RegisterValue.cpp 23.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
//===-- RegisterValue.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Utility/RegisterValue.h"

#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-private-types.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"

#include <cstdint>
#include <string>
#include <tuple>
#include <vector>

#include <assert.h>
#include <inttypes.h>
#include <stdio.h>

using namespace lldb;
using namespace lldb_private;

bool RegisterValue::GetData(DataExtractor &data) const {
  return data.SetData(GetBytes(), GetByteSize(), GetByteOrder()) > 0;
}

uint32_t RegisterValue::GetAsMemoryData(const RegisterInfo *reg_info, void *dst,
                                        uint32_t dst_len,
                                        lldb::ByteOrder dst_byte_order,
                                        Status &error) const {
  if (reg_info == nullptr) {
    error.SetErrorString("invalid register info argument.");
    return 0;
  }

  // ReadRegister should have already been called on this object prior to
  // calling this.
  if (GetType() == eTypeInvalid) {
    // No value has been read into this object...
    error.SetErrorStringWithFormat(
        "invalid register value type for register %s", reg_info->name);
    return 0;
  }

  if (dst_len > kMaxRegisterByteSize) {
    error.SetErrorString("destination is too big");
    return 0;
  }

  const uint32_t src_len = reg_info->byte_size;

  // Extract the register data into a data extractor
  DataExtractor reg_data;
  if (!GetData(reg_data)) {
    error.SetErrorString("invalid register value to copy into");
    return 0;
  }

  // Prepare a memory buffer that contains some or all of the register value
  const uint32_t bytes_copied =
      reg_data.CopyByteOrderedData(0,               // src offset
                                   src_len,         // src length
                                   dst,             // dst buffer
                                   dst_len,         // dst length
                                   dst_byte_order); // dst byte order
  if (bytes_copied == 0)
    error.SetErrorStringWithFormat(
        "failed to copy data for register write of %s", reg_info->name);

  return bytes_copied;
}

uint32_t RegisterValue::SetFromMemoryData(const RegisterInfo *reg_info,
                                          const void *src, uint32_t src_len,
                                          lldb::ByteOrder src_byte_order,
                                          Status &error) {
  if (reg_info == nullptr) {
    error.SetErrorString("invalid register info argument.");
    return 0;
  }

  // Moving from addr into a register
  //
  // Case 1: src_len == dst_len
  //
  //   |AABBCCDD| Address contents
  //   |AABBCCDD| Register contents
  //
  // Case 2: src_len > dst_len
  //
  //   Status!  (The register should always be big enough to hold the data)
  //
  // Case 3: src_len < dst_len
  //
  //   |AABB| Address contents
  //   |AABB0000| Register contents [on little-endian hardware]
  //   |0000AABB| Register contents [on big-endian hardware]
  if (src_len > kMaxRegisterByteSize) {
    error.SetErrorStringWithFormat(
        "register buffer is too small to receive %u bytes of data.", src_len);
    return 0;
  }

  const uint32_t dst_len = reg_info->byte_size;

  if (src_len > dst_len) {
    error.SetErrorStringWithFormat(
        "%u bytes is too big to store in register %s (%u bytes)", src_len,
        reg_info->name, dst_len);
    return 0;
  }

  // Use a data extractor to correctly copy and pad the bytes read into the
  // register value
  DataExtractor src_data(src, src_len, src_byte_order, 4);

  error = SetValueFromData(reg_info, src_data, 0, true);
  if (error.Fail())
    return 0;

  // If SetValueFromData succeeded, we must have copied all of src_len
  return src_len;
}

bool RegisterValue::GetScalarValue(Scalar &scalar) const {
  switch (m_type) {
  case eTypeInvalid:
    break;
  case eTypeBytes: {
    switch (buffer.length) {
    default:
      break;
    case 1:
      scalar = *(const uint8_t *)buffer.bytes;
      return true;
    case 2:
      scalar = *reinterpret_cast<const uint16_t *>(buffer.bytes);
      return true;
    case 4:
      scalar = *reinterpret_cast<const uint32_t *>(buffer.bytes);
      return true;
    case 8:
      scalar = *reinterpret_cast<const uint64_t *>(buffer.bytes);
      return true;
    case 16:
    case 32:
    case 64:
      if (buffer.length % sizeof(uint64_t) == 0) {
        const auto length_in_bits = buffer.length * 8;
        const auto length_in_uint64 = buffer.length / sizeof(uint64_t);
        scalar =
            llvm::APInt(length_in_bits,
                        llvm::ArrayRef<uint64_t>(
                            reinterpret_cast<const uint64_t *>(buffer.bytes),
                            length_in_uint64));
        return true;
      }
      break;
    }
  } break;
  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    scalar = m_scalar;
    return true;
  }
  return false;
}

