MinidumpParser.cpp 26 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
//===-- MinidumpParser.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"

#include "Plugins/Process/Utility/LinuxProcMaps.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"

// C includes
// C++ includes
#include <algorithm>
#include <map>
#include <vector>
#include <utility>

using namespace lldb_private;
using namespace minidump;

llvm::Expected<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
  auto ExpectedFile = llvm::object::MinidumpFile::create(
      llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
  if (!ExpectedFile)
    return ExpectedFile.takeError();

  return MinidumpParser(data_sp, std::move(*ExpectedFile));
}

MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
                               std::unique_ptr<llvm::object::MinidumpFile> file)
    : m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}

llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
  return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
                                 m_data_sp->GetByteSize());
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
  return m_file->getRawStream(stream_type)
      .getValueOr(llvm::ArrayRef<uint8_t>());
}

UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
  auto cv_record =
      GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);

  // Read the CV record signature
  const llvm::support::ulittle32_t *signature = nullptr;
  Status error = consumeObject(cv_record, signature);
  if (error.Fail())
    return UUID();

  const CvSignature cv_signature =
      static_cast<CvSignature>(static_cast<uint32_t>(*signature));

  if (cv_signature == CvSignature::Pdb70) {
    const CvRecordPdb70 *pdb70_uuid = nullptr;
    Status error = consumeObject(cv_record, pdb70_uuid);
    if (error.Fail())
      return UUID();

    CvRecordPdb70 swapped;
    if (!GetArchitecture().GetTriple().isOSBinFormatELF()) {
      // LLDB's UUID class treats the data as a sequence of bytes, but breakpad
      // interprets it as a sequence of little-endian fields, which it converts
      // to big-endian when converting to text. Swap the bytes to big endian so
      // that the string representation comes out right.
      swapped = *pdb70_uuid;
      llvm::sys::swapByteOrder(swapped.Uuid.Data1);
      llvm::sys::swapByteOrder(swapped.Uuid.Data2);
      llvm::sys::swapByteOrder(swapped.Uuid.Data3);
      llvm::sys::swapByteOrder(swapped.Age);
      pdb70_uuid = &swapped;
    }
    if (pdb70_uuid->Age != 0)
      return UUID::fromOptionalData(pdb70_uuid, sizeof(*pdb70_uuid));
    return UUID::fromOptionalData(&pdb70_uuid->Uuid, sizeof(pdb70_uuid->Uuid));
  } else if (cv_signature == CvSignature::ElfBuildId)
    return UUID::fromOptionalData(cv_record);

  return UUID();
}

llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() {
  auto ExpectedThreads = GetMinidumpFile().getThreadList();
  if (ExpectedThreads)
    return *ExpectedThreads;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_THREAD),
                 ExpectedThreads.takeError(),
                 "Failed to read thread list: {0}");
  return {};
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
  if (location.RVA + location.DataSize > GetData().size())
    return {};
  return GetData().slice(location.RVA, location.DataSize);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const minidump::Thread &td) {
  return GetThreadContext(td.Context);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) {
  // On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
  // the minidump was captured with a 64-bit debugger, then the CONTEXT we just
  // grabbed from the mini_dump_thread is the one for the 64-bit "native"
  // process rather than the 32-bit "guest" process we care about.  In this
  // case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
  // Block) of the 64-bit process.
  auto teb_mem = GetMemory(td.EnvironmentBlock, sizeof(TEB64));
  if (teb_mem.empty())
    return {};

  const TEB64 *wow64teb;
  Status error = consumeObject(teb_mem, wow64teb);
  if (error.Fail())
    return {};

  // Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
  // that includes the 32-bit CONTEXT (after a ULONG). See:
  // https://msdn.microsoft.com/en-us/library/ms681670.aspx
  auto context =
      GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
  if (context.size() < sizeof(MinidumpContext_x86_32))
    return {};

  return context;
  // NOTE:  We don't currently use the TEB for anything else.  If we
  // need it in the future, the 32-bit TEB is located according to the address
  // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}

ArchSpec MinidumpParser::GetArchitecture() {
  if (m_arch.IsValid())
    return m_arch;

  // Set the architecture in m_arch
  llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();

  if (!system_info) {
    LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                   system_info.takeError(),
                   "Failed to read SystemInfo stream: {0}");
    return m_arch;
  }

  // TODO what to do about big endiand flavors of arm ?
  // TODO set the arm subarch stuff if the minidump has info about it

  llvm::Triple triple;
  triple.setVendor(llvm::Triple::VendorType::UnknownVendor);

  switch (system_info->ProcessorArch) {
  case ProcessorArchitecture::X86:
    triple.setArch(llvm::Triple::ArchType::x86);
    break;
  case ProcessorArchitecture::AMD64:
    triple.setArch(llvm::Triple::ArchType::x86_64);
    break;
  case ProcessorArchitecture::ARM:
    triple.setArch(llvm::Triple::ArchType::arm);
    break;
  case ProcessorArchitecture::ARM64:
  case ProcessorArchitecture::BP_ARM64:
    triple.setArch(llvm::Triple::ArchType::aarch64);
    break;
  default:
    triple.setArch(llvm::Triple::ArchType::UnknownArch);
    break;
  }

  // TODO add all of the OSes that Minidump/breakpad distinguishes?
  switch (system_info->PlatformId) {
  case OSPlatform::Win32S:
  case OSPlatform::Win32Windows:
  case OSPlatform::Win32NT:
  case OSPlatform::Win32CE:
    triple.setOS(llvm::Triple::OSType::Win32);
    triple.setVendor(llvm::Triple::VendorType::PC);
    break;
  case OSPlatform::Linux:
    triple.setOS(llvm::Triple::OSType::Linux);
    break;
  case OSPlatform::MacOSX:
    triple.setOS(llvm::Triple::OSType::MacOSX);
    triple.setVendor(llvm::Triple::Apple);
    break;
  case OSPlatform::IOS:
    triple.setOS(llvm::Triple::OSType::IOS);
    triple.setVendor(llvm::Triple::Apple);
    break;
  case OSPlatform::Android:
    triple.setOS(llvm::Triple::OSType::Linux);
    triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
    break;
  default: {
    triple.setOS(llvm::Triple::OSType::UnknownOS);
    auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
    if (!ExpectedCSD) {
      LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                     ExpectedCSD.takeError(),
                     "Failed to CSD Version string: {0}");
    } else {
      if (ExpectedCSD->find("Linux") != std::string::npos)
        triple.setOS(llvm::Triple::OSType::Linux);
    }
    break;
  }
  }
  m_arch.SetTriple(triple);
  return m_arch;
}

const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
  llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);

  if (data.size() == 0)
    return nullptr;

  return MinidumpMiscInfo::Parse(data);
}

llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
  llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);

  if (data.size() == 0)
    return llvm::None;

  return LinuxProcStatus::Parse(data);
}

llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
  const MinidumpMiscInfo *misc_info = GetMiscInfo();
  if (misc_info != nullptr) {
    return misc_info->GetPid();
  }

  llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
  if (proc_status.hasValue()) {
    return proc_status->GetPid();
  }

  return llvm::None;
}

llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
  auto ExpectedModules = GetMinidumpFile().getModuleList();
  if (ExpectedModules)
    return *ExpectedModules;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES),
                 ExpectedModules.takeError(),
                 "Failed to read module list: {0}");
  return {};
}

static bool
CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
                                std::vector<MemoryRegionInfo> &regions) {
  auto data = parser.GetStream(StreamType::LinuxMaps);
  if (data.empty())
    return false;
  ParseLinuxMapRegions(llvm::toStringRef(data),
                       [&](const lldb_private::MemoryRegionInfo &region,
                           const lldb_private::Status &status) -> bool {
                         if (status.Success())
                           regions.push_back(region);
                         return true;
                       });
  return !regions.empty();
}

/// Check for the memory regions starting at \a load_addr for a contiguous
/// section that has execute permissions that matches the module path.
///
/// When we load a breakpad generated minidump file, we might have the
/// /proc/<pid>/maps text for a process that details the memory map of the
/// process that the minidump is describing. This checks the sorted memory
/// regions for a section that has execute permissions. A sample maps files
/// might look like:
///
/// 00400000-00401000 r--p 00000000 fd:01 2838574           /tmp/a.out
/// 00401000-00402000 r-xp 00001000 fd:01 2838574           /tmp/a.out
/// 00402000-00403000 r--p 00002000 fd:01 2838574           /tmp/a.out
/// 00403000-00404000 r--p 00002000 fd:01 2838574           /tmp/a.out
/// 00404000-00405000 rw-p 00003000 fd:01 2838574           /tmp/a.out
/// ...
///
/// This function should return true when given 0x00400000 and "/tmp/a.out"
/// is passed in as the path since it has a consecutive memory region for
/// "/tmp/a.out" that has execute permissions at 0x00401000. This will help us
/// differentiate if a file has been memory mapped into a process for reading
/// and breakpad ends up saving a minidump file that has two module entries for
/// a given file: one that is read only for the entire file, and then one that
/// is the real executable that is loaded into memory for execution. For memory
/// mapped files they will typically show up and r--p permissions and a range
/// matcning the entire range of the file on disk:
///
/// 00800000-00805000 r--p 00000000 fd:01 2838574           /tmp/a.out
/// 00805000-00806000 r-xp 00001000 fd:01 1234567           /usr/lib/libc.so
///
/// This function should return false when asked about 0x00800000 with
/// "/tmp/a.out" as the path.
///
/// \param[in] path
///   The path to the module to check for in the memory regions. Only sequential
///   memory regions whose paths match this path will be considered when looking
///   for execute permissions.
///
/// \param[in] regions
///   A sorted list of memory regions obtained from a call to
///   CreateRegionsCacheFromLinuxMaps.
///
/// \param[in] base_of_image
///   The load address of this module from BaseOfImage in the modules list.
///
/// \return
///   True if a contiguous region of memory belonging to the module with a
///   matching path exists that has executable permissions. Returns false if
///   \a regions is empty or if there are no regions with execute permissions
///   that match \a path.

static bool CheckForLinuxExecutable(ConstString path,
                                    const MemoryRegionInfos &regions,
                                    lldb::addr_t base_of_image) {
  if (regions.empty())
    return false;
  lldb::addr_t addr = base_of_image;
  MemoryRegionInfo region = MinidumpParser::GetMemoryRegionInfo(regions, addr);
  while (region.GetName() == path) {
    if (region.GetExecutable() == MemoryRegionInfo::eYes)
      return true;
    addr += region.GetRange().GetByteSize();
    region = MinidumpParser::GetMemoryRegionInfo(regions, addr);
  }
  return false;
}

std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedModules = GetMinidumpFile().getModuleList();
  if (!ExpectedModules) {
    LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
                   "Failed to read module list: {0}");
    return {};
  }

  // Create memory regions from the linux maps only. We do this to avoid issues
  // with breakpad generated minidumps where if someone has mmap'ed a shared
  // library into memory to accesss its data in the object file, we can get a
  // minidump with two mappings for a binary: one whose base image points to a
  // memory region that is read + execute and one that is read only.
  MemoryRegionInfos linux_regions;
  if (CreateRegionsCacheFromLinuxMaps(*this, linux_regions))
    llvm::sort(linux_regions);

  // map module_name -> filtered_modules index
  typedef llvm::StringMap<size_t> MapType;
  MapType module_name_to_filtered_index;

  std::vector<const minidump::Module *> filtered_modules;

  for (const auto &module : *ExpectedModules) {
    auto ExpectedName = m_file->getString(module.ModuleNameRVA);
    if (!ExpectedName) {
      LLDB_LOG_ERROR(log, ExpectedName.takeError(),
                     "Failed to get module name: {0}");
      continue;
    }

    MapType::iterator iter;
    bool inserted;
    // See if we have inserted this module aready into filtered_modules. If we
    // haven't insert an entry into module_name_to_filtered_index with the
    // index where we will insert it if it isn't in the vector already.
    std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
        *ExpectedName, filtered_modules.size());

    if (inserted) {
      // This module has not been seen yet, insert it into filtered_modules at
      // the index that was inserted into module_name_to_filtered_index using
      // "filtered_modules.size()" above.
      filtered_modules.push_back(&module);
    } else {
      // We have a duplicate module entry. Check the linux regions to see if
      // the module we already have is not really a mapped executable. If it
      // isn't check to see if the current duplicate module entry is a real
      // mapped executable, and if so, replace it. This can happen when a
      // process mmap's in the file for an executable in order to read bytes
      // from the executable file. A memory region mapping will exist for the
      // mmap'ed version and for the loaded executable, but only one will have
      // a consecutive region that is executable in the memory regions.
      auto dup_module = filtered_modules[iter->second];
      ConstString name(*ExpectedName);
      if (!CheckForLinuxExecutable(name, linux_regions,
                                   dup_module->BaseOfImage) &&
          CheckForLinuxExecutable(name, linux_regions, module.BaseOfImage)) {
        filtered_modules[iter->second] = &module;
        continue;
      }
      // This module has been seen. Modules are sometimes mentioned multiple
      // times when they are mapped discontiguously, so find the module with
      // the lowest "base_of_image" and use that as the filtered module.
      if (module.BaseOfImage < dup_module->BaseOfImage)
        filtered_modules[iter->second] = &module;
    }
  }
  return filtered_modules;
}

const minidump::ExceptionStream *MinidumpParser::GetExceptionStream() {
  auto ExpectedStream = GetMinidumpFile().getExceptionStream();
  if (ExpectedStream)
    return &*ExpectedStream;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                 ExpectedStream.takeError(),
                 "Failed to read minidump exception stream: {0}");
  return nullptr;
}

llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
  llvm::ArrayRef<uint8_t> data64 = GetStream(StreamType::Memory64List);
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);

  auto ExpectedMemory = GetMinidumpFile().getMemoryList();
  if (!ExpectedMemory) {
    LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
                   "Failed to read memory list: {0}");
  } else {
    for (const auto &memory_desc : *ExpectedMemory) {
      const LocationDescriptor &loc_desc = memory_desc.Memory;
      const lldb::addr_t range_start = memory_desc.StartOfMemoryRange;
      const size_t range_size = loc_desc.DataSize;

      if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        auto ExpectedSlice = GetMinidumpFile().getRawData(loc_desc);
        if (!ExpectedSlice) {
          LLDB_LOG_ERROR(log, ExpectedSlice.takeError(),
                         "Failed to get memory slice: {0}");
          return llvm::None;
        }
        return minidump::Range(range_start, *ExpectedSlice);
      }
    }
  }

  // Some Minidumps have a Memory64ListStream that captures all the heap memory
  // (full-memory Minidumps).  We can't exactly use the same loop as above,
  // because the Minidump uses slightly different data structures to describe
  // those

  if (!data64.empty()) {
    llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
    uint64_t base_rva;
    std::tie(memory64_list, base_rva) =
        MinidumpMemoryDescriptor64::ParseMemory64List(data64);

    if (memory64_list.empty())
      return llvm::None;

    for (const auto &memory_desc64 : memory64_list) {
      const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
      const size_t range_size = memory_desc64.data_size;

      if (base_rva + range_size > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        return minidump::Range(range_start,
                               GetData().slice(base_rva, range_size));
      }
      base_rva += range_size;
    }
  }

  return llvm::None;
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
                                                  size_t size) {
  // I don't have a sense of how frequently this is called or how many memory
  // ranges a Minidump typically has, so I'm not sure if searching for the
  // appropriate range linearly each time is stupid.  Perhaps we should build
  // an index for faster lookups.
  llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
  if (!range)
    return {};

