ModuleSummaryAnalysis.cpp 38.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass builds a ModuleSummaryIndex object for the module, to be written
// to bitcode or LLVM assembly.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "module-summary-analysis"

// Option to force edges cold which will block importing when the
// -import-cold-multiplier is set to 0. Useful for debugging.
FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
    FunctionSummary::FSHT_None;
cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
    "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
    cl::desc("Force all edges in the function summary to cold"),
    cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
               clEnumValN(FunctionSummary::FSHT_AllNonCritical,
                          "all-non-critical", "All non-critical edges."),
               clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));

cl::opt<std::string> ModuleSummaryDotFile(
    "module-summary-dot-file", cl::init(""), cl::Hidden,
    cl::value_desc("filename"),
    cl::desc("File to emit dot graph of new summary into."));

// Walk through the operands of a given User via worklist iteration and populate
// the set of GlobalValue references encountered. Invoked either on an
// Instruction or a GlobalVariable (which walks its initializer).
// Return true if any of the operands contains blockaddress. This is important
// to know when computing summary for global var, because if global variable
// references basic block address we can't import it separately from function
// containing that basic block. For simplicity we currently don't import such
// global vars at all. When importing function we aren't interested if any
// instruction in it takes an address of any basic block, because instruction
// can only take an address of basic block located in the same function.
static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
                         SetVector<ValueInfo> &RefEdges,
                         SmallPtrSet<const User *, 8> &Visited) {
  bool HasBlockAddress = false;
  SmallVector<const User *, 32> Worklist;
  Worklist.push_back(CurUser);

  while (!Worklist.empty()) {
    const User *U = Worklist.pop_back_val();

    if (!Visited.insert(U).second)
      continue;

    const auto *CB = dyn_cast<CallBase>(U);

    for (const auto &OI : U->operands()) {
      const User *Operand = dyn_cast<User>(OI);
      if (!Operand)
        continue;
      if (isa<BlockAddress>(Operand)) {
        HasBlockAddress = true;
        continue;
      }
      if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
        // We have a reference to a global value. This should be added to
        // the reference set unless it is a callee. Callees are handled
        // specially by WriteFunction and are added to a separate list.
        if (!(CB && CB->isCallee(&OI)))
          RefEdges.insert(Index.getOrInsertValueInfo(GV));
        continue;
      }
      Worklist.push_back(Operand);
    }
  }
  return HasBlockAddress;
}

static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
                                          ProfileSummaryInfo *PSI) {
  if (!PSI)
    return CalleeInfo::HotnessType::Unknown;
  if (PSI->isHotCount(ProfileCount))
    return CalleeInfo::HotnessType::Hot;
  if (PSI->isColdCount(ProfileCount))
    return CalleeInfo::HotnessType::Cold;
  return CalleeInfo::HotnessType::None;
}

static bool isNonRenamableLocal(const GlobalValue &GV) {
  return GV.hasSection() && GV.hasLocalLinkage();
}

/// Determine whether this call has all constant integer arguments (excluding
/// "this") and summarize it to VCalls or ConstVCalls as appropriate.
static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
                          SetVector<FunctionSummary::VFuncId> &VCalls,
                          SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
  std::vector<uint64_t> Args;
  // Start from the second argument to skip the "this" pointer.
  for (auto &Arg : make_range(Call.CB.arg_begin() + 1, Call.CB.arg_end())) {
    auto *CI = dyn_cast<ConstantInt>(Arg);
    if (!CI || CI->getBitWidth() > 64) {
      VCalls.insert({Guid, Call.Offset});
      return;
    }
    Args.push_back(CI->getZExtValue());
  }
  ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
}

/// If this intrinsic call requires that we add information to the function
/// summary, do so via the non-constant reference arguments.
static void addIntrinsicToSummary(
    const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
    SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
    SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
    SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
    SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
    DominatorTree &DT) {
  switch (CI->getCalledFunction()->getIntrinsicID()) {
  case Intrinsic::type_test: {
    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
    if (!TypeId)
      break;
    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());

    // Produce a summary from type.test intrinsics. We only summarize type.test
    // intrinsics that are used other than by an llvm.assume intrinsic.
    // Intrinsics that are assumed are relevant only to the devirtualization
    // pass, not the type test lowering pass.
    bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
      auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
      if (!AssumeCI)
        return true;
      Function *F = AssumeCI->getCalledFunction();
      return !F || F->getIntrinsicID() != Intrinsic::assume;
    });
    if (HasNonAssumeUses)
      TypeTests.insert(Guid);

    SmallVector<DevirtCallSite, 4> DevirtCalls;
    SmallVector<CallInst *, 4> Assumes;
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
    for (auto &Call : DevirtCalls)
      addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
                    TypeTestAssumeConstVCalls);

    break;
  }

  case Intrinsic::type_checked_load: {
    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
    if (!TypeId)
      break;
    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());

    SmallVector<DevirtCallSite, 4> DevirtCalls;
    SmallVector<Instruction *, 4> LoadedPtrs;
    SmallVector<Instruction *, 4> Preds;
    bool HasNonCallUses = false;
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
                                               HasNonCallUses, CI, DT);
    // Any non-call uses of the result of llvm.type.checked.load will
    // prevent us from optimizing away the llvm.type.test.
    if (HasNonCallUses)
      TypeTests.insert(Guid);
    for (auto &Call : DevirtCalls)
      addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
                    TypeCheckedLoadConstVCalls);

    break;
  }
  default:
    break;
  }
}

static bool isNonVolatileLoad(const Instruction *I) {
  if (const auto *LI = dyn_cast<LoadInst>(I))
    return !LI->isVolatile();

  return false;
}

static bool isNonVolatileStore(const Instruction *I) {
  if (const auto *SI = dyn_cast<StoreInst>(I))
    return !SI->isVolatile();

  return false;
}

static void computeFunctionSummary(
    ModuleSummaryIndex &Index, const Module &M, const Function &F,
    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
    bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
    bool IsThinLTO,
    std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
  // Summary not currently supported for anonymous functions, they should
  // have been named.
  assert(F.hasName());

  unsigned NumInsts = 0;
  // Map from callee ValueId to profile count. Used to accumulate profile
  // counts for all static calls to a given callee.
  MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
  SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
  SetVector<GlobalValue::GUID> TypeTests;
  SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
      TypeCheckedLoadVCalls;
  SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
      TypeCheckedLoadConstVCalls;
  ICallPromotionAnalysis ICallAnalysis;
  SmallPtrSet<const User *, 8> Visited;

  // Add personality function, prefix data and prologue data to function's ref
  // list.
  findRefEdges(Index, &F, RefEdges, Visited);
  std::vector<const Instruction *> NonVolatileLoads;
  std::vector<const Instruction *> NonVolatileStores;

  bool HasInlineAsmMaybeReferencingInternal = false;
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB) {
      if (isa<DbgInfoIntrinsic>(I))
        continue;
      ++NumInsts;
      // Regular LTO module doesn't participate in ThinLTO import,
      // so no reference from it can be read/writeonly, since this
      // would require importing variable as local copy
      if (IsThinLTO) {
        if (isNonVolatileLoad(&I)) {
          // Postpone processing of non-volatile load instructions
          // See comments below
          Visited.insert(&I);
          NonVolatileLoads.push_back(&I);
          continue;
        } else if (isNonVolatileStore(&I)) {
          Visited.insert(&I);
          NonVolatileStores.push_back(&I);
          // All references from second operand of store (destination address)
          // can be considered write-only if they're not referenced by any
          // non-store instruction. References from first operand of store
          // (stored value) can't be treated either as read- or as write-only
          // so we add them to RefEdges as we do with all other instructions
          // except non-volatile load.
          Value *Stored = I.getOperand(0);
          if (auto *GV = dyn_cast<GlobalValue>(Stored))
            // findRefEdges will try to examine GV operands, so instead
            // of calling it we should add GV to RefEdges directly.
            RefEdges.insert(Index.getOrInsertValueInfo(GV));
          else if (auto *U = dyn_cast<User>(Stored))
            findRefEdges(Index, U, RefEdges, Visited);
          continue;
        }
      }
      findRefEdges(Index, &I, RefEdges, Visited);
      const auto *CB = dyn_cast<CallBase>(&I);
      if (!CB)
        continue;

      const auto *CI = dyn_cast<CallInst>(&I);
      // Since we don't know exactly which local values are referenced in inline
      // assembly, conservatively mark the function as possibly referencing
      // a local value from inline assembly to ensure we don't export a
      // reference (which would require renaming and promotion of the
      // referenced value).
      if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
        HasInlineAsmMaybeReferencingInternal = true;

      auto *CalledValue = CB->getCalledOperand();
      auto *CalledFunction = CB->getCalledFunction();
      if (CalledValue && !CalledFunction) {
        CalledValue = CalledValue->stripPointerCasts();
        // Stripping pointer casts can reveal a called function.
        CalledFunction = dyn_cast<Function>(CalledValue);
      }
      // Check if this is an alias to a function. If so, get the
      // called aliasee for the checks below.
      if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
        assert(!CalledFunction && "Expected null called function in callsite for alias");
        CalledFunction = dyn_cast<Function>(GA->getBaseObject());
      }
      // Check if this is a direct call to a known function or a known
      // intrinsic, or an indirect call with profile data.
      if (CalledFunction) {
        if (CI && CalledFunction->isIntrinsic()) {
          addIntrinsicToSummary(
              CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
              TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
          continue;
        }
        // We should have named any anonymous globals
        assert(CalledFunction->hasName());
        auto ScaledCount = PSI->getProfileCount(*CB, BFI);
        auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
                                   : CalleeInfo::HotnessType::Unknown;
        if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
          Hotness = CalleeInfo::HotnessType::Cold;

        // Use the original CalledValue, in case it was an alias. We want
        // to record the call edge to the alias in that case. Eventually
        // an alias summary will be created to associate the alias and
        // aliasee.
        auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
            cast<GlobalValue>(CalledValue))];
        ValueInfo.updateHotness(Hotness);
        // Add the relative block frequency to CalleeInfo if there is no profile
        // information.
        if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
          uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
          uint64_t EntryFreq = BFI->getEntryFreq();
          ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
        }
      } else {
        // Skip inline assembly calls.
        if (CI && CI->isInlineAsm())
          continue;
        // Skip direct calls.
        if (!CalledValue || isa<Constant>(CalledValue))
          continue;

        // Check if the instruction has a callees metadata. If so, add callees
        // to CallGraphEdges to reflect the references from the metadata, and
        // to enable importing for subsequent indirect call promotion and
        // inlining.
        if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
          for (auto &Op : MD->operands()) {
            Function *Callee = mdconst::extract_or_null<Function>(Op);
            if (Callee)
              CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
          }
        }

        uint32_t NumVals, NumCandidates;
        uint64_t TotalCount;
        auto CandidateProfileData =
            ICallAnalysis.getPromotionCandidatesForInstruction(
                &I, NumVals, TotalCount, NumCandidates);
        for (auto &Candidate : CandidateProfileData)
          CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
              .updateHotness(getHotness(Candidate.Count, PSI));
      }
    }
  Index.addBlockCount(F.size());

  std::vector<ValueInfo> Refs;
  if (IsThinLTO) {
    auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
                           SetVector<ValueInfo> &Edges,
                           SmallPtrSet<const User *, 8> &Cache) {
      for (const auto *I : Instrs) {
        Cache.erase(I);
        findRefEdges(Index, I, Edges, Cache);
      }
    };

    // By now we processed all instructions in a function, except
    // non-volatile loads and non-volatile value stores. Let's find
    // ref edges for both of instruction sets
    AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
    // We can add some values to the Visited set when processing load
    // instructions which are also used by stores in NonVolatileStores.
    // For example this can happen if we have following code:
    //
    // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
    // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
    //
    // After processing loads we'll add bitcast to the Visited set, and if
    // we use the same set while processing stores, we'll never see store
    // to @bar and @bar will be mistakenly treated as readonly.
    SmallPtrSet<const llvm::User *, 8> StoreCache;
    AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);

    // If both load and store instruction reference the same variable
    // we won't be able to optimize it. Add all such reference edges
    // to RefEdges set.
    for (auto &VI : StoreRefEdges)
      if (LoadRefEdges.remove(VI))
        RefEdges.insert(VI);

    unsigned RefCnt = RefEdges.size();
    // All new reference edges inserted in two loops below are either
    // read or write only. They will be grouped in the end of RefEdges
    // vector, so we can use a single integer value to identify them.
    for (auto &VI : LoadRefEdges)
      RefEdges.insert(VI);

    unsigned FirstWORef = RefEdges.size();
    for (auto &VI : StoreRefEdges)
      RefEdges.insert(VI);

