DebugLoc &DL, bool ZeroCheck,
                                    Intrinsic::ID IID) {
  Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
  Type *Tys[] = {Val->getType()};

  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
  Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
  CI->setDebugLoc(DL);

  return CI;
}

/// Transform the following loop (Using CTLZ, CTTZ is similar):
/// loop:
///   CntPhi = PHI [Cnt0, CntInst]
///   PhiX = PHI [InitX, DefX]
///   CntInst = CntPhi + 1
///   DefX = PhiX >> 1
///   LOOP_BODY
///   Br: loop if (DefX != 0)
/// Use(CntPhi) or Use(CntInst)
///
/// Into:
/// If CntPhi used outside the loop:
///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
///   Count = CountPrev + 1
/// else
///   Count = BitWidth(InitX) - CTLZ(InitX)
/// loop:
///   CntPhi = PHI [Cnt0, CntInst]
///   PhiX = PHI [InitX, DefX]
///   PhiCount = PHI [Count, Dec]
///   CntInst = CntPhi + 1
///   DefX = PhiX >> 1
///   Dec = PhiCount - 1
///   LOOP_BODY
///   Br: loop if (Dec != 0)
/// Use(CountPrev + Cnt0) // Use(CntPhi)
/// or
/// Use(Count + Cnt0) // Use(CntInst)
///
/// If LOOP_BODY is empty the loop will be deleted.
/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
void LoopIdiomRecognize::transformLoopToCountable(
    Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
    PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
    bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
  BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());

  // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
  IRBuilder<> Builder(PreheaderBr);
  Builder.SetCurrentDebugLocation(DL);
  Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;

  //   Count = BitWidth - CTLZ(InitX);
  // If there are uses of CntPhi create:
  //   CountPrev = BitWidth - CTLZ(InitX >> 1);
  if (IsCntPhiUsedOutsideLoop) {
    if (DefX->getOpcode() == Instruction::AShr)
      InitXNext =
          Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
    else if (DefX->getOpcode() == Instruction::LShr)
      InitXNext =
          Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
    else if (DefX->getOpcode() == Instruction::Shl) // cttz
      InitXNext =
          Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
    else
      llvm_unreachable("Unexpected opcode!");
  } else
    InitXNext = InitX;
  FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
  Count = Builder.CreateSub(
      ConstantInt::get(FFS->getType(),
                       FFS->getType()->getIntegerBitWidth()),
      FFS);
  if (IsCntPhiUsedOutsideLoop) {
    CountPrev = Count;
    Count = Builder.CreateAdd(
        CountPrev,
        ConstantInt::get(CountPrev->getType(), 1));
  }

  NewCount = Builder.CreateZExtOrTrunc(
                      IsCntPhiUsedOutsideLoop ? CountPrev : Count,
                      cast<IntegerType>(CntInst->getType()));

  // If the counter's initial value is not zero, insert Add Inst.
  Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
  ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
  if (!InitConst || !InitConst->isZero())
    NewCount = Builder.CreateAdd(NewCount, CntInitVal);

  // Step 2: Insert new IV and loop condition:
  // loop:
  //   ...
  //   PhiCount = PHI [Count, Dec]
  //   ...
  //   Dec = PhiCount - 1
  //   ...
  //   Br: loop if (Dec != 0)
  BasicBlock *Body = *(CurLoop->block_begin());
  auto *LbBr = cast<BranchInst>(Body->getTerminator());
  ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
  Type *Ty = Count->getType();

  PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());

  Builder.SetInsertPoint(LbCond);
  Instruction *TcDec = cast<Instruction>(
      Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
                        "tcdec", false, true));

  TcPhi->addIncoming(Count, Preheader);
  TcPhi->addIncoming(TcDec, Body);

  CmpInst::Predicate Pred =
      (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
  LbCond->setPredicate(Pred);
  LbCond->setOperand(0, TcDec);
  LbCond->setOperand(1, ConstantInt::get(Ty, 0));

