LoopDistribute.cpp 40.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Loop Distribution Pass.  Its main focus is to
// distribute loops that cannot be vectorized due to dependence cycles.  It
// tries to isolate the offending dependences into a new loop allowing
// vectorization of the remaining parts.
//
// For dependence analysis, the pass uses the LoopVectorizer's
// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
// memory operations, special care is taken to preserve the lexical order of
// these operations.
//
// Similarly to the Vectorizer, the pass also supports loop versioning to
// run-time disambiguate potentially overlapping arrays.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDistribute.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <functional>
#include <list>
#include <tuple>
#include <utility>

using namespace llvm;

#define LDIST_NAME "loop-distribute"
#define DEBUG_TYPE LDIST_NAME

/// @{
/// Metadata attribute names
static const char *const LLVMLoopDistributeFollowupAll =
    "llvm.loop.distribute.followup_all";
static const char *const LLVMLoopDistributeFollowupCoincident =
    "llvm.loop.distribute.followup_coincident";
static const char *const LLVMLoopDistributeFollowupSequential =
    "llvm.loop.distribute.followup_sequential";
static const char *const LLVMLoopDistributeFollowupFallback =
    "llvm.loop.distribute.followup_fallback";
/// @}

static cl::opt<bool>
    LDistVerify("loop-distribute-verify", cl::Hidden,
                cl::desc("Turn on DominatorTree and LoopInfo verification "
                         "after Loop Distribution"),
                cl::init(false));

static cl::opt<bool> DistributeNonIfConvertible(
    "loop-distribute-non-if-convertible", cl::Hidden,
    cl::desc("Whether to distribute into a loop that may not be "
             "if-convertible by the loop vectorizer"),
    cl::init(false));

static cl::opt<unsigned> DistributeSCEVCheckThreshold(
    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed for Loop "
             "Distribution"));

static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
    cl::Hidden,
    cl::desc(
        "The maximum number of SCEV checks allowed for Loop "
        "Distribution for loop marked with #pragma loop distribute(enable)"));

static cl::opt<bool> EnableLoopDistribute(
    "enable-loop-distribute", cl::Hidden,
    cl::desc("Enable the new, experimental LoopDistribution Pass"),
    cl::init(false));

STATISTIC(NumLoopsDistributed, "Number of loops distributed");

namespace {

/// Maintains the set of instructions of the loop for a partition before
/// cloning.  After cloning, it hosts the new loop.
class InstPartition {
  using InstructionSet = SmallPtrSet<Instruction *, 8>;

public:
  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
      : DepCycle(DepCycle), OrigLoop(L) {
    Set.insert(I);
  }

  /// Returns whether this partition contains a dependence cycle.
  bool hasDepCycle() const { return DepCycle; }

  /// Adds an instruction to this partition.
  void add(Instruction *I) { Set.insert(I); }

  /// Collection accessors.
  InstructionSet::iterator begin() { return Set.begin(); }
  InstructionSet::iterator end() { return Set.end(); }
  InstructionSet::const_iterator begin() const { return Set.begin(); }
  InstructionSet::const_iterator end() const { return Set.end(); }
  bool empty() const { return Set.empty(); }

  /// Moves this partition into \p Other.  This partition becomes empty
  /// after this.
  void moveTo(InstPartition &Other) {
    Other.Set.insert(Set.begin(), Set.end());
    Set.clear();
    Other.DepCycle |= DepCycle;
  }

  /// Populates the partition with a transitive closure of all the
  /// instructions that the seeded instructions dependent on.
  void populateUsedSet() {
    // FIXME: We currently don't use control-dependence but simply include all
    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
    // up.
    for (auto *B : OrigLoop->getBlocks())
      Set.insert(B->getTerminator());

    // Follow the use-def chains to form a transitive closure of all the
    // instructions that the originally seeded instructions depend on.
    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
    while (!Worklist.empty()) {
      Instruction *I = Worklist.pop_back_val();
      // Insert instructions from the loop that we depend on.
      for (Value *V : I->operand_values()) {
        auto *I = dyn_cast<Instruction>(V);
        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
          Worklist.push_back(I);
      }
    }
  }

  /// Clones the original loop.
  ///
  /// Updates LoopInfo and DominatorTree using the information that block \p
  /// LoopDomBB dominates the loop.
  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
                               unsigned Index, LoopInfo *LI,
                               DominatorTree *DT) {
    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
                                          VMap, Twine(".ldist") + Twine(Index),
                                          LI, DT, ClonedLoopBlocks);
    return ClonedLoop;
  }

