NativeRegisterContextLinux_arm.cpp
26.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
//===-- NativeRegisterContextLinux_arm.cpp --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
#include "NativeRegisterContextLinux_arm.h"
#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
#include <elf.h>
#include <sys/socket.h>
#define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr))
#ifndef PTRACE_GETVFPREGS
#define PTRACE_GETVFPREGS 27
#define PTRACE_SETVFPREGS 28
#endif
#ifndef PTRACE_GETHBPREGS
#define PTRACE_GETHBPREGS 29
#define PTRACE_SETHBPREGS 30
#endif
#if !defined(PTRACE_TYPE_ARG3)
#define PTRACE_TYPE_ARG3 void *
#endif
#if !defined(PTRACE_TYPE_ARG4)
#define PTRACE_TYPE_ARG4 void *
#endif
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;
#if defined(__arm__)
std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
return std::make_unique<NativeRegisterContextLinux_arm>(target_arch,
native_thread);
}
#endif // defined(__arm__)
NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
: NativeRegisterContextLinux(native_thread,
new RegisterInfoPOSIX_arm(target_arch)) {
assert(target_arch.GetMachine() == llvm::Triple::arm);
::memset(&m_fpr, 0, sizeof(m_fpr));
::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm));
::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs));
// 16 is just a maximum value, query hardware for actual watchpoint count
m_max_hwp_supported = 16;
m_max_hbp_supported = 16;
m_refresh_hwdebug_info = true;
}
RegisterInfoPOSIX_arm &NativeRegisterContextLinux_arm::GetRegisterInfo() const {
return static_cast<RegisterInfoPOSIX_arm &>(*m_register_info_interface_up);
}
uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const {
return GetRegisterInfo().GetRegisterSetCount();
}
uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const {
uint32_t count = 0;
for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index)
count += GetRegisterSet(set_index)->num_registers;
return count;
}
const RegisterSet *
NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const {
return GetRegisterInfo().GetRegisterSet(set_index);
}
Status
NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info,
RegisterValue ®_value) {
Status error;
if (!reg_info) {
error.SetErrorString("reg_info NULL");
return error;
}
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
if (IsFPR(reg)) {
error = ReadFPR();
if (error.Fail())
return error;
} else {
uint32_t full_reg = reg;
bool is_subreg = reg_info->invalidate_regs &&
(reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
if (is_subreg) {
// Read the full aligned 64-bit register.
full_reg = reg_info->invalidate_regs[0];
}
error = ReadRegisterRaw(full_reg, reg_value);
if (error.Success()) {
// If our read was not aligned (for ah,bh,ch,dh), shift our returned
// value one byte to the right.
if (is_subreg && (reg_info->byte_offset & 0x1))
reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
// If our return byte size was greater than the return value reg size,
// then use the type specified by reg_info rather than the uint64_t
// default
if (reg_value.GetByteSize() > reg_info->byte_size)
reg_value.SetType(reg_info);
}
return error;
}
// Get pointer to m_fpr variable and set the data from it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr);
uint8_t *src = (uint8_t *)&m_fpr + fpr_offset;
switch (reg_info->byte_size) {
case 2:
reg_value.SetUInt16(*(uint16_t *)src);
break;
case 4:
reg_value.SetUInt32(*(uint32_t *)src);
break;
case 8:
reg_value.SetUInt64(*(uint64_t *)src);
break;
case 16:
reg_value.SetBytes(src, 16, GetByteOrder());
break;
default:
assert(false && "Unhandled data size.");
error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
reg_info->byte_size);
break;
}
return error;
}
Status
NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue ®_value) {
if (!reg_info)
return Status("reg_info NULL");
const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
if (reg_index == LLDB_INVALID_REGNUM)
return Status("no lldb regnum for %s", reg_info && reg_info->name
? reg_info->name
: "<unknown register>");
if (IsGPR(reg_index))
return WriteRegisterRaw(reg_index, reg_value);
if (IsFPR(reg_index)) {
// Get pointer to m_fpr variable and set the data to it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr);
uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset;
switch (reg_info->byte_size) {
case 2:
*(uint16_t *)dst = reg_value.GetAsUInt16();
break;
case 4:
*(uint32_t *)dst = reg_value.GetAsUInt32();
break;
case 8:
*(uint64_t *)dst = reg_value.GetAsUInt64();
break;
default:
assert(false && "Unhandled data size.");
return Status("unhandled register data size %" PRIu32,
reg_info->byte_size);
}