    Refs = RefEdges.takeVector();
    for (; RefCnt < FirstWORef; ++RefCnt)
      Refs[RefCnt].setReadOnly();

    for (; RefCnt < Refs.size(); ++RefCnt)
      Refs[RefCnt].setWriteOnly();
  } else {
    Refs = RefEdges.takeVector();
  }
  // Explicit add hot edges to enforce importing for designated GUIDs for
  // sample PGO, to enable the same inlines as the profiled optimized binary.
  for (auto &I : F.getImportGUIDs())
    CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
        ForceSummaryEdgesCold == FunctionSummary::FSHT_All
            ? CalleeInfo::HotnessType::Cold
            : CalleeInfo::HotnessType::Critical);

  bool NonRenamableLocal = isNonRenamableLocal(F);
  bool NotEligibleForImport =
      NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
  GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
                                    /* Live = */ false, F.isDSOLocal(),
                                    F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
  FunctionSummary::FFlags FunFlags{
      F.hasFnAttribute(Attribute::ReadNone),
      F.hasFnAttribute(Attribute::ReadOnly),
      F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
      // FIXME: refactor this to use the same code that inliner is using.
      // Don't try to import functions with noinline attribute.
      F.getAttributes().hasFnAttribute(Attribute::NoInline),
      F.hasFnAttribute(Attribute::AlwaysInline)};
  std::vector<FunctionSummary::ParamAccess> ParamAccesses;
  if (auto *SSI = GetSSICallback(F))
    ParamAccesses = SSI->getParamAccesses(Index);
  auto FuncSummary = std::make_unique<FunctionSummary>(
      Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
      CallGraphEdges.takeVector(), TypeTests.takeVector(),
      TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
      TypeTestAssumeConstVCalls.takeVector(),
      TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
  if (NonRenamableLocal)
    CantBePromoted.insert(F.getGUID());
  Index.addGlobalValueSummary(F, std::move(FuncSummary));
}

/// Find function pointers referenced within the given vtable initializer
/// (or subset of an initializer) \p I. The starting offset of \p I within
/// the vtable initializer is \p StartingOffset. Any discovered function
/// pointers are added to \p VTableFuncs along with their cumulative offset
/// within the initializer.
static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
                             const Module &M, ModuleSummaryIndex &Index,
                             VTableFuncList &VTableFuncs) {
  // First check if this is a function pointer.
  if (I->getType()->isPointerTy()) {
    auto Fn = dyn_cast<Function>(I->stripPointerCasts());
    // We can disregard __cxa_pure_virtual as a possible call target, as
    // calls to pure virtuals are UB.
    if (Fn && Fn->getName() != "__cxa_pure_virtual")
      VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
    return;
  }

  // Walk through the elements in the constant struct or array and recursively
  // look for virtual function pointers.
  const DataLayout &DL = M.getDataLayout();
  if (auto *C = dyn_cast<ConstantStruct>(I)) {
    StructType *STy = dyn_cast<StructType>(C->getType());
    assert(STy);
    const StructLayout *SL = DL.getStructLayout(C->getType());

    for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
                                      EE = STy->element_end();
         EI != EE; ++EI) {
      auto Offset = SL->getElementOffset(EI - EB);
      unsigned Op = SL->getElementContainingOffset(Offset);
      findFuncPointers(cast<Constant>(I->getOperand(Op)),
                       StartingOffset + Offset, M, Index, VTableFuncs);
    }
  } else if (auto *C = dyn_cast<ConstantArray>(I)) {
    ArrayType *ATy = C->getType();
    Type *EltTy = ATy->getElementType();
    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
      findFuncPointers(cast<Constant>(I->getOperand(i)),
                       StartingOffset + i * EltSize, M, Index, VTableFuncs);
    }
  }
}

// Identify the function pointers referenced by vtable definition \p V.
static void computeVTableFuncs(ModuleSummaryIndex &Index,
                               const GlobalVariable &V, const Module &M,
                               VTableFuncList &VTableFuncs) {
  if (!V.isConstant())
    return;

  findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
                   VTableFuncs);

#ifndef NDEBUG
  // Validate that the VTableFuncs list is ordered by offset.
  uint64_t PrevOffset = 0;
  for (auto &P : VTableFuncs) {
    // The findVFuncPointers traversal should have encountered the
    // functions in offset order. We need to use ">=" since PrevOffset
    // starts at 0.
    assert(P.VTableOffset >= PrevOffset);
    PrevOffset = P.VTableOffset;
  }
#endif
}

/// Record vtable definition \p V for each type metadata it references.
static void
recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
                                       const GlobalVariable &V,
                                       SmallVectorImpl<MDNode *> &Types) {
  for (MDNode *Type : Types) {
    auto TypeID = Type->getOperand(1).get();

    uint64_t Offset =
        cast<ConstantInt>(
            cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
            ->getZExtValue();

    if (auto *TypeId = dyn_cast<MDString>(TypeID))
      Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
          .push_back({Offset, Index.getOrInsertValueInfo(&V)});
  }
}

static void computeVariableSummary(ModuleSummaryIndex &Index,
                                   const GlobalVariable &V,
                                   DenseSet<GlobalValue::GUID> &CantBePromoted,
                                   const Module &M,
                                   SmallVectorImpl<MDNode *> &Types) {
  SetVector<ValueInfo> RefEdges;
  SmallPtrSet<const User *, 8> Visited;
  bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
  bool NonRenamableLocal = isNonRenamableLocal(V);
  GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
                                    /* Live = */ false, V.isDSOLocal(),
                                    V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());

  VTableFuncList VTableFuncs;
  // If splitting is not enabled, then we compute the summary information
  // necessary for index-based whole program devirtualization.
  if (!Index.enableSplitLTOUnit()) {
    Types.clear();
    V.getMetadata(LLVMContext::MD_type, Types);
    if (!Types.empty()) {
      // Identify the function pointers referenced by this vtable definition.
      computeVTableFuncs(Index, V, M, VTableFuncs);

      // Record this vtable definition for each type metadata it references.
      recordTypeIdCompatibleVtableReferences(Index, V, Types);
    }
  }

  // Don't mark variables we won't be able to internalize as read/write-only.
  bool CanBeInternalized =
      !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
      !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
  bool Constant = V.isConstant();
  GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
                                       Constant ? false : CanBeInternalized,
                                       Constant, V.getVCallVisibility());
  auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
                                                         RefEdges.takeVector());
  if (NonRenamableLocal)
    CantBePromoted.insert(V.getGUID());
  if (HasBlockAddress)
    GVarSummary->setNotEligibleToImport();
  if (!VTableFuncs.empty())
    GVarSummary->setVTableFuncs(VTableFuncs);
  Index.addGlobalValueSummary(V, std::move(GVarSummary));
}

static void
computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
                    DenseSet<GlobalValue::GUID> &CantBePromoted) {
  bool NonRenamableLocal = isNonRenamableLocal(A);
  GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
                                    /* Live = */ false, A.isDSOLocal(),
                                    A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
  auto AS = std::make_unique<AliasSummary>(Flags);
  auto *Aliasee = A.getBaseObject();
  auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
  assert(AliaseeVI && "Alias expects aliasee summary to be available");
  assert(AliaseeVI.getSummaryList().size() == 1 &&
         "Expected a single entry per aliasee in per-module index");
  AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
  if (NonRenamableLocal)
    CantBePromoted.insert(A.getGUID());
  Index.addGlobalValueSummary(A, std::move(AS));
}

// Set LiveRoot flag on entries matching the given value name.
static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
  if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
    for (auto &Summary : VI.getSummaryList())
      Summary->setLive(true);
}

ModuleSummaryIndex llvm::buildModuleSummaryIndex(
    const Module &M,
    std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
    ProfileSummaryInfo *PSI,
    std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
  assert(PSI);
  bool EnableSplitLTOUnit = false;
  if (auto *MD = mdconst::extract_or_null<ConstantInt>(
          M.getModuleFlag("EnableSplitLTOUnit")))
    EnableSplitLTOUnit = MD->getZExtValue();
  ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);