  /// The cloned loop.  If this partition is mapped to the original loop,
  /// this is null.
  const Loop *getClonedLoop() const { return ClonedLoop; }

  /// Returns the loop where this partition ends up after distribution.
  /// If this partition is mapped to the original loop then use the block from
  /// the loop.
  Loop *getDistributedLoop() const {
    return ClonedLoop ? ClonedLoop : OrigLoop;
  }

  /// The VMap that is populated by cloning and then used in
  /// remapinstruction to remap the cloned instructions.
  ValueToValueMapTy &getVMap() { return VMap; }

  /// Remaps the cloned instructions using VMap.
  void remapInstructions() {
    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
  }

  /// Based on the set of instructions selected for this partition,
  /// removes the unnecessary ones.
  void removeUnusedInsts() {
    SmallVector<Instruction *, 8> Unused;

    for (auto *Block : OrigLoop->getBlocks())
      for (auto &Inst : *Block)
        if (!Set.count(&Inst)) {
          Instruction *NewInst = &Inst;
          if (!VMap.empty())
            NewInst = cast<Instruction>(VMap[NewInst]);

          assert(!isa<BranchInst>(NewInst) &&
                 "Branches are marked used early on");
          Unused.push_back(NewInst);
        }

    // Delete the instructions backwards, as it has a reduced likelihood of
    // having to update as many def-use and use-def chains.
    for (auto *Inst : reverse(Unused)) {
      if (!Inst->use_empty())
        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
      Inst->eraseFromParent();
    }
  }

  void print() const {
    if (DepCycle)
      dbgs() << "  (cycle)\n";
    for (auto *I : Set)
      // Prefix with the block name.
      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
  }

  void printBlocks() const {
    for (auto *BB : getDistributedLoop()->getBlocks())
      dbgs() << *BB;
  }

private:
  /// Instructions from OrigLoop selected for this partition.
  InstructionSet Set;

  /// Whether this partition contains a dependence cycle.
  bool DepCycle;

  /// The original loop.
  Loop *OrigLoop;

  /// The cloned loop.  If this partition is mapped to the original loop,
  /// this is null.
  Loop *ClonedLoop = nullptr;

  /// The blocks of ClonedLoop including the preheader.  If this
  /// partition is mapped to the original loop, this is empty.
  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;

  /// These gets populated once the set of instructions have been
  /// finalized. If this partition is mapped to the original loop, these are not
  /// set.
  ValueToValueMapTy VMap;
};

/// Holds the set of Partitions.  It populates them, merges them and then
/// clones the loops.
class InstPartitionContainer {
  using InstToPartitionIdT = DenseMap<Instruction *, int>;

public:
  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
      : L(L), LI(LI), DT(DT) {}

  /// Returns the number of partitions.
  unsigned getSize() const { return PartitionContainer.size(); }

  /// Adds \p Inst into the current partition if that is marked to
  /// contain cycles.  Otherwise start a new partition for it.
  void addToCyclicPartition(Instruction *Inst) {
    // If the current partition is non-cyclic.  Start a new one.
    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
    else
      PartitionContainer.back().add(Inst);
  }

  /// Adds \p Inst into a partition that is not marked to contain
  /// dependence cycles.
  ///
  //  Initially we isolate memory instructions into as many partitions as
  //  possible, then later we may merge them back together.
  void addToNewNonCyclicPartition(Instruction *Inst) {
    PartitionContainer.emplace_back(Inst, L);
  }

  /// Merges adjacent non-cyclic partitions.
  ///
  /// The idea is that we currently only want to isolate the non-vectorizable
  /// partition.  We could later allow more distribution among these partition
  /// too.
  void mergeAdjacentNonCyclic() {
    mergeAdjacentPartitionsIf(
        [](const InstPartition *P) { return !P->hasDepCycle(); });
  }

  /// If a partition contains only conditional stores, we won't vectorize
  /// it.  Try to merge it with a previous cyclic partition.
  void mergeNonIfConvertible() {
    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
      if (Partition->hasDepCycle())
        return true;

      // Now, check if all stores are conditional in this partition.
      bool seenStore = false;

      for (auto *Inst : *Partition)
        if (isa<StoreInst>(Inst)) {
          seenStore = true;
          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
            return false;
        }
      return seenStore;
    });
  }

