NativeRegisterContextLinux_mips64.cpp 33.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
//===-- NativeRegisterContextLinux_mips64.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#if defined(__mips__)

#include "NativeRegisterContextLinux_mips64.h"


#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterContextLinux_mips.h"
#include "Plugins/Process/Utility/RegisterContextLinux_mips64.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-private-enumerations.h"
#define NT_MIPS_MSA 0x600
#define CONFIG5_FRE (1 << 8)
#define SR_FR (1 << 26)
#define NUM_REGISTERS 32

#include <asm/ptrace.h>
#include <sys/ptrace.h>

#ifndef PTRACE_GET_WATCH_REGS
enum pt_watch_style { pt_watch_style_mips32, pt_watch_style_mips64 };
struct mips32_watch_regs {
  uint32_t watchlo[8];
  uint16_t watchhi[8];
  uint16_t watch_masks[8];
  uint32_t num_valid;
} __attribute__((aligned(8)));

struct mips64_watch_regs {
  uint64_t watchlo[8];
  uint16_t watchhi[8];
  uint16_t watch_masks[8];
  uint32_t num_valid;
} __attribute__((aligned(8)));

struct pt_watch_regs {
  enum pt_watch_style style;
  union {
    struct mips32_watch_regs mips32;
    struct mips64_watch_regs mips64;
  };
};

#define PTRACE_GET_WATCH_REGS 0xd0
#define PTRACE_SET_WATCH_REGS 0xd1
#endif

#define W (1 << 0)
#define R (1 << 1)
#define I (1 << 2)

#define IRW (I | R | W)

#ifndef PTRACE_GETREGSET
#define PTRACE_GETREGSET 0x4204
#endif
struct pt_watch_regs default_watch_regs;

using namespace lldb_private;
using namespace lldb_private::process_linux;

std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
  return std::make_unique<NativeRegisterContextLinux_mips64>(target_arch,
                                                              native_thread);
}

#define REG_CONTEXT_SIZE                                                       \
  (GetRegisterInfoInterface().GetGPRSize() + sizeof(FPR_linux_mips) +          \
   sizeof(MSA_linux_mips))

// NativeRegisterContextLinux_mips64 members.

static RegisterInfoInterface *
CreateRegisterInfoInterface(const ArchSpec &target_arch) {
  if ((target_arch.GetMachine() == llvm::Triple::mips) ||
       (target_arch.GetMachine() == llvm::Triple::mipsel)) {
    // 32-bit hosts run with a RegisterContextLinux_mips context.
    return new RegisterContextLinux_mips(
        target_arch, NativeRegisterContextLinux_mips64::IsMSAAvailable());
  } else {
    return new RegisterContextLinux_mips64(
        target_arch, NativeRegisterContextLinux_mips64::IsMSAAvailable());
  }
}

NativeRegisterContextLinux_mips64::NativeRegisterContextLinux_mips64(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
    : NativeRegisterContextLinux(native_thread,
                                 CreateRegisterInfoInterface(target_arch)) {
  switch (target_arch.GetMachine()) {
  case llvm::Triple::mips:
  case llvm::Triple::mipsel:
    m_reg_info.num_registers = k_num_registers_mips;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_mips;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_mips;
    m_reg_info.last_gpr = k_last_gpr_mips;
    m_reg_info.first_fpr = k_first_fpr_mips;
    m_reg_info.last_fpr = k_last_fpr_mips;
    m_reg_info.first_msa = k_first_msa_mips;
    m_reg_info.last_msa = k_last_msa_mips;
    break;
  case llvm::Triple::mips64:
  case llvm::Triple::mips64el:
    m_reg_info.num_registers = k_num_registers_mips64;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_mips64;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_mips64;
    m_reg_info.last_gpr = k_last_gpr_mips64;
    m_reg_info.first_fpr = k_first_fpr_mips64;
    m_reg_info.last_fpr = k_last_fpr_mips64;
    m_reg_info.first_msa = k_first_msa_mips64;
    m_reg_info.last_msa = k_last_msa_mips64;
    break;
  default:
    assert(false && "Unhandled target architecture.");
    break;
  }

  // Initialize m_iovec to point to the buffer and buffer size using the
  // conventions of Berkeley style UIO structures, as required by PTRACE
  // extensions.
  m_iovec.iov_base = &m_msa;
  m_iovec.iov_len = sizeof(MSA_linux_mips);

  // init h/w watchpoint addr map
  for (int index = 0; index <= MAX_NUM_WP; index++)
    hw_addr_map[index] = LLDB_INVALID_ADDRESS;

  ::memset(&m_gpr, 0, sizeof(GPR_linux_mips));
  ::memset(&m_fpr, 0, sizeof(FPR_linux_mips));
  ::memset(&m_msa, 0, sizeof(MSA_linux_mips));
}

uint32_t NativeRegisterContextLinux_mips64::GetRegisterSetCount() const {
  switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) {
  case llvm::Triple::mips64:
  case llvm::Triple::mips64el: {
    const auto context = static_cast<const RegisterContextLinux_mips64 &>
                         (GetRegisterInfoInterface());
    return context.GetRegisterSetCount();
  }
  case llvm::Triple::mips:
  case llvm::Triple::mipsel: {
    const auto context = static_cast<const RegisterContextLinux_mips &>
                         (GetRegisterInfoInterface());
    return context.GetRegisterSetCount();
  }
  default:
    llvm_unreachable("Unhandled target architecture.");
  }
}

lldb::addr_t NativeRegisterContextLinux_mips64::GetPCfromBreakpointLocation(
    lldb::addr_t fail_value) {
  Status error;
  RegisterValue pc_value;
  lldb::addr_t pc = fail_value;
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
  LLDB_LOG(log, "Reading PC from breakpoint location");

  // PC register is at index 34 of the register array
  const RegisterInfo *const pc_info_p = GetRegisterInfoAtIndex(gpr_pc_mips64);

  error = ReadRegister(pc_info_p, pc_value);
  if (error.Success()) {
    pc = pc_value.GetAsUInt64();

    // CAUSE register is at index 37 of the register array
    const RegisterInfo *const cause_info_p =
        GetRegisterInfoAtIndex(gpr_cause_mips64);
    RegisterValue cause_value;

    ReadRegister(cause_info_p, cause_value);

    uint64_t cause = cause_value.GetAsUInt64();
    LLDB_LOG(log, "PC {0:x} cause {1:x}", pc, cause);

    /*
     * The breakpoint might be in a delay slot. In this case PC points
     * to the delayed branch instruction rather then the instruction
     * in the delay slot. If the CAUSE.BD flag is set then adjust the
     * PC based on the size of the branch instruction.
    */
    if ((cause & (1 << 31)) != 0) {
      lldb::addr_t branch_delay = 0;
      branch_delay =
          4; // FIXME - Adjust according to size of branch instruction at PC
      pc = pc + branch_delay;
      pc_value.SetUInt64(pc);
      WriteRegister(pc_info_p, pc_value);
      LLDB_LOG(log, "New PC {0:x}", pc);
    }
  }

  return pc;
}

const RegisterSet *
NativeRegisterContextLinux_mips64::GetRegisterSet(uint32_t set_index) const {
  if (set_index >= GetRegisterSetCount())
    return nullptr;

  switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) {
  case llvm::Triple::mips64:
  case llvm::Triple::mips64el: {
    const auto context = static_cast<const RegisterContextLinux_mips64 &>
                          (GetRegisterInfoInterface());
    return context.GetRegisterSet(set_index);
  }
  case llvm::Triple::mips:
  case llvm::Triple::mipsel: {
    const auto context = static_cast<const RegisterContextLinux_mips &>
                         (GetRegisterInfoInterface());
    return context.GetRegisterSet(set_index);
  }
  default:
    llvm_unreachable("Unhandled target architecture.");
  }
}

lldb_private::Status
NativeRegisterContextLinux_mips64::ReadRegister(const RegisterInfo *reg_info,
                                                RegisterValue &reg_value) {
  Status error;

  if (!reg_info) {
    error.SetErrorString("reg_info NULL");
    return error;
  }

  const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
  uint8_t byte_size = reg_info->byte_size;
  if (reg == LLDB_INVALID_REGNUM) {
    // This is likely an internal register for lldb use only and should not be
    // directly queried.
    error.SetErrorStringWithFormat("register \"%s\" is an internal-only lldb "
                                   "register, cannot read directly",
                                   reg_info->name);
    return error;
  }

  if (IsMSA(reg) && !IsMSAAvailable()) {
    error.SetErrorString("MSA not available on this processor");
    return error;
  }

  if (IsMSA(reg) || IsFPR(reg)) {
    uint8_t *src = nullptr;
    lldbassert(reg_info->byte_offset < sizeof(UserArea));

    error = ReadCP1();

    if (!error.Success()) {
      error.SetErrorString("failed to read co-processor 1 register");
      return error;
    }

    if (IsFPR(reg)) {
      if (IsFR0() && (byte_size != 4)) {
        byte_size = 4;
        uint8_t ptrace_index;
        ptrace_index = reg_info->kinds[lldb::eRegisterKindProcessPlugin];
        src = ReturnFPOffset(ptrace_index, reg_info->byte_offset);
      } else
        src = (uint8_t *)&m_fpr + reg_info->byte_offset - sizeof(m_gpr);
    } else
      src = (uint8_t *)&m_msa + reg_info->byte_offset -
            (sizeof(m_gpr) + sizeof(m_fpr));
    switch (byte_size) {
    case 4:
      reg_value.SetUInt32(*(uint32_t *)src);
      break;
    case 8:
      reg_value.SetUInt64(*(uint64_t *)src);
      break;
    case 16:
      reg_value.SetBytes((const void *)src, 16, GetByteOrder());
      break;
    default:
      assert(false && "Unhandled data size.");
      error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
                                     reg_info->byte_size);
      break;
    }
  } else {
    error = ReadRegisterRaw(reg, reg_value);
  }

  return error;
}

lldb_private::Status NativeRegisterContextLinux_mips64::WriteRegister(
    const RegisterInfo *reg_info, const RegisterValue &reg_value) {
  Status error;

  assert(reg_info && "reg_info is null");

  const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];

  if (reg_index == LLDB_INVALID_REGNUM)
    return Status("no lldb regnum for %s", reg_info && reg_info->name
                                               ? reg_info->name
                                               : "<unknown register>");

  if (IsMSA(reg_index) && !IsMSAAvailable()) {
    error.SetErrorString("MSA not available on this processor");
    return error;
  }

  if (IsFPR(reg_index) || IsMSA(reg_index)) {
    uint8_t *dst = nullptr;
    uint64_t *src = nullptr;
    uint8_t byte_size = reg_info->byte_size;
    lldbassert(reg_info->byte_offset < sizeof(UserArea));

    // Initialise the FP and MSA buffers by reading all co-processor 1
    // registers
    ReadCP1();

    if (IsFPR(reg_index)) {
      if (IsFR0() && (byte_size != 4)) {
        byte_size = 4;
        uint8_t ptrace_index;
        ptrace_index = reg_info->kinds[lldb::eRegisterKindProcessPlugin];
        dst = ReturnFPOffset(ptrace_index, reg_info->byte_offset);
      } else
        dst = (uint8_t *)&m_fpr + reg_info->byte_offset - sizeof(m_gpr);
    } else
      dst = (uint8_t *)&m_msa + reg_info->byte_offset -
            (sizeof(m_gpr) + sizeof(m_fpr));
    switch (byte_size) {
    case 4:
      *(uint32_t *)dst = reg_value.GetAsUInt32();
      break;
    case 8:
      *(uint64_t *)dst = reg_value.GetAsUInt64();
      break;
    case 16:
      src = (uint64_t *)reg_value.GetBytes();
      *(uint64_t *)dst = *src;
      *(uint64_t *)(dst + 8) = *(src + 1);
      break;
    default:
      assert(false && "Unhandled data size.");
      error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
                                     reg_info->byte_size);
      break;
    }
    error = WriteCP1();
    if (!error.Success()) {
      error.SetErrorString("failed to write co-processor 1 register");
      return error;
    }
  } else {
    error = WriteRegisterRaw(reg_index, reg_value);
  }

  return error;
}

Status NativeRegisterContextLinux_mips64::ReadAllRegisterValues(
    lldb::DataBufferSP &data_sp) {
  Status error;

  data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
  error = ReadGPR();
  if (!error.Success()) {
    error.SetErrorString("ReadGPR() failed");
    return error;
  }

  error = ReadCP1();
  if (!error.Success()) {
    error.SetErrorString("ReadCP1() failed");
    return error;
  }

  uint8_t *dst = data_sp->GetBytes();
  ::memcpy(dst, &m_gpr, GetRegisterInfoInterface().GetGPRSize());
  dst += GetRegisterInfoInterface().GetGPRSize();

  ::memcpy(dst, &m_fpr, GetFPRSize());
  dst += GetFPRSize();

  ::memcpy(dst, &m_msa, sizeof(MSA_linux_mips));

  return error;
}

Status NativeRegisterContextLinux_mips64::WriteAllRegisterValues(
    const lldb::DataBufferSP &data_sp) {
  Status error;

  if (!data_sp) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_mips64::%s invalid data_sp provided",
        __FUNCTION__);
    return error;
  }

  if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_mips64::%s data_sp contained mismatched "
        "data size, expected %" PRIu64 ", actual %" PRIu64,
        __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
    return error;
  }

  uint8_t *src = data_sp->GetBytes();
  if (src == nullptr) {
    error.SetErrorStringWithFormat("NativeRegisterContextLinux_mips64::%s "
                                   "DataBuffer::GetBytes() returned a null "
                                   "pointer",
                                   __FUNCTION__);
    return error;
  }

  ::memcpy(&m_gpr, src, GetRegisterInfoInterface().GetGPRSize());
  src += GetRegisterInfoInterface().GetGPRSize();

  ::memcpy(&m_fpr, src, GetFPRSize());
  src += GetFPRSize();

  ::memcpy(&m_msa, src, sizeof(MSA_linux_mips));

  error = WriteGPR();
  if (!error.Success()) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_mips64::%s WriteGPR() failed",
        __FUNCTION__);
    return error;
  }

  error = WriteCP1();
  if (!error.Success()) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_mips64::%s WriteCP1() failed",
        __FUNCTION__);
    return error;
  }

  return error;
}

Status NativeRegisterContextLinux_mips64::ReadCP1() {
  Status error;

  uint8_t *src = nullptr;
  uint8_t *dst = nullptr;

  lldb::ByteOrder byte_order = GetByteOrder();

  bool IsBigEndian = (byte_order == lldb::eByteOrderBig);

  if (IsMSAAvailable()) {
    error = NativeRegisterContextLinux::ReadRegisterSet(
        &m_iovec, sizeof(MSA_linux_mips), NT_MIPS_MSA);
    src = (uint8_t *)&m_msa + (IsBigEndian * 8);
    dst = (uint8_t *)&m_fpr;
    for (int i = 0; i < NUM_REGISTERS; i++) {
      // Copy fp values from msa buffer fetched via ptrace
      *(uint64_t *)dst = *(uint64_t *)src;
      src = src + 16;
      dst = dst + 8;
    }
    m_fpr.fir = m_msa.fir;
    m_fpr.fcsr = m_msa.fcsr;
    m_fpr.config5 = m_msa.config5;
  } else {
    error = NativeRegisterContextLinux::ReadFPR();
  }
  return error;
}

uint8_t *
NativeRegisterContextLinux_mips64::ReturnFPOffset(uint8_t reg_index,
                                                  uint32_t byte_offset) {

  uint8_t *fp_buffer_ptr = nullptr;
  lldb::ByteOrder byte_order = GetByteOrder();
  bool IsBigEndian = (byte_order == lldb::eByteOrderBig);
  if (reg_index % 2) {
    uint8_t offset_diff = (IsBigEndian) ? 8 : 4;
    fp_buffer_ptr =
        (uint8_t *)&m_fpr + byte_offset - offset_diff - sizeof(m_gpr);
  } else {
    fp_buffer_ptr =
        (uint8_t *)&m_fpr + byte_offset + 4 * (IsBigEndian) - sizeof(m_gpr);
  }
  return fp_buffer_ptr;
}

Status NativeRegisterContextLinux_mips64::WriteCP1() {
  Status error;

  uint8_t *src = nullptr;
  uint8_t *dst = nullptr;

  lldb::ByteOrder byte_order = GetByteOrder();

  bool IsBigEndian = (byte_order == lldb::eByteOrderBig);

  if (IsMSAAvailable()) {
    dst = (uint8_t *)&m_msa + (IsBigEndian * 8);
    src = (uint8_t *)&m_fpr;
    for (int i = 0; i < NUM_REGISTERS; i++) {
      // Copy fp values to msa buffer for ptrace
      *(uint64_t *)dst = *(uint64_t *)src;
      dst = dst + 16;
      src = src + 8;
    }
    m_msa.fir = m_fpr.fir;
    m_msa.fcsr = m_fpr.fcsr;
    m_msa.config5 = m_fpr.config5;
    error = NativeRegisterContextLinux::WriteRegisterSet(
        &m_iovec, sizeof(MSA_linux_mips), NT_MIPS_MSA);
  } else {
    error = NativeRegisterContextLinux::WriteFPR();
  }

  return error;
}

bool NativeRegisterContextLinux_mips64::IsFR0() {
  const RegisterInfo *const reg_info_p = GetRegisterInfoAtIndex(gpr_sr_mips64);

  RegisterValue reg_value;
  ReadRegister(reg_info_p, reg_value);

  uint64_t value = reg_value.GetAsUInt64();

  return (!(value & SR_FR));
}

bool NativeRegisterContextLinux_mips64::IsFRE() {
  const RegisterInfo *const reg_info_p =
      GetRegisterInfoAtIndex(gpr_config5_mips64);

  RegisterValue reg_value;
  ReadRegister(reg_info_p, reg_value);

  uint64_t config5 = reg_value.GetAsUInt64();

  return (config5 & CONFIG5_FRE);
}

bool NativeRegisterContextLinux_mips64::IsFPR(uint32_t reg_index) const {
  return (m_reg_info.first_fpr <= reg_index &&
          reg_index <= m_reg_info.last_fpr);
}

static uint32_t GetWatchHi(struct pt_watch_regs *regs, uint32_t index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  if (regs->style == pt_watch_style_mips32)
    return regs->mips32.watchhi[index];
  else if (regs->style == pt_watch_style_mips64)
    return regs->mips64.watchhi[index];
  LLDB_LOG(log, "Invalid watch register style");
  return 0;
}

static void SetWatchHi(struct pt_watch_regs *regs, uint32_t index,
                       uint16_t value) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  if (regs->style == pt_watch_style_mips32)
    regs->mips32.watchhi[index] = value;
  else if (regs->style == pt_watch_style_mips64)
    regs->mips64.watchhi[index] = value;
  LLDB_LOG(log, "Invalid watch register style");
  return;
}

static lldb::addr_t GetWatchLo(struct pt_watch_regs *regs, uint32_t index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  if (regs->style == pt_watch_style_mips32)
    return regs->mips32.watchlo[index];
  else if (regs->style == pt_watch_style_mips64)
    return regs->mips64.watchlo[index];
  LLDB_LOG(log, "Invalid watch register style");
  return LLDB_INVALID_ADDRESS;
}

static void SetWatchLo(struct pt_watch_regs *regs, uint32_t index,
                       uint64_t value) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  if (regs->style == pt_watch_style_mips32)
    regs->mips32.watchlo[index] = (uint32_t)value;
  else if (regs->style == pt_watch_style_mips64)
    regs->mips64.watchlo[index] = value;
  else
    LLDB_LOG(log, "Invalid watch register style");
}

static uint32_t GetIRWMask(struct pt_watch_regs *regs, uint32_t index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  if (regs->style == pt_watch_style_mips32)
    return regs->mips32.watch_masks[index] & IRW;
  else if (regs->style == pt_watch_style_mips64)
    return regs->mips64.watch_masks[index] & IRW;
  LLDB_LOG(log, "Invalid watch register style");
  return 0;
}

static uint32_t GetRegMask(struct pt_watch_regs *regs, uint32_t index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  if (regs->style == pt_watch_style_mips32)
    return regs->mips32.watch_masks[index] & ~IRW;
  else if (regs->style == pt_watch_style_mips64)
    return regs->mips64.watch_masks[index] & ~IRW;
  LLDB_LOG(log, "Invalid watch register style");
  return 0;
}

static lldb::addr_t GetRangeMask(lldb::addr_t mask) {
  lldb::addr_t mask_bit = 1;
  while (mask_bit < mask) {
    mask = mask | mask_bit;
    mask_bit <<= 1;
  }
  return mask;
}

static int GetVacantWatchIndex(struct pt_watch_regs *regs, lldb::addr_t addr,
                               uint32_t size, uint32_t irw,
                               uint32_t num_valid) {
  lldb::addr_t last_byte = addr + size - 1;
  lldb::addr_t mask = GetRangeMask(addr ^ last_byte) | IRW;
  lldb::addr_t base_addr = addr & ~mask;

  // Check if this address is already watched by previous watch points.
  lldb::addr_t lo;
  uint16_t hi;
  uint32_t vacant_watches = 0;
  for (uint32_t index = 0; index < num_valid; index++) {
    lo = GetWatchLo(regs, index);
    if (lo != 0 && irw == ((uint32_t)lo & irw)) {
      hi = GetWatchHi(regs, index) | IRW;
      lo &= ~(lldb::addr_t)hi;
      if (addr >= lo && last_byte <= (lo + hi))
        return index;
    } else
      vacant_watches++;
  }

  // Now try to find a vacant index
  if (vacant_watches > 0) {
    vacant_watches = 0;
    for (uint32_t index = 0; index < num_valid; index++) {
      lo = GetWatchLo(regs, index);
      if (lo == 0 && irw == (GetIRWMask(regs, index) & irw)) {
        if (mask <= (GetRegMask(regs, index) | IRW)) {
          // It fits, we can use it.
          SetWatchLo(regs, index, base_addr | irw);
          SetWatchHi(regs, index, mask & ~IRW);
          return index;
        } else {
          // It doesn't fit, but has the proper IRW capabilities
          vacant_watches++;
        }
      }
    }

    if (vacant_watches > 1) {
      // Split this watchpoint across several registers
      struct pt_watch_regs regs_copy;
      regs_copy = *regs;
      lldb::addr_t break_addr;
      uint32_t segment_size;
      for (uint32_t index = 0; index < num_valid; index++) {
        lo = GetWatchLo(&regs_copy, index);
        hi = GetRegMask(&regs_copy, index) | IRW;
        if (lo == 0 && irw == (hi & irw)) {
          lo = addr & ~(lldb::addr_t)hi;
          break_addr = lo + hi + 1;
          if (break_addr >= addr + size)
            segment_size = size;
          else
            segment_size = break_addr - addr;
          mask = GetRangeMask(addr ^ (addr + segment_size - 1));
          SetWatchLo(&regs_copy, index, (addr & ~mask) | irw);
          SetWatchHi(&regs_copy, index, mask & ~IRW);
          if (break_addr >= addr + size) {
            *regs = regs_copy;
            return index;
          }
          size = addr + size - break_addr;
          addr = break_addr;
        }
      }
    }
  }
  return LLDB_INVALID_INDEX32;
}

bool NativeRegisterContextLinux_mips64::IsMSA(uint32_t reg_index) const {
  return (m_reg_info.first_msa <= reg_index &&
          reg_index <= m_reg_info.last_msa);
}

bool NativeRegisterContextLinux_mips64::IsMSAAvailable() {
  MSA_linux_mips msa_buf;
  unsigned int regset = NT_MIPS_MSA;

  Status error = NativeProcessLinux::PtraceWrapper(
      PTRACE_GETREGSET, Host::GetCurrentProcessID(),
      static_cast<void *>(&regset), &msa_buf, sizeof(MSA_linux_mips));

  if (error.Success() && msa_buf.mir) {
    return true;
  }

  return false;
}

Status NativeRegisterContextLinux_mips64::IsWatchpointHit(uint32_t wp_index,
                                                          bool &is_hit) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  // reading the current state of watch regs
  struct pt_watch_regs watch_readback;
  Status error = DoReadWatchPointRegisterValue(
      m_thread.GetID(), static_cast<void *>(&watch_readback));

  if (GetWatchHi(&watch_readback, wp_index) & (IRW)) {
    // clear hit flag in watchhi
    SetWatchHi(&watch_readback, wp_index,
               (GetWatchHi(&watch_readback, wp_index) & ~(IRW)));
    DoWriteWatchPointRegisterValue(m_thread.GetID(),
                                   static_cast<void *>(&watch_readback));

    is_hit = true;
    return error;
  }
  is_hit = false;
  return error;
}

Status NativeRegisterContextLinux_mips64::GetWatchpointHitIndex(
    uint32_t &wp_index, lldb::addr_t trap_addr) {
  uint32_t num_hw_wps = NumSupportedHardwareWatchpoints();
  for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) {
    bool is_hit;
    Status error = IsWatchpointHit(wp_index, is_hit);
    if (error.Fail()) {
      wp_index = LLDB_INVALID_INDEX32;
    } else if (is_hit) {
      return error;
    }
  }
  wp_index = LLDB_INVALID_INDEX32;
  return Status();
}

Status NativeRegisterContextLinux_mips64::IsWatchpointVacant(uint32_t wp_index,
                                                             bool &is_vacant) {
  is_vacant = false;
  return Status("MIPS TODO: "
                "NativeRegisterContextLinux_mips64::IsWatchpointVacant not "
                "implemented");
}

bool NativeRegisterContextLinux_mips64::ClearHardwareWatchpoint(
    uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return false;

  struct pt_watch_regs regs;
  // First reading the current state of watch regs
  DoReadWatchPointRegisterValue(m_thread.GetID(), static_cast<void *>(&regs));

  if (regs.style == pt_watch_style_mips32) {
    regs.mips32.watchlo[wp_index] = default_watch_regs.mips32.watchlo[wp_index];
    regs.mips32.watchhi[wp_index] = default_watch_regs.mips32.watchhi[wp_index];
    regs.mips32.watch_masks[wp_index] =
        default_watch_regs.mips32.watch_masks[wp_index];
  } else // pt_watch_style_mips64
  {
    regs.mips64.watchlo[wp_index] = default_watch_regs.mips64.watchlo[wp_index];
    regs.mips64.watchhi[wp_index] = default_watch_regs.mips64.watchhi[wp_index];
    regs.mips64.watch_masks[wp_index] =
        default_watch_regs.mips64.watch_masks[wp_index];
  }

  Status error = DoWriteWatchPointRegisterValue(m_thread.GetID(),
                                                static_cast<void *>(&regs));
  if (!error.Fail()) {
    hw_addr_map[wp_index] = LLDB_INVALID_ADDRESS;
    return true;
  }
  return false;
}

Status NativeRegisterContextLinux_mips64::ClearAllHardwareWatchpoints() {
  return DoWriteWatchPointRegisterValue(
      m_thread.GetID(), static_cast<void *>(&default_watch_regs));
}

Status NativeRegisterContextLinux_mips64::SetHardwareWatchpointWithIndex(
    lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) {
  Status error;
  error.SetErrorString("MIPS TODO: "
                       "NativeRegisterContextLinux_mips64::"
                       "SetHardwareWatchpointWithIndex not implemented");
  return error;
}

uint32_t NativeRegisterContextLinux_mips64::SetHardwareWatchpoint(
    lldb::addr_t addr, size_t size, uint32_t watch_flags) {
  struct pt_watch_regs regs;

  // First reading the current state of watch regs
  DoReadWatchPointRegisterValue(m_thread.GetID(), static_cast<void *>(&regs));

  // Try if a new watch point fits in this state
  int index = GetVacantWatchIndex(&regs, addr, size, watch_flags,
                                  NumSupportedHardwareWatchpoints());

  // New watchpoint doesn't fit
  if (index == LLDB_INVALID_INDEX32)
    return LLDB_INVALID_INDEX32;

  // It fits, so we go ahead with updating the state of watch regs
  DoWriteWatchPointRegisterValue(m_thread.GetID(), static_cast<void *>(&regs));

  // Storing exact address
  hw_addr_map[index] = addr;
  return index;
}

lldb::addr_t
NativeRegisterContextLinux_mips64::GetWatchpointAddress(uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return LLDB_INVALID_ADDRESS;

  return hw_addr_map[wp_index];
}

struct EmulatorBaton {
  lldb::addr_t m_watch_hit_addr;
  NativeProcessLinux *m_process;
  NativeRegisterContext *m_reg_context;

  EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
      : m_watch_hit_addr(LLDB_INVALID_ADDRESS), m_process(process),
        m_reg_context(reg_context) {}
};

static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
                                 const EmulateInstruction::Context &context,
                                 lldb::addr_t addr, void *dst, size_t length) {
  size_t bytes_read;
  EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
  emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
  return bytes_read;
}

static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
                                  const EmulateInstruction::Context &context,
                                  lldb::addr_t addr, const void *dst,
                                  size_t length) {
  return length;
}

static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
                                 const RegisterInfo *reg_info,
                                 RegisterValue &reg_value) {
  EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);

  const RegisterInfo *full_reg_info =
      emulator_baton->m_reg_context->GetRegisterInfo(
          lldb::eRegisterKindDWARF, reg_info->kinds[lldb::eRegisterKindDWARF]);

  Status error =
      emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
  if (error.Success())
    return true;

  return false;
}

static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
                                  const EmulateInstruction::Context &context,
                                  const RegisterInfo *reg_info,
                                  const RegisterValue &reg_value) {
  if (reg_info->kinds[lldb::eRegisterKindDWARF] == dwarf_bad_mips64) {
    EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
    emulator_baton->m_watch_hit_addr = reg_value.GetAsUInt64();
  }

  return true;
}

/*
 * MIPS Linux kernel returns a masked address (last 3bits are masked)
 * when a HW watchpoint is hit. However user may not have set a watchpoint
 * on this address. Emulate instruction at PC and find the base address of
 * the load/store instruction. This will give the exact address used to
 * read/write the variable. Send this exact address to client so that
 * it can decide to stop or continue the thread.
*/
lldb::addr_t
NativeRegisterContextLinux_mips64::GetWatchpointHitAddress(uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return LLDB_INVALID_ADDRESS;

  lldb_private::ArchSpec arch;
  arch = GetRegisterInfoInterface().GetTargetArchitecture();
  std::unique_ptr<EmulateInstruction> emulator_up(
      EmulateInstruction::FindPlugin(arch, lldb_private::eInstructionTypeAny,
                                     nullptr));

  if (emulator_up == nullptr)
    return LLDB_INVALID_ADDRESS;

  EmulatorBaton baton(
      static_cast<NativeProcessLinux *>(&m_thread.GetProcess()), this);
  emulator_up->SetBaton(&baton);
  emulator_up->SetReadMemCallback(&ReadMemoryCallback);
  emulator_up->SetReadRegCallback(&ReadRegisterCallback);
  emulator_up->SetWriteMemCallback(&WriteMemoryCallback);
  emulator_up->SetWriteRegCallback(&WriteRegisterCallback);

  if (!emulator_up->ReadInstruction())
    return LLDB_INVALID_ADDRESS;

  if (emulator_up->EvaluateInstruction(lldb::eEmulateInstructionOptionNone))
    return baton.m_watch_hit_addr;

  return LLDB_INVALID_ADDRESS;
}

uint32_t NativeRegisterContextLinux_mips64::NumSupportedHardwareWatchpoints() {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  struct pt_watch_regs regs;
  static int num_valid = 0;
  if (!num_valid) {
    DoReadWatchPointRegisterValue(m_thread.GetID(), static_cast<void *>(&regs));
    default_watch_regs =
        regs; // Keeping default watch regs values for future use
    switch (regs.style) {
    case pt_watch_style_mips32:
      num_valid = regs.mips32.num_valid; // Using num_valid as cache
      return num_valid;
    case pt_watch_style_mips64:
      num_valid = regs.mips64.num_valid;
      return num_valid;
    }
    LLDB_LOG(log, "Invalid watch register style");
    return 0;
  }
  return num_valid;
}

Status
NativeRegisterContextLinux_mips64::ReadRegisterRaw(uint32_t reg_index,
                                                   RegisterValue &value) {
  const RegisterInfo *const reg_info = GetRegisterInfoAtIndex(reg_index);

  if (!reg_info)
    return Status("register %" PRIu32 " not found", reg_index);

  uint32_t offset = reg_info->kinds[lldb::eRegisterKindProcessPlugin];

  if ((offset == ptrace_sr_mips) || (offset == ptrace_config5_mips))
    return Read_SR_Config(reg_info->byte_offset, reg_info->name,
                          reg_info->byte_size, value);

  return DoReadRegisterValue(offset, reg_info->name, reg_info->byte_size,
                             value);
}

Status NativeRegisterContextLinux_mips64::WriteRegisterRaw(
    uint32_t reg_index, const RegisterValue &value) {
  const RegisterInfo *const reg_info = GetRegisterInfoAtIndex(reg_index);

  if (!reg_info)
    return Status("register %" PRIu32 " not found", reg_index);

  if (reg_info->invalidate_regs)
    lldbassert(false && "reg_info->invalidate_regs is unhandled");

  uint32_t offset = reg_info->kinds[lldb::eRegisterKindProcessPlugin];
  return DoWriteRegisterValue(offset, reg_info->name, value);
}

Status NativeRegisterContextLinux_mips64::Read_SR_Config(uint32_t offset,
                                                         const char *reg_name,
                                                         uint32_t size,
                                                         RegisterValue &value) {
  GPR_linux_mips regs;
  ::memset(&regs, 0, sizeof(GPR_linux_mips));

  Status error = NativeProcessLinux::PtraceWrapper(
      PTRACE_GETREGS, m_thread.GetID(), NULL, &regs, sizeof regs);
  if (error.Success()) {
    const lldb_private::ArchSpec &arch =
        m_thread.GetProcess().GetArchitecture();
    void *target_address = ((uint8_t *)&regs) + offset +
                           4 * (arch.GetMachine() == llvm::Triple::mips);
    value.SetUInt(*(uint32_t *)target_address, size);
  }
  return error;
}

Status NativeRegisterContextLinux_mips64::DoReadWatchPointRegisterValue(
    lldb::tid_t tid, void *watch_readback) {
  return NativeProcessLinux::PtraceWrapper(PTRACE_GET_WATCH_REGS,
                                           m_thread.GetID(), watch_readback);
}

Status NativeRegisterContextLinux_mips64::DoWriteWatchPointRegisterValue(
    lldb::tid_t tid, void *watch_reg_value) {
  return NativeProcessLinux::PtraceWrapper(PTRACE_SET_WATCH_REGS,
                                           m_thread.GetID(), watch_reg_value);
}

#endif // defined (__mips__)