Scalar.cpp
22.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
//===-- Scalar.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-types.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include <cinttypes>
#include <cstdio>
using namespace lldb;
using namespace lldb_private;
using llvm::APFloat;
using llvm::APInt;
using llvm::APSInt;
Scalar::PromotionKey Scalar::GetPromoKey() const {
switch (m_type) {
case e_void:
return PromotionKey{e_void, 0, false};
case e_int:
return PromotionKey{e_int, m_integer.getBitWidth(), m_integer.isUnsigned()};
case e_float:
return GetFloatPromoKey(m_float.getSemantics());
}
llvm_unreachable("Unhandled category!");
}
Scalar::PromotionKey Scalar::GetFloatPromoKey(const llvm::fltSemantics &sem) {
static const llvm::fltSemantics *const order[] = {
&APFloat::IEEEsingle(), &APFloat::IEEEdouble(),
&APFloat::x87DoubleExtended()};
for (const auto &entry : llvm::enumerate(order)) {
if (entry.value() == &sem)
return PromotionKey{e_float, entry.index(), false};
}
llvm_unreachable("Unsupported semantics!");
}
// Promote to max type currently follows the ANSI C rule for type promotion in
// expressions.
Scalar::Type Scalar::PromoteToMaxType(Scalar &lhs, Scalar &rhs) {
const auto &Promote = [](Scalar &a, const Scalar &b) {
switch (b.GetType()) {
case e_void:
break;
case e_int:
a.IntegralPromote(b.m_integer.getBitWidth(), b.m_integer.isSigned());
break;
case e_float:
a.FloatPromote(b.m_float.getSemantics());
}
};
PromotionKey lhs_key = lhs.GetPromoKey();
PromotionKey rhs_key = rhs.GetPromoKey();
if (lhs_key > rhs_key)
Promote(rhs, lhs);
else if (rhs_key > lhs_key)
Promote(lhs, rhs);
// Make sure our type promotion worked as expected
if (lhs.GetPromoKey() == rhs.GetPromoKey())
return lhs.GetType(); // Return the resulting type
// Return the void type (zero) if we fail to promote either of the values.
return Scalar::e_void;
}
bool Scalar::GetData(DataExtractor &data, size_t limit_byte_size) const {
size_t byte_size = GetByteSize();
if (byte_size == 0) {
data.Clear();
return false;
}
auto buffer_up = std::make_unique<DataBufferHeap>(byte_size, 0);
GetBytes(buffer_up->GetData());
lldb::offset_t offset = 0;
if (limit_byte_size < byte_size) {
if (endian::InlHostByteOrder() == eByteOrderLittle) {
// On little endian systems if we want fewer bytes from the current
// type we just specify fewer bytes since the LSByte is first...
byte_size = limit_byte_size;
} else if (endian::InlHostByteOrder() == eByteOrderBig) {
// On big endian systems if we want fewer bytes from the current type
// have to advance our initial byte pointer and trim down the number of
// bytes since the MSByte is first
offset = byte_size - limit_byte_size;
byte_size = limit_byte_size;
}
}
data.SetData(std::move(buffer_up), offset, byte_size);
data.SetByteOrder(endian::InlHostByteOrder());
return true;
}
void Scalar::GetBytes(llvm::MutableArrayRef<uint8_t> storage) const {
assert(storage.size() >= GetByteSize());
const auto &store = [&](const llvm::APInt &val) {
StoreIntToMemory(val, storage.data(), (val.getBitWidth() + 7) / 8);
};
switch (m_type) {
case e_void:
break;
case e_int:
store(m_integer);
break;
case e_float:
store(m_float.bitcastToAPInt());
break;
}
}
size_t Scalar::GetByteSize() const {
switch (m_type) {
case e_void:
break;
case e_int:
return (m_integer.getBitWidth() / 8);
case e_float:
return m_float.bitcastToAPInt().getBitWidth() / 8;
}
return 0;
}
bool Scalar::IsZero() const {
switch (m_type) {
case e_void:
break;
case e_int:
return m_integer.isNullValue();
case e_float:
return m_float.isZero();
}
return false;
}
void Scalar::GetValue(Stream *s, bool show_type) const {
if (show_type)
s->Printf("(%s) ", GetTypeAsCString());
switch (m_type) {
case e_void:
break;
case e_int:
s->PutCString(m_integer.toString(10));
break;
case e_float:
llvm::SmallString<24> string;
m_float.toString(string);
s->PutCString(string);
break;
}
}
void Scalar::TruncOrExtendTo(uint16_t bits, bool sign) {
m_integer.setIsSigned(sign);
m_integer = m_integer.extOrTrunc(bits);
}
bool Scalar::IntegralPromote(uint16_t bits, bool sign) {
switch (m_type) {
case e_void:
case e_float:
break;
case e_int:
if (GetPromoKey() > PromotionKey(e_int, bits, !sign))
break;
m_integer = m_integer.extOrTrunc(bits);
m_integer.setIsSigned(sign);
return true;
}
return false;
}
bool Scalar::FloatPromote(const llvm::fltSemantics &semantics) {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_int:
m_float = llvm::APFloat(semantics);
m_float.convertFromAPInt(m_integer, m_integer.isSigned(),
llvm::APFloat::rmNearestTiesToEven);
success = true;
break;
case e_float:
if (GetFloatPromoKey(semantics) < GetFloatPromoKey(m_float.getSemantics()))
break;
bool ignore;
success = true;
m_float.convert(semantics, llvm::APFloat::rmNearestTiesToEven, &ignore);
}
if (success)
m_type = e_float;
return success;
}
const char *Scalar::GetValueTypeAsCString(Scalar::Type type) {
switch (type) {
case e_void:
return "void";
case e_int:
return "int";
case e_float:
return "float";
}
return "???";
}
bool Scalar::IsSigned() const {
switch (m_type) {
case e_void:
return false;
case e_int:
return m_integer.isSigned();
case e_float:
return true;
}
llvm_unreachable("Unrecognized type!");
}
bool Scalar::MakeSigned() {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_int:
m_integer.setIsSigned(true);
success = true;
break;
case e_float:
success = true;
break;
}
return success;
}
bool Scalar::MakeUnsigned() {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_int:
m_integer.setIsUnsigned(true);
success = true;
break;
case e_float:
success = true;
break;
}
return success;
}
static llvm::APInt ToAPInt(const llvm::APFloat &f, unsigned bits,
bool is_unsigned) {
llvm::APSInt result(bits, is_unsigned);
bool isExact;
f.convertToInteger(result, llvm::APFloat::rmTowardZero, &isExact);
return std::move(result);
}
template <typename T> T Scalar::GetAs(T fail_value) const {
switch (m_type) {
case e_void:
break;
case e_int: {
APSInt ext = m_integer.extOrTrunc(sizeof(T) * 8);
if (ext.isSigned())
return ext.getSExtValue();
return ext.getZExtValue();
}
case e_float:
return ToAPInt(m_float, sizeof(T) * 8, std::is_unsigned<T>::value)
.getSExtValue();
}
return fail_value;
}
signed char Scalar::SChar(signed char fail_value) const {
return GetAs<signed char>(fail_value);
}
unsigned char Scalar::UChar(unsigned char fail_value) const {
return GetAs<unsigned char>(fail_value);
}
short Scalar::SShort(short fail_value) const {
return GetAs<short>(fail_value);
}
unsigned short Scalar::UShort(unsigned short fail_value) const {
return GetAs<unsigned short>(fail_value);
}
int Scalar::SInt(int fail_value) const { return GetAs<int>(fail_value); }
unsigned int Scalar::UInt(unsigned int fail_value) const {
return GetAs<unsigned int>(fail_value);
}
long Scalar::SLong(long fail_value) const { return GetAs<long>(fail_value); }
unsigned long Scalar::ULong(unsigned long fail_value) const {
return GetAs<unsigned long>(fail_value);
}
long long Scalar::SLongLong(long long fail_value) const {
return GetAs<long long>(fail_value);
}
unsigned long long Scalar::ULongLong(unsigned long long fail_value) const {
return GetAs<unsigned long long>(fail_value);
}
llvm::APInt Scalar::SInt128(const llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_int:
return m_integer;
case e_float:
return ToAPInt(m_float, 128, /*is_unsigned=*/false);
}
return fail_value;
}
llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_int:
return m_integer;
case e_float:
return ToAPInt(m_float, 128, /*is_unsigned=*/true);
}
return fail_value;
}
float Scalar::Float(float fail_value) const {
switch (m_type) {
case e_void:
break;
case e_int:
if (m_integer.isSigned())
return llvm::APIntOps::RoundSignedAPIntToFloat(m_integer);
return llvm::APIntOps::RoundAPIntToFloat(m_integer);
case e_float: {
APFloat result = m_float;
bool losesInfo;
result.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&losesInfo);
return result.convertToFloat();
}
}
return fail_value;
}
double Scalar::Double(double fail_value) const {
switch (m_type) {
case e_void:
break;
case e_int:
if (m_integer.isSigned())
return llvm::APIntOps::RoundSignedAPIntToDouble(m_integer);
return llvm::APIntOps::RoundAPIntToDouble(m_integer);
case e_float: {
APFloat result = m_float;
bool losesInfo;
result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
return result.convertToDouble();
}
}
return fail_value;
}
long double Scalar::LongDouble(long double fail_value) const {
/// No way to get more precision at the moment.
return static_cast<long double>(Double(fail_value));
}
Scalar &Scalar::operator+=(Scalar rhs) {
Scalar copy = *this;
if ((m_type = PromoteToMaxType(copy, rhs)) != Scalar::e_void) {
switch (m_type) {
case e_void:
break;
case e_int:
m_integer = copy.m_integer + rhs.m_integer;
break;
case e_float:
m_float = copy.m_float + rhs.m_float;
break;
}
}
return *this;
}
Scalar &Scalar::operator<<=(const Scalar &rhs) {
if (m_type == e_int && rhs.m_type == e_int)
static_cast<APInt &>(m_integer) <<= rhs.m_integer;
else
m_type = e_void;
return *this;
}
bool Scalar::ShiftRightLogical(const Scalar &rhs) {
if (m_type == e_int && rhs.m_type == e_int) {
m_integer = m_integer.lshr(rhs.m_integer);
return true;
}
m_type = e_void;
return false;
}
Scalar &Scalar::operator>>=(const Scalar &rhs) {
switch (m_type) {
case e_void:
case e_float:
m_type = e_void;
break;
case e_int:
switch (rhs.m_type) {
case e_void:
case e_float:
m_type = e_void;
break;
case e_int:
m_integer = m_integer.ashr(rhs.m_integer);
break;
}
break;
}
return *this;
}
Scalar &Scalar::operator&=(const Scalar &rhs) {
if (m_type == e_int && rhs.m_type == e_int)
m_integer &= rhs.m_integer;
else
m_type = e_void;
return *this;
}
bool Scalar::AbsoluteValue() {
switch (m_type) {
case e_void:
break;
case e_int:
if (m_integer.isNegative())
m_integer = -m_integer;
return true;
case e_float:
m_float.clearSign();
return true;
}
return false;
}
bool Scalar::UnaryNegate() {
switch (m_type) {
case e_void:
break;
case e_int:
m_integer = -m_integer;
return true;
case e_float:
m_float.changeSign();
return true;
}
return false;
}
bool Scalar::OnesComplement() {
if (m_type == e_int) {
m_integer = ~m_integer;
return true;
}
return false;
}
const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result += rhs;
return result;
}
const Scalar lldb_private::operator-(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_int:
result.m_integer = lhs.m_integer - rhs.m_integer;
break;
case Scalar::e_float:
result.m_float = lhs.m_float - rhs.m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator/(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void &&
!rhs.IsZero()) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_int:
result.m_integer = lhs.m_integer / rhs.m_integer;
return result;
case Scalar::e_float:
result.m_float = lhs.m_float / rhs.m_float;
return result;
}
}
// For division only, the only way it should make it here is if a promotion
// failed, or if we are trying to do a divide by zero.