  /// Merges the partitions according to various heuristics.
  void mergeBeforePopulating() {
    mergeAdjacentNonCyclic();
    if (!DistributeNonIfConvertible)
      mergeNonIfConvertible();
  }

  /// Merges partitions in order to ensure that no loads are duplicated.
  ///
  /// We can't duplicate loads because that could potentially reorder them.
  /// LoopAccessAnalysis provides dependency information with the context that
  /// the order of memory operation is preserved.
  ///
  /// Return if any partitions were merged.
  bool mergeToAvoidDuplicatedLoads() {
    using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
    using ToBeMergedT = EquivalenceClasses<InstPartition *>;

    LoadToPartitionT LoadToPartition;
    ToBeMergedT ToBeMerged;

    // Step through the partitions and create equivalence between partitions
    // that contain the same load.  Also put partitions in between them in the
    // same equivalence class to avoid reordering of memory operations.
    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
                                       E = PartitionContainer.end();
         I != E; ++I) {
      auto *PartI = &*I;

      // If a load occurs in two partitions PartI and PartJ, merge all
      // partitions (PartI, PartJ] into PartI.
      for (Instruction *Inst : *PartI)
        if (isa<LoadInst>(Inst)) {
          bool NewElt;
          LoadToPartitionT::iterator LoadToPart;

          std::tie(LoadToPart, NewElt) =
              LoadToPartition.insert(std::make_pair(Inst, PartI));
          if (!NewElt) {
            LLVM_DEBUG(dbgs()
                       << "Merging partitions due to this load in multiple "
                       << "partitions: " << PartI << ", " << LoadToPart->second
                       << "\n"
                       << *Inst << "\n");

            auto PartJ = I;
            do {
              --PartJ;
              ToBeMerged.unionSets(PartI, &*PartJ);
            } while (&*PartJ != LoadToPart->second);
          }
        }
    }
    if (ToBeMerged.empty())
      return false;

    // Merge the member of an equivalence class into its class leader.  This
    // makes the members empty.
    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
         I != E; ++I) {
      if (!I->isLeader())
        continue;

      auto PartI = I->getData();
      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
                                   ToBeMerged.member_end())) {
        PartJ->moveTo(*PartI);
      }
    }

    // Remove the empty partitions.
    PartitionContainer.remove_if(
        [](const InstPartition &P) { return P.empty(); });

    return true;
  }

  /// Sets up the mapping between instructions to partitions.  If the
  /// instruction is duplicated across multiple partitions, set the entry to -1.
  void setupPartitionIdOnInstructions() {
    int PartitionID = 0;
    for (const auto &Partition : PartitionContainer) {
      for (Instruction *Inst : Partition) {
        bool NewElt;
        InstToPartitionIdT::iterator Iter;

        std::tie(Iter, NewElt) =
            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
        if (!NewElt)
          Iter->second = -1;
      }
      ++PartitionID;
    }
  }

  /// Populates the partition with everything that the seeding
  /// instructions require.
  void populateUsedSet() {
    for (auto &P : PartitionContainer)
      P.populateUsedSet();
  }

  /// This performs the main chunk of the work of cloning the loops for
  /// the partitions.
  void cloneLoops() {
    BasicBlock *OrigPH = L->getLoopPreheader();
    // At this point the predecessor of the preheader is either the memcheck
    // block or the top part of the original preheader.
    BasicBlock *Pred = OrigPH->getSinglePredecessor();
    assert(Pred && "Preheader does not have a single predecessor");
    BasicBlock *ExitBlock = L->getExitBlock();
    assert(ExitBlock && "No single exit block");
    Loop *NewLoop;

    assert(!PartitionContainer.empty() && "at least two partitions expected");
    // We're cloning the preheader along with the loop so we already made sure
    // it was empty.
    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
           "preheader not empty");

    // Preserve the original loop ID for use after the transformation.
    MDNode *OrigLoopID = L->getLoopID();

    // Create a loop for each partition except the last.  Clone the original
    // loop before PH along with adding a preheader for the cloned loop.  Then
    // update PH to point to the newly added preheader.
    BasicBlock *TopPH = OrigPH;
    unsigned Index = getSize() - 1;
    for (auto I = std::next(PartitionContainer.rbegin()),
              E = PartitionContainer.rend();
         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
      auto *Part = &*I;

      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);