  // There's at least some overlap between the beginning of the desired range
  // (addr) and the current range.  Figure out where the overlap begins and how
  // much overlap there is.

  const size_t offset = addr - range->start;

  if (addr < range->start || offset >= range->range_ref.size())
    return {};

  const size_t overlap = std::min(size, range->range_ref.size() - offset);
  return range->range_ref.slice(offset, overlap);
}

static bool
CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
                                     std::vector<MemoryRegionInfo> &regions) {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList();
  if (!ExpectedInfo) {
    LLDB_LOG_ERROR(log, ExpectedInfo.takeError(),
                   "Failed to read memory info list: {0}");
    return false;
  }
  constexpr auto yes = MemoryRegionInfo::eYes;
  constexpr auto no = MemoryRegionInfo::eNo;
  for (const MemoryInfo &entry : *ExpectedInfo) {
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(entry.BaseAddress);
    region.GetRange().SetByteSize(entry.RegionSize);

    MemoryProtection prot = entry.Protect;
    region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes);
    region.SetWritable(
        bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy |
                     MemoryProtection::ExecuteReadWrite |
                     MemoryProtection::ExeciteWriteCopy))
            ? yes
            : no);
    region.SetExecutable(
        bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead |
                     MemoryProtection::ExecuteReadWrite |
                     MemoryProtection::ExeciteWriteCopy))
            ? yes
            : no);
    region.SetMapped(entry.State != MemoryState::Free ? yes : no);
    regions.push_back(region);
  }
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
                                 std::vector<MemoryRegionInfo> &regions) {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList();
  if (!ExpectedMemory) {
    LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
                   "Failed to read memory list: {0}");
    return false;
  }
  regions.reserve(ExpectedMemory->size());
  for (const MemoryDescriptor &memory_desc : *ExpectedMemory) {
    if (memory_desc.Memory.DataSize == 0)
      continue;
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange);
    region.GetRange().SetByteSize(memory_desc.Memory.DataSize);
    region.SetReadable(MemoryRegionInfo::eYes);
    region.SetMapped(MemoryRegionInfo::eYes);
    regions.push_back(region);
  }
  regions.shrink_to_fit();
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemory64List(MinidumpParser &parser,
                                   std::vector<MemoryRegionInfo> &regions) {
  llvm::ArrayRef<uint8_t> data =
      parser.GetStream(StreamType::Memory64List);
  if (data.empty())
    return false;
  llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
  uint64_t base_rva;
  std::tie(memory64_list, base_rva) =
      MinidumpMemoryDescriptor64::ParseMemory64List(data);

  if (memory64_list.empty())
    return false;

  regions.reserve(memory64_list.size());
  for (const auto &memory_desc : memory64_list) {
    if (memory_desc.data_size == 0)
      continue;
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
    region.GetRange().SetByteSize(memory_desc.data_size);
    region.SetReadable(MemoryRegionInfo::eYes);
    region.SetMapped(MemoryRegionInfo::eYes);
    regions.push_back(region);
  }
  regions.shrink_to_fit();
  return !regions.empty();
}

std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() {
  // We create the region cache using the best source. We start with
  // the linux maps since they are the most complete and have names for the
  // regions. Next we try the MemoryInfoList since it has
  // read/write/execute/map data, and then fall back to the MemoryList and
  // Memory64List to just get a list of the memory that is mapped in this
  // core file
  MemoryRegionInfos result;
  const auto &return_sorted = [&](bool is_complete) {
    llvm::sort(result);
    return std::make_pair(std::move(result), is_complete);
  };
  if (CreateRegionsCacheFromLinuxMaps(*this, result))
    return return_sorted(true);
  if (CreateRegionsCacheFromMemoryInfoList(*this, result))
    return return_sorted(true);
  if (CreateRegionsCacheFromMemoryList(*this, result))
    return return_sorted(false);
  CreateRegionsCacheFromMemory64List(*this, result);
  return return_sorted(false);
}

#define ENUM_TO_CSTR(ST)                                                       \
  case StreamType::ST:                                                         \
    return #ST

llvm::StringRef
MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
  switch (stream_type) {
    ENUM_TO_CSTR(Unused);
    ENUM_TO_CSTR(ThreadList);
    ENUM_TO_CSTR(ModuleList);
    ENUM_TO_CSTR(MemoryList);
    ENUM_TO_CSTR(Exception);
    ENUM_TO_CSTR(SystemInfo);
    ENUM_TO_CSTR(ThreadExList);
    ENUM_TO_CSTR(Memory64List);
    ENUM_TO_CSTR(CommentA);
    ENUM_TO_CSTR(CommentW);
    ENUM_TO_CSTR(HandleData);
    ENUM_TO_CSTR(FunctionTable);
    ENUM_TO_CSTR(UnloadedModuleList);
    ENUM_TO_CSTR(MiscInfo);
    ENUM_TO_CSTR(MemoryInfoList);
    ENUM_TO_CSTR(ThreadInfoList);
    ENUM_TO_CSTR(HandleOperationList);
    ENUM_TO_CSTR(Token);
    ENUM_TO_CSTR(JavascriptData);
    ENUM_TO_CSTR(SystemMemoryInfo);
    ENUM_TO_CSTR(ProcessVMCounters);
    ENUM_TO_CSTR(LastReserved);
    ENUM_TO_CSTR(BreakpadInfo);
    ENUM_TO_CSTR(AssertionInfo);
    ENUM_TO_CSTR(LinuxCPUInfo);
    ENUM_TO_CSTR(LinuxProcStatus);
    ENUM_TO_CSTR(LinuxLSBRelease);
    ENUM_TO_CSTR(LinuxCMDLine);
    ENUM_TO_CSTR(LinuxEnviron);
    ENUM_TO_CSTR(LinuxAuxv);
    ENUM_TO_CSTR(LinuxMaps);
    ENUM_TO_CSTR(LinuxDSODebug);
    ENUM_TO_CSTR(LinuxProcStat);
    ENUM_TO_CSTR(LinuxProcUptime);
    ENUM_TO_CSTR(LinuxProcFD);
    ENUM_TO_CSTR(FacebookAppCustomData);
    ENUM_TO_CSTR(FacebookBuildID);
    ENUM_TO_CSTR(FacebookAppVersionName);
    ENUM_TO_CSTR(FacebookJavaStack);
    ENUM_TO_CSTR(FacebookDalvikInfo);
    ENUM_TO_CSTR(FacebookUnwindSymbols);
    ENUM_TO_CSTR(FacebookDumpErrorLog);
    ENUM_TO_CSTR(FacebookAppStateLog);
    ENUM_TO_CSTR(FacebookAbortReason);
    ENUM_TO_CSTR(FacebookThreadName);
    ENUM_TO_CSTR(FacebookLogcat);
  }
  return "unknown stream type";
}

MemoryRegionInfo
MinidumpParser::GetMemoryRegionInfo(const MemoryRegionInfos &regions,
                                    lldb::addr_t load_addr) {
  MemoryRegionInfo region;
  auto pos = llvm::upper_bound(regions, load_addr);
  if (pos != regions.begin() &&
      std::prev(pos)->GetRange().Contains(load_addr)) {
    return *std::prev(pos);
  }

  if (pos == regions.begin())
    region.GetRange().SetRangeBase(0);
  else
    region.GetRange().SetRangeBase(std::prev(pos)->GetRange().GetRangeEnd());

  if (pos == regions.end())
    region.GetRange().SetRangeEnd(UINT64_MAX);
  else
    region.GetRange().SetRangeEnd(pos->GetRange().GetRangeBase());

  region.SetReadable(MemoryRegionInfo::eNo);
  region.SetWritable(MemoryRegionInfo::eNo);
  region.SetExecutable(MemoryRegionInfo::eNo);
  region.SetMapped(MemoryRegionInfo::eNo);
  return region;
}