Status error = WriteFPR();
if (error.Fail())
return error;
return Status();
}
return Status("failed - register wasn't recognized to be a GPR or an FPR, "
"write strategy unknown");
}
Status NativeRegisterContextLinux_arm::ReadAllRegisterValues(
lldb::DataBufferSP &data_sp) {
Status error;
data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
error = ReadGPR();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
uint8_t *dst = data_sp->GetBytes();
::memcpy(dst, &m_gpr_arm, GetGPRSize());
dst += GetGPRSize();
::memcpy(dst, &m_fpr, sizeof(m_fpr));
return error;
}
Status NativeRegisterContextLinux_arm::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
Status error;
if (!data_sp) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
__FUNCTION__);
return error;
}
if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
"data size, expected %" PRIu64 ", actual %" PRIu64,
__FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize());
return error;
}
uint8_t *src = data_sp->GetBytes();
if (src == nullptr) {
error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
"DataBuffer::GetBytes() returned a null "
"pointer",
__FUNCTION__);
return error;
}
::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize());
error = WriteGPR();
if (error.Fail())
return error;
src += GetRegisterInfoInterface().GetGPRSize();
::memcpy(&m_fpr, src, sizeof(m_fpr));
error = WriteFPR();
if (error.Fail())
return error;
return error;
}
bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const {
if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) ==
RegisterInfoPOSIX_arm::GPRegSet)
return true;
return false;
}
bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const {
if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) ==
RegisterInfoPOSIX_arm::FPRegSet)
return true;
return false;
}
uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__);
Status error;
// Read hardware breakpoint and watchpoint information.
error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
LLDB_LOG(log, "{0}", m_max_hbp_supported);
return m_max_hbp_supported;
}
uint32_t
NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr,
size_t size) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, bp_index = 0;
// Setup address and control values.
// Use size to get a hint of arm vs thumb modes.
switch (size) {
case 2:
control_value = (0x3 << 5) | 7;
addr &= ~1;
break;
case 4:
control_value = (0xfu << 5) | 7;
addr &= ~3;
break;
default:
return LLDB_INVALID_INDEX32;
}
// Iterate over stored breakpoints and find a free bp_index
bp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
if ((m_hbr_regs[i].control & 1) == 0) {
bp_index = i; // Mark last free slot
} else if (m_hbr_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints.
}
}
if (bp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update breakpoint in local cache
m_hbr_regs[bp_index].real_addr = addr;
m_hbr_regs[bp_index].address = addr;
m_hbr_regs[bp_index].control = control_value;
// PTRACE call to set corresponding hardware breakpoint register.
error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index);
if (error.Fail()) {
m_hbr_regs[bp_index].address = 0;
m_hbr_regs[bp_index].control &= ~1;
return LLDB_INVALID_INDEX32;
}
return bp_index;
}
bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOG(log, "hw_idx: {0}", hw_idx);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (hw_idx >= m_max_hbp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address;
uint32_t tempControl = m_hbr_regs[hw_idx].control;
m_hbr_regs[hw_idx].control &= ~1;
m_hbr_regs[hw_idx].address = 0;
// PTRACE call to clear corresponding hardware breakpoint register.
error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx);
if (error.Fail()) {
m_hbr_regs[hw_idx].control = tempControl;
m_hbr_regs[hw_idx].address = tempAddr;
return false;
}
return true;
}
Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex(
uint32_t &bp_index, lldb::addr_t trap_addr) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
lldb::addr_t break_addr;
for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) {
break_addr = m_hbr_regs[bp_index].address;
if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) {
m_hbr_regs[bp_index].hit_addr = trap_addr;
return Status();
}
}
bp_index = LLDB_INVALID_INDEX32;
return Status();
}
Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__);
Status error;
// Read hardware breakpoint and watchpoint information.
error = ReadHardwareDebugInfo();
if (error.Fail())
return error;
lldb::addr_t tempAddr = 0;
uint32_t tempControl = 0;
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
if (m_hbr_regs[i].control & 0x01) {
// Create a backup we can revert to in case of failure.
tempAddr = m_hbr_regs[i].address;
tempControl = m_hbr_regs[i].control;
// Clear breakpoints in local cache
m_hbr_regs[i].control &= ~1;
m_hbr_regs[i].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeBREAK, i);
if (error.Fail()) {
m_hbr_regs[i].control = tempControl;
m_hbr_regs[i].address = tempAddr;
return error;
}
}
}
return Status();
}
uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
LLDB_LOG(log, "{0}", m_max_hwp_supported);
return m_max_hwp_supported;
}
uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint(
lldb::addr_t addr, size_t size, uint32_t watch_flags) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
watch_flags);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0;
lldb::addr_t real_addr = addr;
// Check if we are setting watchpoint other than read/write/access Also
// update watchpoint flag to match Arm write-read bit configuration.
switch (watch_flags) {
case 1:
watch_flags = 2;
break;
case 2:
watch_flags = 1;
break;
case 3:
break;
default:
return LLDB_INVALID_INDEX32;
}
// Can't watch zero bytes
// Can't watch more than 4 bytes per WVR/WCR pair
if (size == 0 || size > 4)
return LLDB_INVALID_INDEX32;
// Check 4-byte alignment for hardware watchpoint target address. Below is a
// hack to recalculate address and size in order to make sure we can watch
// non 4-byte aligned addresses as well.
if (addr & 0x03) {
uint8_t watch_mask = (addr & 0x03) + size;
if (watch_mask > 0x04)
return LLDB_INVALID_INDEX32;
else if (watch_mask <= 0x02)
size = 2;
else if (watch_mask <= 0x04)
size = 4;
addr = addr & (~0x03);
}
// We can only watch up to four bytes that follow a 4 byte aligned address
// per watchpoint register pair, so make sure we can properly encode this.
addr_word_offset = addr % 4;
byte_mask = ((1u << size) - 1u) << addr_word_offset;
// Check if we need multiple watchpoint register
if (byte_mask > 0xfu)
return LLDB_INVALID_INDEX32;
// Setup control value
// Make the byte_mask into a valid Byte Address Select mask
control_value = byte_mask << 5;
// Turn on appropriate watchpoint flags read or write
control_value |= (watch_flags << 3);
// Enable this watchpoint and make it stop in privileged or user mode;
control_value |= 7;
// Make sure bits 1:0 are clear in our address
addr &= ~((lldb::addr_t)3);
// Iterate over stored watchpoints and find a free wp_index
wp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if ((m_hwp_regs[i].control & 1) == 0) {
wp_index = i; // Mark last free slot
} else if (m_hwp_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
}
}
if (wp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update watchpoint in local cache
m_hwp_regs[wp_index].real_addr = real_addr;
m_hwp_regs[wp_index].address = addr;
m_hwp_regs[wp_index].control = control_value;
// PTRACE call to set corresponding watchpoint register.
error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index);
if (error.Fail()) {
m_hwp_regs[wp_index].address = 0;
m_hwp_regs[wp_index].control &= ~1;
return LLDB_INVALID_INDEX32;
}
return wp_index;
}
bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint(
uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (wp_index >= m_max_hwp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
uint32_t tempControl = m_hwp_regs[wp_index].control;
// Update watchpoint in local cache
m_hwp_regs[wp_index].control &= ~1;
m_hwp_regs[wp_index].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index);
if (error.Fail()) {
m_hwp_regs[wp_index].control = tempControl;
m_hwp_regs[wp_index].address = tempAddr;
return false;
}
return true;
}
Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() {
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return error;
lldb::addr_t tempAddr = 0;
uint32_t tempControl = 0;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if (m_hwp_regs[i].control & 0x01) {
// Create a backup we can revert to in case of failure.
tempAddr = m_hwp_regs[i].address;
tempControl = m_hwp_regs[i].control;
// Clear watchpoints in local cache
m_hwp_regs[i].control &= ~1;
m_hwp_regs[i].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeWATCH, i);
if (error.Fail()) {
m_hwp_regs[i].control = tempControl;
m_hwp_regs[i].address = tempAddr;
return error;
}
}
}
return Status();
}
uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) {
case 0x01:
return 1;
case 0x03:
return 2;
case 0x07:
return 3;
case 0x0f:
return 4;
default:
return 0;
}
}
bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if ((m_hwp_regs[wp_index].control & 0x1) == 0x1)
return true;
else
return false;
}
Status
NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index,
lldb::addr_t trap_addr) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
uint32_t watch_size;
lldb::addr_t watch_addr;
for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
watch_size = GetWatchpointSize(wp_index);
watch_addr = m_hwp_regs[wp_index].address;
if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
trap_addr < watch_addr + watch_size) {
m_hwp_regs[wp_index].hit_addr = trap_addr;
return Status();
}
}
wp_index = LLDB_INVALID_INDEX32;
return Status();
}
lldb::addr_t
NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].real_addr;
else
return LLDB_INVALID_ADDRESS;
}
lldb::addr_t
NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].hit_addr;
else
return LLDB_INVALID_ADDRESS;
}
Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() {
Status error;
if (!m_refresh_hwdebug_info) {
return Status();
}
unsigned int cap_val;
error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(),
nullptr, &cap_val,
sizeof(unsigned int));
if (error.Fail())
return error;
m_max_hwp_supported = (cap_val >> 8) & 0xff;
m_max_hbp_supported = cap_val & 0xff;
m_refresh_hwdebug_info = false;
return error;
}
Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType,
int hwb_index) {
Status error;
lldb::addr_t *addr_buf;
uint32_t *ctrl_buf;
if (hwbType == eDREGTypeWATCH) {
addr_buf = &m_hwp_regs[hwb_index].address;
ctrl_buf = &m_hwp_regs[hwb_index].control;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf,
sizeof(unsigned int));
if (error.Fail())
return error;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf,
sizeof(unsigned int));
} else {
addr_buf = &m_hbr_regs[hwb_index].address;
ctrl_buf = &m_hbr_regs[hwb_index].control;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf,
sizeof(unsigned int));
if (error.Fail())
return error;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf,
sizeof(unsigned int));
}
return error;
}
uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset - GetGPRSize();
}
Status NativeRegisterContextLinux_arm::DoReadRegisterValue(
uint32_t offset, const char *reg_name, uint32_t size,
RegisterValue &value) {
// PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android
// devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we
// read out the full GPR register set instead. This approach is about 4 times
// slower but the performance overhead is negligible in comparison to
// processing time in lldb-server.
assert(offset % 4 == 0 && "Try to write a register with unaligned offset");
if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm))
return Status("Register isn't fit into the size of the GPR area");
Status error = ReadGPR();
if (error.Fail())
return error;
value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]);
return Status();
}
Status NativeRegisterContextLinux_arm::DoWriteRegisterValue(
uint32_t offset, const char *reg_name, const RegisterValue &value) {
// PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android
// devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we
// read out the full GPR register set, modify the requested register and
// write it back. This approach is about 4 times slower but the performance
// overhead is negligible in comparison to processing time in lldb-server.
assert(offset % 4 == 0 && "Try to write a register with unaligned offset");
if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm))
return Status("Register isn't fit into the size of the GPR area");
Status error = ReadGPR();
if (error.Fail())
return error;
uint32_t reg_value = value.GetAsUInt32();
// As precaution for an undefined behavior encountered while setting PC we
// will clear thumb bit of new PC if we are already in thumb mode; that is
// CPSR thumb mode bit is set.
if (offset / sizeof(uint32_t) == gpr_pc_arm) {
// Check if we are already in thumb mode and thumb bit of current PC is
// read out to be zero and thumb bit of next PC is read out to be one.
if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) &&
(value.GetAsUInt32() & 0x01)) {
reg_value &= (~1ull);
}
}
m_gpr_arm[offset / sizeof(uint32_t)] = reg_value;
return WriteGPR();
}
Status NativeRegisterContextLinux_arm::ReadGPR() {
#ifdef __arm__
return NativeRegisterContextLinux::ReadGPR();
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = GetGPRBuffer();
ioVec.iov_len = GetGPRSize();
return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS);
#endif // __arm__
}
Status NativeRegisterContextLinux_arm::WriteGPR() {
#ifdef __arm__
return NativeRegisterContextLinux::WriteGPR();
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = GetGPRBuffer();
ioVec.iov_len = GetGPRSize();
return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS);
#endif // __arm__
}
Status NativeRegisterContextLinux_arm::ReadFPR() {
#ifdef __arm__
return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(),
nullptr, GetFPRBuffer(),
GetFPRSize());
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = GetFPRBuffer();
ioVec.iov_len = GetFPRSize();
return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP);
#endif // __arm__
}
Status NativeRegisterContextLinux_arm::WriteFPR() {
#ifdef __arm__
return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(),
nullptr, GetFPRBuffer(),
GetFPRSize());
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = GetFPRBuffer();
ioVec.iov_len = GetFPRSize();
return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP);
#endif // __arm__
}
#endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__)