      Part->getVMap()[ExitBlock] = TopPH;
      Part->remapInstructions();
      setNewLoopID(OrigLoopID, Part);
    }
    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);

    // Also set a new loop ID for the last loop.
    setNewLoopID(OrigLoopID, &PartitionContainer.back());

    // Now go in forward order and update the immediate dominator for the
    // preheaders with the exiting block of the previous loop.  Dominance
    // within the loop is updated in cloneLoopWithPreheader.
    for (auto Curr = PartitionContainer.cbegin(),
              Next = std::next(PartitionContainer.cbegin()),
              E = PartitionContainer.cend();
         Next != E; ++Curr, ++Next)
      DT->changeImmediateDominator(
          Next->getDistributedLoop()->getLoopPreheader(),
          Curr->getDistributedLoop()->getExitingBlock());
  }

  /// Removes the dead instructions from the cloned loops.
  void removeUnusedInsts() {
    for (auto &Partition : PartitionContainer)
      Partition.removeUnusedInsts();
  }

  /// For each memory pointer, it computes the partitionId the pointer is
  /// used in.
  ///
  /// This returns an array of int where the I-th entry corresponds to I-th
  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
  /// partitions its entry is set to -1.
  SmallVector<int, 8>
  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();

    unsigned N = RtPtrCheck->Pointers.size();
    SmallVector<int, 8> PtrToPartitions(N);
    for (unsigned I = 0; I < N; ++I) {
      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
      auto Instructions =
          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);

      int &Partition = PtrToPartitions[I];
      // First set it to uninitialized.
      Partition = -2;
      for (Instruction *Inst : Instructions) {
        // Note that this could be -1 if Inst is duplicated across multiple
        // partitions.
        int ThisPartition = this->InstToPartitionId[Inst];
        if (Partition == -2)
          Partition = ThisPartition;
        // -1 means belonging to multiple partitions.
        else if (Partition == -1)
          break;
        else if (Partition != (int)ThisPartition)
          Partition = -1;
      }
      assert(Partition != -2 && "Pointer not belonging to any partition");
    }

    return PtrToPartitions;
  }

  void print(raw_ostream &OS) const {
    unsigned Index = 0;
    for (const auto &P : PartitionContainer) {
      OS << "Partition " << Index++ << " (" << &P << "):\n";
      P.print();
    }
  }

  void dump() const { print(dbgs()); }

#ifndef NDEBUG
  friend raw_ostream &operator<<(raw_ostream &OS,
                                 const InstPartitionContainer &Partitions) {
    Partitions.print(OS);
    return OS;
  }
#endif

  void printBlocks() const {
    unsigned Index = 0;
    for (const auto &P : PartitionContainer) {
      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
      P.printBlocks();
    }
  }

private:
  using PartitionContainerT = std::list<InstPartition>;

  /// List of partitions.
  PartitionContainerT PartitionContainer;

  /// Mapping from Instruction to partition Id.  If the instruction
  /// belongs to multiple partitions the entry contains -1.
  InstToPartitionIdT InstToPartitionId;

  Loop *L;
  LoopInfo *LI;
  DominatorTree *DT;

  /// The control structure to merge adjacent partitions if both satisfy
  /// the \p Predicate.
  template <class UnaryPredicate>
  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
    InstPartition *PrevMatch = nullptr;
    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
      auto DoesMatch = Predicate(&*I);
      if (PrevMatch == nullptr && DoesMatch) {
        PrevMatch = &*I;
        ++I;
      } else if (PrevMatch != nullptr && DoesMatch) {
        I->moveTo(*PrevMatch);
        I = PartitionContainer.erase(I);
      } else {
        PrevMatch = nullptr;
        ++I;
      }
    }
  }

  /// Assign new LoopIDs for the partition's cloned loop.
  void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
    Optional<MDNode *> PartitionID = makeFollowupLoopID(
        OrigLoopID,
        {LLVMLoopDistributeFollowupAll,
         Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
                             : LLVMLoopDistributeFollowupCoincident});
    if (PartitionID.hasValue()) {
      Loop *NewLoop = Part->getDistributedLoop();
      NewLoop->setLoopID(PartitionID.getValue());
    }
  }
};

/// For each memory instruction, this class maintains difference of the
/// number of unsafe dependences that start out from this instruction minus
/// those that end here.
///
/// By traversing the memory instructions in program order and accumulating this
/// number, we know whether any unsafe dependence crosses over a program point.
class MemoryInstructionDependences {
  using Dependence = MemoryDepChecker::Dependence;

public:
  struct Entry {
    Instruction *Inst;
    unsigned NumUnsafeDependencesStartOrEnd = 0;