  // Step 3: All the references to the original counter outside
  //  the loop are replaced with the NewCount
  if (IsCntPhiUsedOutsideLoop)
    CntPhi->replaceUsesOutsideBlock(NewCount, Body);
  else
    CntInst->replaceUsesOutsideBlock(NewCount, Body);

  // step 4: Forget the "non-computable" trip-count SCEV associated with the
  //   loop. The loop would otherwise not be deleted even if it becomes empty.
  SE->forgetLoop(CurLoop);
}

void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
                                                 Instruction *CntInst,
                                                 PHINode *CntPhi, Value *Var) {
  BasicBlock *PreHead = CurLoop->getLoopPreheader();
  auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
  const DebugLoc &DL = CntInst->getDebugLoc();

  // Assuming before transformation, the loop is following:
  //  if (x) // the precondition
  //     do { cnt++; x &= x - 1; } while(x);

  // Step 1: Insert the ctpop instruction at the end of the precondition block
  IRBuilder<> Builder(PreCondBr);
  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
  {
    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
    NewCount = PopCntZext =
        Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));

    if (NewCount != PopCnt)
      (cast<Instruction>(NewCount))->setDebugLoc(DL);

    // TripCnt is exactly the number of iterations the loop has
    TripCnt = NewCount;

    // If the population counter's initial value is not zero, insert Add Inst.
    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
    if (!InitConst || !InitConst->isZero()) {
      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
      (cast<Instruction>(NewCount))->setDebugLoc(DL);
    }
  }

  // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
  //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
  //   function would be partial dead code, and downstream passes will drag
  //   it back from the precondition block to the preheader.
  {
    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());

    Value *Opnd0 = PopCntZext;
    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
    if (PreCond->getOperand(0) != Var)
      std::swap(Opnd0, Opnd1);

    ICmpInst *NewPreCond = cast<ICmpInst>(
        Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
    PreCondBr->setCondition(NewPreCond);

    RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
  }

  // Step 3: Note that the population count is exactly the trip count of the
  // loop in question, which enable us to convert the loop from noncountable
  // loop into a countable one. The benefit is twofold:
  //
  //  - If the loop only counts population, the entire loop becomes dead after
  //    the transformation. It is a lot easier to prove a countable loop dead
  //    than to prove a noncountable one. (In some C dialects, an infinite loop
  //    isn't dead even if it computes nothing useful. In general, DCE needs
  //    to prove a noncountable loop finite before safely delete it.)
  //
  //  - If the loop also performs something else, it remains alive.
  //    Since it is transformed to countable form, it can be aggressively
  //    optimized by some optimizations which are in general not applicable
  //    to a noncountable loop.
  //
  // After this step, this loop (conceptually) would look like following:
  //   newcnt = __builtin_ctpop(x);
  //   t = newcnt;
  //   if (x)
  //     do { cnt++; x &= x-1; t--) } while (t > 0);
  BasicBlock *Body = *(CurLoop->block_begin());
  {
    auto *LbBr = cast<BranchInst>(Body->getTerminator());
    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
    Type *Ty = TripCnt->getType();

    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());

    Builder.SetInsertPoint(LbCond);
    Instruction *TcDec = cast<Instruction>(
        Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
                          "tcdec", false, true));

    TcPhi->addIncoming(TripCnt, PreHead);
    TcPhi->addIncoming(TcDec, Body);

    CmpInst::Predicate Pred =
        (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
    LbCond->setPredicate(Pred);
    LbCond->setOperand(0, TcDec);
    LbCond->setOperand(1, ConstantInt::get(Ty, 0));
  }

  // Step 4: All the references to the original population counter outside
  //  the loop are replaced with the NewCount -- the value returned from
  //  __builtin_ctpop().
  CntInst->replaceUsesOutsideBlock(NewCount, Body);

  // step 5: Forget the "non-computable" trip-count SCEV associated with the
  //   loop. The loop would otherwise not be deleted even if it becomes empty.
  SE->forgetLoop(CurLoop);
}