void RegisterValue::Clear() { m_type = eTypeInvalid; }

RegisterValue::Type RegisterValue::SetType(const RegisterInfo *reg_info) {
  // To change the type, we simply copy the data in again, using the new format
  RegisterValue copy;
  DataExtractor copy_data;
  if (copy.CopyValue(*this) && copy.GetData(copy_data))
    SetValueFromData(reg_info, copy_data, 0, true);

  return m_type;
}

Status RegisterValue::SetValueFromData(const RegisterInfo *reg_info,
                                       DataExtractor &src,
                                       lldb::offset_t src_offset,
                                       bool partial_data_ok) {
  Status error;

  if (src.GetByteSize() == 0) {
    error.SetErrorString("empty data.");
    return error;
  }

  if (reg_info->byte_size == 0) {
    error.SetErrorString("invalid register info.");
    return error;
  }

  uint32_t src_len = src.GetByteSize() - src_offset;

  if (!partial_data_ok && (src_len < reg_info->byte_size)) {
    error.SetErrorString("not enough data.");
    return error;
  }

  // Cap the data length if there is more than enough bytes for this register
  // value
  if (src_len > reg_info->byte_size)
    src_len = reg_info->byte_size;

  // Zero out the value in case we get partial data...
  memset(buffer.bytes, 0, sizeof(buffer.bytes));

  type128 int128;

  m_type = eTypeInvalid;
  switch (reg_info->encoding) {
  case eEncodingInvalid:
    break;
  case eEncodingUint:
  case eEncodingSint:
    if (reg_info->byte_size == 1)
      SetUInt8(src.GetMaxU32(&src_offset, src_len));
    else if (reg_info->byte_size <= 2)
      SetUInt16(src.GetMaxU32(&src_offset, src_len));
    else if (reg_info->byte_size <= 4)
      SetUInt32(src.GetMaxU32(&src_offset, src_len));
    else if (reg_info->byte_size <= 8)
      SetUInt64(src.GetMaxU64(&src_offset, src_len));
    else if (reg_info->byte_size <= 16) {
      uint64_t data1 = src.GetU64(&src_offset);
      uint64_t data2 = src.GetU64(&src_offset);
      if (src.GetByteSize() == eByteOrderBig) {
        int128.x[0] = data1;
        int128.x[1] = data2;
      } else {
        int128.x[0] = data2;
        int128.x[1] = data1;
      }
      SetUInt128(llvm::APInt(128, 2, int128.x));
    }
    break;
  case eEncodingIEEE754:
    if (reg_info->byte_size == sizeof(float))
      SetFloat(src.GetFloat(&src_offset));
    else if (reg_info->byte_size == sizeof(double))
      SetDouble(src.GetDouble(&src_offset));
    else if (reg_info->byte_size == sizeof(long double))
      SetLongDouble(src.GetLongDouble(&src_offset));
    break;
  case eEncodingVector: {
    m_type = eTypeBytes;
    buffer.length = reg_info->byte_size;
    buffer.byte_order = src.GetByteOrder();
    assert(buffer.length <= kMaxRegisterByteSize);
    if (buffer.length > kMaxRegisterByteSize)
      buffer.length = kMaxRegisterByteSize;
    if (src.CopyByteOrderedData(
            src_offset,    // offset within "src" to start extracting data
            src_len,       // src length
            buffer.bytes,  // dst buffer
            buffer.length, // dst length
            buffer.byte_order) == 0) // dst byte order
    {
      error.SetErrorStringWithFormat(
          "failed to copy data for register write of %s", reg_info->name);
      return error;
    }
  }
  }

  if (m_type == eTypeInvalid)
    error.SetErrorStringWithFormat(
        "invalid register value type for register %s", reg_info->name);
  return error;
}

// Helper function for RegisterValue::SetValueFromString()
static bool ParseVectorEncoding(const RegisterInfo *reg_info,
                                llvm::StringRef vector_str,
                                const uint32_t byte_size,
                                RegisterValue *reg_value) {
  // Example: vector_str = "{0x2c 0x4b 0x2a 0x3e 0xd0 0x4f 0x2a 0x3e 0xac 0x4a
  // 0x2a 0x3e 0x84 0x4f 0x2a 0x3e}".
  vector_str = vector_str.trim();
  vector_str.consume_front("{");
  vector_str.consume_back("}");
  vector_str = vector_str.trim();

  char Sep = ' ';