    Entry(Instruction *Inst) : Inst(Inst) {}
  };

  using AccessesType = SmallVector<Entry, 8>;

  AccessesType::const_iterator begin() const { return Accesses.begin(); }
  AccessesType::const_iterator end() const { return Accesses.end(); }

  MemoryInstructionDependences(
      const SmallVectorImpl<Instruction *> &Instructions,
      const SmallVectorImpl<Dependence> &Dependences) {
    Accesses.append(Instructions.begin(), Instructions.end());

    LLVM_DEBUG(dbgs() << "Backward dependences:\n");
    for (auto &Dep : Dependences)
      if (Dep.isPossiblyBackward()) {
        // Note that the designations source and destination follow the program
        // order, i.e. source is always first.  (The direction is given by the
        // DepType.)
        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;

        LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
      }
  }

private:
  AccessesType Accesses;
};

/// The actual class performing the per-loop work.
class LoopDistributeForLoop {
public:
  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
                        ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
      : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) {
    setForced();
  }

  /// Try to distribute an inner-most loop.
  bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
    assert(L->isInnermost() && "Only process inner loops.");

    LLVM_DEBUG(dbgs() << "\nLDist: In \""
                      << L->getHeader()->getParent()->getName()
                      << "\" checking " << *L << "\n");

    if (!L->getExitBlock())
      return fail("MultipleExitBlocks", "multiple exit blocks");
    if (!L->isLoopSimplifyForm())
      return fail("NotLoopSimplifyForm",
                  "loop is not in loop-simplify form");

    BasicBlock *PH = L->getLoopPreheader();

    // LAA will check that we only have a single exiting block.
    LAI = &GetLAA(*L);

    // Currently, we only distribute to isolate the part of the loop with
    // dependence cycles to enable partial vectorization.
    if (LAI->canVectorizeMemory())
      return fail("MemOpsCanBeVectorized",
                  "memory operations are safe for vectorization");

    auto *Dependences = LAI->getDepChecker().getDependences();
    if (!Dependences || Dependences->empty())
      return fail("NoUnsafeDeps", "no unsafe dependences to isolate");

    InstPartitionContainer Partitions(L, LI, DT);

    // First, go through each memory operation and assign them to consecutive
    // partitions (the order of partitions follows program order).  Put those
    // with unsafe dependences into "cyclic" partition otherwise put each store
    // in its own "non-cyclic" partition (we'll merge these later).
    //
    // Note that a memory operation (e.g. Load2 below) at a program point that
    // has an unsafe dependence (Store3->Load1) spanning over it must be
    // included in the same cyclic partition as the dependent operations.  This
    // is to preserve the original program order after distribution.  E.g.:
    //
    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
    //  Load1   -.                     1                       0->1
    //  Load2    | /Unsafe/            0                       1
    //  Store3  -'                    -1                       1->0
    //  Load4                          0                       0
    //
    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
    // we just keep assigning to the same cyclic partition until
    // NumUnsafeDependencesActive reaches 0.
    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
                                     *Dependences);

    int NumUnsafeDependencesActive = 0;
    for (auto &InstDep : MID) {
      Instruction *I = InstDep.Inst;
      // We update NumUnsafeDependencesActive post-instruction, catch the
      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
      if (NumUnsafeDependencesActive ||
          InstDep.NumUnsafeDependencesStartOrEnd > 0)
        Partitions.addToCyclicPartition(I);
      else
        Partitions.addToNewNonCyclicPartition(I);
      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
      assert(NumUnsafeDependencesActive >= 0 &&
             "Negative number of dependences active");
    }

    // Add partitions for values used outside.  These partitions can be out of
    // order from the original program order.  This is OK because if the
    // partition uses a load we will merge this partition with the original
    // partition of the load that we set up in the previous loop (see
    // mergeToAvoidDuplicatedLoads).
    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
    for (auto *Inst : DefsUsedOutside)
      Partitions.addToNewNonCyclicPartition(Inst);

    LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
    if (Partitions.getSize() < 2)
      return fail("CantIsolateUnsafeDeps",
                  "cannot isolate unsafe dependencies");