  // Identify the local values in the llvm.used and llvm.compiler.used sets,
  // which should not be exported as they would then require renaming and
  // promotion, but we may have opaque uses e.g. in inline asm. We collect them
  // here because we use this information to mark functions containing inline
  // assembly calls as not importable.
  SmallPtrSet<GlobalValue *, 8> LocalsUsed;
  SmallPtrSet<GlobalValue *, 8> Used;
  // First collect those in the llvm.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
  // Next collect those in the llvm.compiler.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
  DenseSet<GlobalValue::GUID> CantBePromoted;
  for (auto *V : Used) {
    if (V->hasLocalLinkage()) {
      LocalsUsed.insert(V);
      CantBePromoted.insert(V->getGUID());
    }
  }

  bool HasLocalInlineAsmSymbol = false;
  if (!M.getModuleInlineAsm().empty()) {
    // Collect the local values defined by module level asm, and set up
    // summaries for these symbols so that they can be marked as NoRename,
    // to prevent export of any use of them in regular IR that would require
    // renaming within the module level asm. Note we don't need to create a
    // summary for weak or global defs, as they don't need to be flagged as
    // NoRename, and defs in module level asm can't be imported anyway.
    // Also, any values used but not defined within module level asm should
    // be listed on the llvm.used or llvm.compiler.used global and marked as
    // referenced from there.
    ModuleSymbolTable::CollectAsmSymbols(
        M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
          // Symbols not marked as Weak or Global are local definitions.
          if (Flags & (object::BasicSymbolRef::SF_Weak |
                       object::BasicSymbolRef::SF_Global))
            return;
          HasLocalInlineAsmSymbol = true;
          GlobalValue *GV = M.getNamedValue(Name);
          if (!GV)
            return;
          assert(GV->isDeclaration() && "Def in module asm already has definition");
          GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
                                              /* NotEligibleToImport = */ true,
                                              /* Live = */ true,
                                              /* Local */ GV->isDSOLocal(),
                                              GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
          CantBePromoted.insert(GV->getGUID());
          // Create the appropriate summary type.
          if (Function *F = dyn_cast<Function>(GV)) {
            std::unique_ptr<FunctionSummary> Summary =
                std::make_unique<FunctionSummary>(
                    GVFlags, /*InstCount=*/0,
                    FunctionSummary::FFlags{
                        F->hasFnAttribute(Attribute::ReadNone),
                        F->hasFnAttribute(Attribute::ReadOnly),
                        F->hasFnAttribute(Attribute::NoRecurse),
                        F->returnDoesNotAlias(),
                        /* NoInline = */ false,
                        F->hasFnAttribute(Attribute::AlwaysInline)},
                    /*EntryCount=*/0, ArrayRef<ValueInfo>{},
                    ArrayRef<FunctionSummary::EdgeTy>{},
                    ArrayRef<GlobalValue::GUID>{},
                    ArrayRef<FunctionSummary::VFuncId>{},
                    ArrayRef<FunctionSummary::VFuncId>{},
                    ArrayRef<FunctionSummary::ConstVCall>{},
                    ArrayRef<FunctionSummary::ConstVCall>{},
                    ArrayRef<FunctionSummary::ParamAccess>{});
            Index.addGlobalValueSummary(*GV, std::move(Summary));
          } else {
            std::unique_ptr<GlobalVarSummary> Summary =
                std::make_unique<GlobalVarSummary>(
                    GVFlags,
                    GlobalVarSummary::GVarFlags(
                        false, false, cast<GlobalVariable>(GV)->isConstant(),
                        GlobalObject::VCallVisibilityPublic),
                    ArrayRef<ValueInfo>{});
            Index.addGlobalValueSummary(*GV, std::move(Summary));
          }
        });
  }

  bool IsThinLTO = true;
  if (auto *MD =
          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
    IsThinLTO = MD->getZExtValue();

  // Compute summaries for all functions defined in module, and save in the
  // index.
  for (auto &F : M) {
    if (F.isDeclaration())
      continue;

    DominatorTree DT(const_cast<Function &>(F));
    BlockFrequencyInfo *BFI = nullptr;
    std::unique_ptr<BlockFrequencyInfo> BFIPtr;
    if (GetBFICallback)
      BFI = GetBFICallback(F);
    else if (F.hasProfileData()) {
      LoopInfo LI{DT};
      BranchProbabilityInfo BPI{F, LI};
      BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
      BFI = BFIPtr.get();
    }

    computeFunctionSummary(Index, M, F, BFI, PSI, DT,
                           !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
                           CantBePromoted, IsThinLTO, GetSSICallback);
  }

  // Compute summaries for all variables defined in module, and save in the
  // index.
  SmallVector<MDNode *, 2> Types;
  for (const GlobalVariable &G : M.globals()) {
    if (G.isDeclaration())
      continue;
    computeVariableSummary(Index, G, CantBePromoted, M, Types);
  }

  // Compute summaries for all aliases defined in module, and save in the
  // index.
  for (const GlobalAlias &A : M.aliases())
    computeAliasSummary(Index, A, CantBePromoted);

  for (auto *V : LocalsUsed) {
    auto *Summary = Index.getGlobalValueSummary(*V);
    assert(Summary && "Missing summary for global value");
    Summary->setNotEligibleToImport();
  }

  // The linker doesn't know about these LLVM produced values, so we need
  // to flag them as live in the index to ensure index-based dead value
  // analysis treats them as live roots of the analysis.
  setLiveRoot(Index, "llvm.used");
  setLiveRoot(Index, "llvm.compiler.used");
  setLiveRoot(Index, "llvm.global_ctors");
  setLiveRoot(Index, "llvm.global_dtors");
  setLiveRoot(Index, "llvm.global.annotations");

  for (auto &GlobalList : Index) {
    // Ignore entries for references that are undefined in the current module.
    if (GlobalList.second.SummaryList.empty())
      continue;

    assert(GlobalList.second.SummaryList.size() == 1 &&
           "Expected module's index to have one summary per GUID");
    auto &Summary = GlobalList.second.SummaryList[0];
    if (!IsThinLTO) {
      Summary->setNotEligibleToImport();
      continue;
    }

    bool AllRefsCanBeExternallyReferenced =
        llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
          return !CantBePromoted.count(VI.getGUID());
        });
    if (!AllRefsCanBeExternallyReferenced) {
      Summary->setNotEligibleToImport();
      continue;
    }

    if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
      bool AllCallsCanBeExternallyReferenced = llvm::all_of(
          FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
            return !CantBePromoted.count(Edge.first.getGUID());
          });
      if (!AllCallsCanBeExternallyReferenced)
        Summary->setNotEligibleToImport();
    }
  }

  if (!ModuleSummaryDotFile.empty()) {
    std::error_code EC;
    raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
    if (EC)
      report_fatal_error(Twine("Failed to open dot file ") +
                         ModuleSummaryDotFile + ": " + EC.message() + "\n");
    Index.exportToDot(OSDot, {});
  }

  return Index;
}

AnalysisKey ModuleSummaryIndexAnalysis::Key;

ModuleSummaryIndex
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
  ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  bool NeedSSI = needsParamAccessSummary(M);
  return buildModuleSummaryIndex(
      M,
      [&FAM](const Function &F) {
        return &FAM.getResult<BlockFrequencyAnalysis>(
            *const_cast<Function *>(&F));
      },
      &PSI,
      [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
        return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
                             const_cast<Function &>(F))
                       : nullptr;
      });
}

char ModuleSummaryIndexWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                      "Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                    "Module Summary Analysis", false, true)

ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
  return new ModuleSummaryIndexWrapperPass();
}

ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
    : ModulePass(ID) {
  initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
}

bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  bool NeedSSI = needsParamAccessSummary(M);
  Index.emplace(buildModuleSummaryIndex(
      M,
      [this](const Function &F) {
        return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
                         *const_cast<Function *>(&F))
                     .getBFI());
      },
      PSI,
      [&](const Function &F) -> const StackSafetyInfo * {
        return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
                              const_cast<Function &>(F))
                              .getResult()
                       : nullptr;
      }));
  return false;
}

bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
  Index.reset();
  return false;
}

void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BlockFrequencyInfoWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  AU.addRequired<StackSafetyInfoWrapperPass>();
}

char ImmutableModuleSummaryIndexWrapperPass::ID = 0;

ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
    const ModuleSummaryIndex *Index)
    : ImmutablePass(ID), Index(Index) {
  initializeImmutableModuleSummaryIndexWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  AU.setPreservesAll();
}

ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
    const ModuleSummaryIndex *Index) {
  return new ImmutableModuleSummaryIndexWrapperPass(Index);
}

INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
                "Module summary info", false, true)