result.m_type = Scalar::e_void;
return result;
}
const Scalar lldb_private::operator*(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_int:
result.m_integer = lhs.m_integer * rhs.m_integer;
break;
case Scalar::e_float:
result.m_float = lhs.m_float * rhs.m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator&(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
if (result.m_type == Scalar::e_int)
result.m_integer = lhs.m_integer & rhs.m_integer;
else
result.m_type = Scalar::e_void;
}
return result;
}
const Scalar lldb_private::operator|(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
if (result.m_type == Scalar::e_int)
result.m_integer = lhs.m_integer | rhs.m_integer;
else
result.m_type = Scalar::e_void;
}
return result;
}
const Scalar lldb_private::operator%(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
if (!rhs.IsZero() && result.m_type == Scalar::e_int) {
result.m_integer = lhs.m_integer % rhs.m_integer;
return result;
}
}
result.m_type = Scalar::e_void;
return result;
}
const Scalar lldb_private::operator^(Scalar lhs, Scalar rhs) {
Scalar result;
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
if (result.m_type == Scalar::e_int)
result.m_integer = lhs.m_integer ^ rhs.m_integer;
else
result.m_type = Scalar::e_void;
}
return result;
}
const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result <<= rhs;
return result;
}
const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result >>= rhs;
return result;
}
Status Scalar::SetValueFromCString(const char *value_str, Encoding encoding,
size_t byte_size) {
Status error;
if (value_str == nullptr || value_str[0] == '\0') {
error.SetErrorString("Invalid c-string value string.");
return error;
}
switch (encoding) {
case eEncodingInvalid:
error.SetErrorString("Invalid encoding.");
break;
case eEncodingSint:
case eEncodingUint: {
llvm::StringRef str = value_str;
bool is_signed = encoding == eEncodingSint;
bool is_negative = is_signed && str.consume_front("-");
APInt integer;
if (str.getAsInteger(0, integer)) {
error.SetErrorStringWithFormatv(
"'{0}' is not a valid integer string value", value_str);
break;
}
bool fits;
if (is_signed) {
integer = integer.zext(integer.getBitWidth() + 1);
if (is_negative)
integer.negate();
fits = integer.isSignedIntN(byte_size * 8);
} else
fits = integer.isIntN(byte_size * 8);
if (!fits) {
error.SetErrorStringWithFormatv(
"value {0} is too large to fit in a {1} byte integer value",
value_str, byte_size);
break;
}
m_type = e_int;
m_integer =
APSInt(std::move(integer), !is_signed).extOrTrunc(8 * byte_size);
break;
}
case eEncodingIEEE754: {
// FIXME: It's not possible to unambiguously map a byte size to a floating
// point type. This function should be refactored to take an explicit
// semantics argument.
const llvm::fltSemantics &sem =
byte_size <= 4 ? APFloat::IEEEsingle()
: byte_size <= 8 ? APFloat::IEEEdouble()
: APFloat::x87DoubleExtended();
APFloat f(sem);
if (llvm::Expected<APFloat::opStatus> op =
f.convertFromString(value_str, APFloat::rmNearestTiesToEven)) {
m_type = e_float;
m_float = std::move(f);
} else
error = op.takeError();
break;
}
case eEncodingVector:
error.SetErrorString("vector encoding unsupported.");
break;
}
if (error.Fail())
m_type = e_void;
return error;
}
Status Scalar::SetValueFromData(const DataExtractor &data,
lldb::Encoding encoding, size_t byte_size) {
Status error;
switch (encoding) {
case lldb::eEncodingInvalid:
error.SetErrorString("invalid encoding");
break;
case lldb::eEncodingVector:
error.SetErrorString("vector encoding unsupported");
break;
case lldb::eEncodingUint:
case lldb::eEncodingSint: {
if (data.GetByteSize() < byte_size)
return Status("insufficient data");
m_type = e_int;
m_integer =
APSInt(APInt::getNullValue(8 * byte_size), encoding == eEncodingUint);
if (data.GetByteOrder() == endian::InlHostByteOrder()) {
llvm::LoadIntFromMemory(m_integer, data.GetDataStart(), byte_size);
} else {
std::vector<uint8_t> buffer(byte_size);
std::copy_n(data.GetDataStart(), byte_size, buffer.rbegin());
llvm::LoadIntFromMemory(m_integer, buffer.data(), byte_size);
}
break;
}
case lldb::eEncodingIEEE754: {
lldb::offset_t offset = 0;
if (byte_size == sizeof(float))
operator=(data.GetFloat(&offset));
else if (byte_size == sizeof(double))
operator=(data.GetDouble(&offset));
else if (byte_size == sizeof(long double))
operator=(data.GetLongDouble(&offset));
else
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
} break;
}
return error;
}
bool Scalar::SignExtend(uint32_t sign_bit_pos) {
const uint32_t max_bit_pos = GetByteSize() * 8;
if (sign_bit_pos < max_bit_pos) {
switch (m_type) {
case Scalar::e_void:
case Scalar::e_float:
return false;
case Scalar::e_int:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos - 1)) {
llvm::APInt sign_bit = llvm::APInt::getSignMask(sign_bit_pos + 1);
llvm::APInt bitwize_and = m_integer & sign_bit;
if (bitwize_and.getBoolValue()) {
llvm::APInt mask =
~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
m_integer |= APSInt(std::move(mask), m_integer.isUnsigned());
}
return true;
}
break;
}
}
return false;
}
size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len,
lldb::ByteOrder dst_byte_order,
Status &error) const {
// Get a data extractor that points to the native scalar data
DataExtractor data;
if (!GetData(data)) {
error.SetErrorString("invalid scalar value");
return 0;
}
const size_t src_len = data.GetByteSize();
// Prepare a memory buffer that contains some or all of the register value
const size_t bytes_copied =
data.CopyByteOrderedData(0, // src offset
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorString("failed to copy data");
return bytes_copied;
}
bool Scalar::ExtractBitfield(uint32_t bit_size, uint32_t bit_offset) {
if (bit_size == 0)
return true;
switch (m_type) {
case Scalar::e_void:
case Scalar::e_float:
break;
case Scalar::e_int:
m_integer >>= bit_offset;
m_integer = m_integer.extOrTrunc(bit_size).extOrTrunc(8 * GetByteSize());
return true;
}
return false;
}
bool lldb_private::operator==(Scalar lhs, Scalar rhs) {
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type == rhs.m_type;
llvm::APFloat::cmpResult result;
switch (Scalar::PromoteToMaxType(lhs, rhs)) {
case Scalar::e_void:
break;
case Scalar::e_int:
return lhs.m_integer == rhs.m_integer;
case Scalar::e_float:
result = lhs.m_float.compare(rhs.m_float);
if (result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) {
return !(lhs == rhs);
}
bool lldb_private::operator<(Scalar lhs, Scalar rhs) {
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
llvm::APFloat::cmpResult result;
switch (Scalar::PromoteToMaxType(lhs, rhs)) {
case Scalar::e_void:
break;
case Scalar::e_int:
return lhs.m_integer < rhs.m_integer;
case Scalar::e_float:
result = lhs.m_float.compare(rhs.m_float);
if (result == llvm::APFloat::cmpLessThan)
return true;
}
return false;
}
bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) {
return !(rhs < lhs);
}
bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) {
return rhs < lhs;
}
bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) {
return !(lhs < rhs);
}
bool Scalar::ClearBit(uint32_t bit) {
switch (m_type) {
case e_void:
break;
case e_int:
m_integer.clearBit(bit);
return true;
case e_float:
break;
}
return false;
}
bool Scalar::SetBit(uint32_t bit) {
switch (m_type) {
case e_void:
break;
case e_int:
m_integer.setBit(bit);
return true;
case e_float:
break;
}
return false;
}
llvm::raw_ostream &lldb_private::operator<<(llvm::raw_ostream &os, const Scalar &scalar) {
StreamString s;
scalar.GetValue(&s, /*show_type*/ true);
return os << s.GetString();
}