    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
    // should be able to vectorize these together.
    Partitions.mergeBeforePopulating();
    LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
    if (Partitions.getSize() < 2)
      return fail("CantIsolateUnsafeDeps",
                  "cannot isolate unsafe dependencies");

    // Now, populate the partitions with non-memory operations.
    Partitions.populateUsedSet();
    LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);

    // In order to preserve original lexical order for loads, keep them in the
    // partition that we set up in the MemoryInstructionDependences loop.
    if (Partitions.mergeToAvoidDuplicatedLoads()) {
      LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
                        << Partitions);
      if (Partitions.getSize() < 2)
        return fail("CantIsolateUnsafeDeps",
                    "cannot isolate unsafe dependencies");
    }

    // Don't distribute the loop if we need too many SCEV run-time checks, or
    // any if it's illegal.
    const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
    if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
      return fail("RuntimeCheckWithConvergent",
                  "may not insert runtime check with convergent operation");
    }

    if (Pred.getComplexity() > (IsForced.getValueOr(false)
                                    ? PragmaDistributeSCEVCheckThreshold
                                    : DistributeSCEVCheckThreshold))
      return fail("TooManySCEVRuntimeChecks",
                  "too many SCEV run-time checks needed.\n");

    if (!IsForced.getValueOr(false) && hasDisableAllTransformsHint(L))
      return fail("HeuristicDisabled", "distribution heuristic disabled");

    LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
    // We're done forming the partitions set up the reverse mapping from
    // instructions to partitions.
    Partitions.setupPartitionIdOnInstructions();

    // If we need run-time checks, version the loop now.
    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
    const auto &AllChecks = RtPtrChecking->getChecks();
    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
                                                  RtPtrChecking);

    if (LAI->hasConvergentOp() && !Checks.empty()) {
      return fail("RuntimeCheckWithConvergent",
                  "may not insert runtime check with convergent operation");
    }

    // To keep things simple have an empty preheader before we version or clone
    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
    // rely on PH having a predecessor.)
    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
      SplitBlock(PH, PH->getTerminator(), DT, LI);

    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
      assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");

      MDNode *OrigLoopID = L->getLoopID();

      LLVM_DEBUG(dbgs() << "\nPointers:\n");
      LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
      LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
      LVer.setAliasChecks(std::move(Checks));
      LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
      LVer.versionLoop(DefsUsedOutside);
      LVer.annotateLoopWithNoAlias();

      // The unversioned loop will not be changed, so we inherit all attributes
      // from the original loop, but remove the loop distribution metadata to
      // avoid to distribute it again.
      MDNode *UnversionedLoopID =
          makeFollowupLoopID(OrigLoopID,
                             {LLVMLoopDistributeFollowupAll,
                              LLVMLoopDistributeFollowupFallback},
                             "llvm.loop.distribute.", true)
              .getValue();
      LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
    }

    // Create identical copies of the original loop for each partition and hook
    // them up sequentially.
    Partitions.cloneLoops();

    // Now, we remove the instruction from each loop that don't belong to that
    // partition.
    Partitions.removeUnusedInsts();
    LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
    LLVM_DEBUG(Partitions.printBlocks());

    if (LDistVerify) {
      LI->verify(*DT);
      assert(DT->verify(DominatorTree::VerificationLevel::Fast));
    }

    ++NumLoopsDistributed;
    // Report the success.
    ORE->emit([&]() {
      return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
                                L->getHeader())
             << "distributed loop";
    });
    return true;
  }

  /// Provide diagnostics then \return with false.
  bool fail(StringRef RemarkName, StringRef Message) {
    LLVMContext &Ctx = F->getContext();
    bool Forced = isForced().getValueOr(false);

    LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");

    // With Rpass-missed report that distribution failed.
    ORE->emit([&]() {
      return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
                                      L->getStartLoc(), L->getHeader())
             << "loop not distributed: use -Rpass-analysis=loop-distribute for "
                "more "
                "info";
    });

    // With Rpass-analysis report why.  This is on by default if distribution
    // was requested explicitly.
    ORE->emit(OptimizationRemarkAnalysis(
                  Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
                  RemarkName, L->getStartLoc(), L->getHeader())
              << "loop not distributed: " << Message);