  // The first split should give us:
  // ('0x2c', '0x4b 0x2a 0x3e 0xd0 0x4f 0x2a 0x3e 0xac 0x4a 0x2a 0x3e 0x84 0x4f
  // 0x2a 0x3e').
  llvm::StringRef car;
  llvm::StringRef cdr = vector_str;
  std::tie(car, cdr) = vector_str.split(Sep);
  std::vector<uint8_t> bytes;
  unsigned byte = 0;

  // Using radix auto-sensing by passing 0 as the radix. Keep on processing the
  // vector elements as long as the parsing succeeds and the vector size is <
  // byte_size.
  while (!car.getAsInteger(0, byte) && bytes.size() < byte_size) {
    bytes.push_back(byte);
    std::tie(car, cdr) = cdr.split(Sep);
  }

  // Check for vector of exact byte_size elements.
  if (bytes.size() != byte_size)
    return false;

  reg_value->SetBytes(&(bytes.front()), byte_size, eByteOrderLittle);
  return true;
}

static bool UInt64ValueIsValidForByteSize(uint64_t uval64,
                                          size_t total_byte_size) {
  if (total_byte_size > 8)
    return false;

  if (total_byte_size == 8)
    return true;

  const uint64_t max =
      (static_cast<uint64_t>(1) << static_cast<uint64_t>(total_byte_size * 8)) -
      1;
  return uval64 <= max;
}

static bool SInt64ValueIsValidForByteSize(int64_t sval64,
                                          size_t total_byte_size) {
  if (total_byte_size > 8)
    return false;

  if (total_byte_size == 8)
    return true;

  const int64_t max = (static_cast<int64_t>(1)
                       << static_cast<uint64_t>(total_byte_size * 8 - 1)) -
                      1;
  const int64_t min = ~(max);
  return min <= sval64 && sval64 <= max;
}

Status RegisterValue::SetValueFromString(const RegisterInfo *reg_info,
                                         llvm::StringRef value_str) {
  Status error;
  if (reg_info == nullptr) {
    error.SetErrorString("Invalid register info argument.");
    return error;
  }

  m_type = eTypeInvalid;
  if (value_str.empty()) {
    error.SetErrorString("Invalid c-string value string.");
    return error;
  }
  const uint32_t byte_size = reg_info->byte_size;

  uint64_t uval64;
  int64_t ival64;
  float flt_val;
  double dbl_val;
  long double ldbl_val;
  switch (reg_info->encoding) {
  case eEncodingInvalid:
    error.SetErrorString("Invalid encoding.");
    break;

  case eEncodingUint:
    if (byte_size > sizeof(uint64_t)) {
      error.SetErrorStringWithFormat(
          "unsupported unsigned integer byte size: %u", byte_size);
      break;
    }
    if (value_str.getAsInteger(0, uval64)) {
      error.SetErrorStringWithFormat(
          "'%s' is not a valid unsigned integer string value",
          value_str.str().c_str());
      break;
    }

    if (!UInt64ValueIsValidForByteSize(uval64, byte_size)) {
      error.SetErrorStringWithFormat(
          "value 0x%" PRIx64
          " is too large to fit in a %u byte unsigned integer value",
          uval64, byte_size);
      break;
    }

    if (!SetUInt(uval64, reg_info->byte_size)) {
      error.SetErrorStringWithFormat(
          "unsupported unsigned integer byte size: %u", byte_size);
      break;
    }
    break;

  case eEncodingSint:
    if (byte_size > sizeof(long long)) {
      error.SetErrorStringWithFormat("unsupported signed integer byte size: %u",
                                     byte_size);
      break;
    }

    if (value_str.getAsInteger(0, ival64)) {
      error.SetErrorStringWithFormat(
          "'%s' is not a valid signed integer string value",
          value_str.str().c_str());
      break;
    }

    if (!SInt64ValueIsValidForByteSize(ival64, byte_size)) {
      error.SetErrorStringWithFormat(
          "value 0x%" PRIx64
          " is too large to fit in a %u byte signed integer value",
          ival64, byte_size);
      break;
    }

    if (!SetUInt(ival64, reg_info->byte_size)) {
      error.SetErrorStringWithFormat("unsupported signed integer byte size: %u",
                                     byte_size);
      break;
    }
    break;

  case eEncodingIEEE754: {
    std::string value_string = std::string(value_str);
    if (byte_size == sizeof(float)) {
      if (::sscanf(value_string.c_str(), "%f", &flt_val) != 1) {
        error.SetErrorStringWithFormat("'%s' is not a valid float string value",
                                       value_string.c_str());
        break;
      }
      m_scalar = flt_val;
      m_type = eTypeFloat;
    } else if (byte_size == sizeof(double)) {
      if (::sscanf(value_string.c_str(), "%lf", &dbl_val) != 1) {
        error.SetErrorStringWithFormat("'%s' is not a valid float string value",
                                       value_string.c_str());
        break;
      }
      m_scalar = dbl_val;
      m_type = eTypeDouble;
    } else if (byte_size == sizeof(long double)) {
      if (::sscanf(value_string.c_str(), "%Lf", &ldbl_val) != 1) {
        error.SetErrorStringWithFormat("'%s' is not a valid float string value",
                                       value_string.c_str());
        break;
      }
      m_scalar = ldbl_val;
      m_type = eTypeLongDouble;
    } else {
      error.SetErrorStringWithFormat("unsupported float byte size: %u",
                                     byte_size);
      return error;
    }
    break;
  }
  case eEncodingVector:
    if (!ParseVectorEncoding(reg_info, value_str, byte_size, this))
      error.SetErrorString("unrecognized vector encoding string value.");
    break;
  }

  return error;
}

bool RegisterValue::SignExtend(uint32_t sign_bitpos) {
  switch (m_type) {
  case eTypeInvalid:
    break;

  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
    return m_scalar.SignExtend(sign_bitpos);
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
  case eTypeBytes:
    break;
  }
  return false;
}

bool RegisterValue::CopyValue(const RegisterValue &rhs) {
  if (this == &rhs)
    return rhs.m_type != eTypeInvalid;

  m_type = rhs.m_type;
  switch (m_type) {
  case eTypeInvalid:
    return false;
  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    m_scalar = rhs.m_scalar;
    break;
  case eTypeBytes:
    assert(rhs.buffer.length <= kMaxRegisterByteSize);
    ::memcpy(buffer.bytes, rhs.buffer.bytes, kMaxRegisterByteSize);
    buffer.length = rhs.buffer.length;
    buffer.byte_order = rhs.buffer.byte_order;
    break;
  }
  return true;
}

uint16_t RegisterValue::GetAsUInt16(uint16_t fail_value,
                                    bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;

  switch (m_type) {
  default:
    break;
  case eTypeUInt8:
  case eTypeUInt16:
    return m_scalar.UShort(fail_value);
  case eTypeBytes: {
    switch (buffer.length) {
    default:
      break;
    case 1:
    case 2:
      return *reinterpret_cast<const uint16_t *>(buffer.bytes);
    }
  } break;
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

uint32_t RegisterValue::GetAsUInt32(uint32_t fail_value,
                                    bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;
  switch (m_type) {
  default:
    break;
  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.UInt(fail_value);
  case eTypeBytes: {
    switch (buffer.length) {
    default:
      break;
    case 1:
    case 2:
    case 4:
      return *reinterpret_cast<const uint32_t *>(buffer.bytes);
    }
  } break;
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

uint64_t RegisterValue::GetAsUInt64(uint64_t fail_value,
                                    bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;
  switch (m_type) {
  default:
    break;
  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.ULongLong(fail_value);
  case eTypeBytes: {
    switch (buffer.length) {
    default:
      break;
    case 1:
      return *(const uint8_t *)buffer.bytes;
    case 2:
      return *reinterpret_cast<const uint16_t *>(buffer.bytes);
    case 4:
      return *reinterpret_cast<const uint32_t *>(buffer.bytes);
    case 8:
      return *reinterpret_cast<const uint64_t *>(buffer.bytes);
    }
  } break;
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

llvm::APInt RegisterValue::GetAsUInt128(const llvm::APInt &fail_value,
                                        bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;
  switch (m_type) {
  default:
    break;
  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.UInt128(fail_value);
  case eTypeBytes: {
    switch (buffer.length) {
    default:
      break;
    case 1:
    case 2:
    case 4:
    case 8:
    case 16:
      return llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128,
                         (reinterpret_cast<const type128 *>(buffer.bytes))->x);
    }
  } break;
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

float RegisterValue::GetAsFloat(float fail_value, bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;
  switch (m_type) {
  default:
    break;
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.Float(fail_value);
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

double RegisterValue::GetAsDouble(double fail_value, bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;
  switch (m_type) {
  default:
    break;

  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.Double(fail_value);
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

long double RegisterValue::GetAsLongDouble(long double fail_value,
                                           bool *success_ptr) const {
  if (success_ptr)
    *success_ptr = true;
  switch (m_type) {
  default:
    break;

  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.LongDouble();
  }
  if (success_ptr)
    *success_ptr = false;
  return fail_value;
}

const void *RegisterValue::GetBytes() const {
  switch (m_type) {
  case eTypeInvalid:
    break;
  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    m_scalar.GetBytes(buffer.bytes);
    return buffer.bytes;
  case eTypeBytes:
    return buffer.bytes;
  }
  return nullptr;
}

uint32_t RegisterValue::GetByteSize() const {
  switch (m_type) {
  case eTypeInvalid:
    break;
  case eTypeUInt8:
    return 1;
  case eTypeUInt16:
    return 2;
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    return m_scalar.GetByteSize();
  case eTypeBytes:
    return buffer.length;
  }
  return 0;
}

bool RegisterValue::SetUInt(uint64_t uint, uint32_t byte_size) {
  if (byte_size == 0) {
    SetUInt64(uint);
  } else if (byte_size == 1) {
    SetUInt8(uint);
  } else if (byte_size <= 2) {
    SetUInt16(uint);
  } else if (byte_size <= 4) {
    SetUInt32(uint);
  } else if (byte_size <= 8) {
    SetUInt64(uint);
  } else if (byte_size <= 16) {
    SetUInt128(llvm::APInt(128, uint));
  } else
    return false;
  return true;
}

void RegisterValue::SetBytes(const void *bytes, size_t length,
                             lldb::ByteOrder byte_order) {
  // If this assertion fires off we need to increase the size of buffer.bytes,
  // or make it something that is allocated on the heap. Since the data buffer
  // is in a union, we can't make it a collection class like SmallVector...
  if (bytes && length > 0) {
    assert(length <= sizeof(buffer.bytes) &&
           "Storing too many bytes in a RegisterValue.");
    m_type = eTypeBytes;
    buffer.length = length;
    memcpy(buffer.bytes, bytes, length);
    buffer.byte_order = byte_order;
  } else {
    m_type = eTypeInvalid;
    buffer.length = 0;
  }
}

bool RegisterValue::operator==(const RegisterValue &rhs) const {
  if (m_type == rhs.m_type) {
    switch (m_type) {
    case eTypeInvalid:
      return true;
    case eTypeUInt8:
    case eTypeUInt16:
    case eTypeUInt32:
    case eTypeUInt64:
    case eTypeUInt128:
    case eTypeFloat:
    case eTypeDouble:
    case eTypeLongDouble:
      return m_scalar == rhs.m_scalar;
    case eTypeBytes:
      if (buffer.length != rhs.buffer.length)
        return false;
      else {
        uint16_t length = buffer.length;
        if (length > kMaxRegisterByteSize)
          length = kMaxRegisterByteSize;
        return memcmp(buffer.bytes, rhs.buffer.bytes, length) == 0;
      }
      break;
    }
  }
  return false;
}

bool RegisterValue::operator!=(const RegisterValue &rhs) const {
  return !(*this == rhs);
}

bool RegisterValue::ClearBit(uint32_t bit) {
  switch (m_type) {
  case eTypeInvalid:
    break;

  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
    if (bit < (GetByteSize() * 8)) {
      return m_scalar.ClearBit(bit);
    }
    break;

  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    break;

  case eTypeBytes:
    if (buffer.byte_order == eByteOrderBig ||
        buffer.byte_order == eByteOrderLittle) {
      uint32_t byte_idx;
      if (buffer.byte_order == eByteOrderBig)
        byte_idx = buffer.length - (bit / 8) - 1;
      else
        byte_idx = bit / 8;

      const uint32_t byte_bit = bit % 8;
      if (byte_idx < buffer.length) {
        buffer.bytes[byte_idx] &= ~(1u << byte_bit);
        return true;
      }
    }
    break;
  }
  return false;
}

bool RegisterValue::SetBit(uint32_t bit) {
  switch (m_type) {
  case eTypeInvalid:
    break;

  case eTypeUInt8:
  case eTypeUInt16:
  case eTypeUInt32:
  case eTypeUInt64:
  case eTypeUInt128:
    if (bit < (GetByteSize() * 8)) {
      return m_scalar.SetBit(bit);
    }
    break;

  case eTypeFloat:
  case eTypeDouble:
  case eTypeLongDouble:
    break;

  case eTypeBytes:
    if (buffer.byte_order == eByteOrderBig ||
        buffer.byte_order == eByteOrderLittle) {
      uint32_t byte_idx;
      if (buffer.byte_order == eByteOrderBig)
        byte_idx = buffer.length - (bit / 8) - 1;
      else
        byte_idx = bit / 8;

      const uint32_t byte_bit = bit % 8;
      if (byte_idx < buffer.length) {
        buffer.bytes[byte_idx] |= (1u << byte_bit);
        return true;
      }
    }
    break;
  }
  return false;
}