    // Also issue a warning if distribution was requested explicitly but it
    // failed.
    if (Forced)
      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
          *F, L->getStartLoc(), "loop not distributed: failed "
                                "explicitly specified loop distribution"));

    return false;
  }

  /// Return if distribution forced to be enabled/disabled for the loop.
  ///
  /// If the optional has a value, it indicates whether distribution was forced
  /// to be enabled (true) or disabled (false).  If the optional has no value
  /// distribution was not forced either way.
  const Optional<bool> &isForced() const { return IsForced; }

private:
  /// Filter out checks between pointers from the same partition.
  ///
  /// \p PtrToPartition contains the partition number for pointers.  Partition
  /// number -1 means that the pointer is used in multiple partitions.  In this
  /// case we can't safely omit the check.
  SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks(
      const SmallVectorImpl<RuntimePointerCheck> &AllChecks,
      const SmallVectorImpl<int> &PtrToPartition,
      const RuntimePointerChecking *RtPtrChecking) {
    SmallVector<RuntimePointerCheck, 4> Checks;

    copy_if(AllChecks, std::back_inserter(Checks),
            [&](const RuntimePointerCheck &Check) {
              for (unsigned PtrIdx1 : Check.first->Members)
                for (unsigned PtrIdx2 : Check.second->Members)
                  // Only include this check if there is a pair of pointers
                  // that require checking and the pointers fall into
                  // separate partitions.
                  //
                  // (Note that we already know at this point that the two
                  // pointer groups need checking but it doesn't follow
                  // that each pair of pointers within the two groups need
                  // checking as well.
                  //
                  // In other words we don't want to include a check just
                  // because there is a pair of pointers between the two
                  // pointer groups that require checks and a different
                  // pair whose pointers fall into different partitions.)
                  if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
                      !RuntimePointerChecking::arePointersInSamePartition(
                          PtrToPartition, PtrIdx1, PtrIdx2))
                    return true;
              return false;
            });

    return Checks;
  }

  /// Check whether the loop metadata is forcing distribution to be
  /// enabled/disabled.
  void setForced() {
    Optional<const MDOperand *> Value =
        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
    if (!Value)
      return;

    const MDOperand *Op = *Value;
    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
  }

  Loop *L;
  Function *F;

  // Analyses used.
  LoopInfo *LI;
  const LoopAccessInfo *LAI = nullptr;
  DominatorTree *DT;
  ScalarEvolution *SE;
  OptimizationRemarkEmitter *ORE;

  /// Indicates whether distribution is forced to be enabled/disabled for
  /// the loop.
  ///
  /// If the optional has a value, it indicates whether distribution was forced
  /// to be enabled (true) or disabled (false).  If the optional has no value
  /// distribution was not forced either way.
  Optional<bool> IsForced;
};

} // end anonymous namespace

/// Shared implementation between new and old PMs.
static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
                    ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
                    std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
  // Build up a worklist of inner-loops to vectorize. This is necessary as the
  // act of distributing a loop creates new loops and can invalidate iterators
  // across the loops.
  SmallVector<Loop *, 8> Worklist;

  for (Loop *TopLevelLoop : *LI)
    for (Loop *L : depth_first(TopLevelLoop))
      // We only handle inner-most loops.
      if (L->isInnermost())
        Worklist.push_back(L);

  // Now walk the identified inner loops.
  bool Changed = false;
  for (Loop *L : Worklist) {
    LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);

    // If distribution was forced for the specific loop to be
    // enabled/disabled, follow that.  Otherwise use the global flag.
    if (LDL.isForced().getValueOr(EnableLoopDistribute))
      Changed |= LDL.processLoop(GetLAA);
  }

  // Process each loop nest in the function.
  return Changed;
}

namespace {

/// The pass class.
class LoopDistributeLegacy : public FunctionPass {
public:
  static char ID;

  LoopDistributeLegacy() : FunctionPass(ID) {
    // The default is set by the caller.
    initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };

    return runImpl(F, LI, DT, SE, ORE, GetLAA);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

PreservedAnalyses LoopDistributePass::run(Function &F,
                                          FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  // We don't directly need these analyses but they're required for loop
  // analyses so provide them below.
  auto &AA = AM.getResult<AAManager>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);

  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
  std::function<const LoopAccessInfo &(Loop &)> GetLAA =
      [&](Loop &L) -> const LoopAccessInfo & {
    LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,     SE,
                                      TLI, TTI, nullptr, nullptr};
    return LAM.getResult<LoopAccessAnalysis>(L, AR);
  };

  bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<LoopAnalysis>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char LoopDistributeLegacy::ID;

static const char ldist_name[] = "Loop Distribution";

INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)

FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }