ABISysV_x86_64.cpp 34.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
//===-- ABISysV_x86_64.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ABISysV_x86_64.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

#include <vector>

using namespace lldb;
using namespace lldb_private;

LLDB_PLUGIN_DEFINE(ABISysV_x86_64)

enum dwarf_regnums {
  dwarf_rax = 0,
  dwarf_rdx,
  dwarf_rcx,
  dwarf_rbx,
  dwarf_rsi,
  dwarf_rdi,
  dwarf_rbp,
  dwarf_rsp,
  dwarf_r8,
  dwarf_r9,
  dwarf_r10,
  dwarf_r11,
  dwarf_r12,
  dwarf_r13,
  dwarf_r14,
  dwarf_r15,
  dwarf_rip,
};

bool ABISysV_x86_64::GetPointerReturnRegister(const char *&name) {
  name = "rax";
  return true;
}

size_t ABISysV_x86_64::GetRedZoneSize() const { return 128; }

// Static Functions

ABISP
ABISysV_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
  const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
  const llvm::Triple::OSType os_type = arch.GetTriple().getOS();
  const llvm::Triple::EnvironmentType os_env =
      arch.GetTriple().getEnvironment();
  if (arch_type == llvm::Triple::x86_64) {
    switch(os_type) {
    case llvm::Triple::OSType::IOS:
    case llvm::Triple::OSType::TvOS:
    case llvm::Triple::OSType::WatchOS:
      switch (os_env) {
      case llvm::Triple::EnvironmentType::MacABI:
      case llvm::Triple::EnvironmentType::Simulator:
      case llvm::Triple::EnvironmentType::UnknownEnvironment:
        // UnknownEnvironment is needed for older compilers that don't
        // support the simulator environment.
        return ABISP(new ABISysV_x86_64(std::move(process_sp),
                                        MakeMCRegisterInfo(arch)));
      default:
        return ABISP();
      }
    case llvm::Triple::OSType::Darwin:
    case llvm::Triple::OSType::FreeBSD:
    case llvm::Triple::OSType::Linux:
    case llvm::Triple::OSType::MacOSX:
    case llvm::Triple::OSType::NetBSD:
    case llvm::Triple::OSType::Solaris:
    case llvm::Triple::OSType::UnknownOS:
      return ABISP(
          new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch)));
    default:
      return ABISP();
    }
  }
  return ABISP();
}

bool ABISysV_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp,
                                        addr_t func_addr, addr_t return_addr,
                                        llvm::ArrayRef<addr_t> args) const {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));

  if (log) {
    StreamString s;
    s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
             ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
             ", return_addr = 0x%" PRIx64,
             thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
             (uint64_t)return_addr);

    for (size_t i = 0; i < args.size(); ++i)
      s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
               args[i]);
    s.PutCString(")");
    log->PutString(s.GetString());
  }

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return false;

  const RegisterInfo *reg_info = nullptr;

  if (args.size() > 6) // TODO handle more than 6 arguments
    return false;

  for (size_t i = 0; i < args.size(); ++i) {
    reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
                                        LLDB_REGNUM_GENERIC_ARG1 + i);
    LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
              static_cast<uint64_t>(i + 1), args[i], reg_info->name);
    if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
      return false;
  }

  // First, align the SP

  LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
            (uint64_t)sp, (uint64_t)(sp & ~0xfull));

  sp &= ~(0xfull); // 16-byte alignment

  sp -= 8;

  Status error;
  const RegisterInfo *pc_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
  const RegisterInfo *sp_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
  ProcessSP process_sp(thread.GetProcess());

  RegisterValue reg_value;
  LLDB_LOGF(log,
            "Pushing the return address onto the stack: 0x%" PRIx64
            ": 0x%" PRIx64,
            (uint64_t)sp, (uint64_t)return_addr);

  // Save return address onto the stack
  if (!process_sp->WritePointerToMemory(sp, return_addr, error))
    return false;

  // %rsp is set to the actual stack value.

  LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);

  if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
    return false;

  // %rip is set to the address of the called function.

  LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);

  if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
    return false;

  return true;
}

static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
                                bool is_signed, Thread &thread,
                                uint32_t *argument_register_ids,
                                unsigned int &current_argument_register,
                                addr_t &current_stack_argument) {
  if (bit_width > 64)
    return false; // Scalar can't hold large integer arguments

  if (current_argument_register < 6) {
    scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
        argument_register_ids[current_argument_register], 0);
    current_argument_register++;
    if (is_signed)
      scalar.SignExtend(bit_width);
  } else {
    uint32_t byte_size = (bit_width + (8 - 1)) / 8;
    Status error;
    if (thread.GetProcess()->ReadScalarIntegerFromMemory(
            current_stack_argument, byte_size, is_signed, scalar, error)) {
      current_stack_argument += byte_size;
      return true;
    }
    return false;
  }
  return true;
}

bool ABISysV_x86_64::GetArgumentValues(Thread &thread,
                                       ValueList &values) const {
  unsigned int num_values = values.GetSize();
  unsigned int value_index;

  // Extract the register context so we can read arguments from registers

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();

  if (!reg_ctx)
    return false;

  // Get the pointer to the first stack argument so we have a place to start
  // when reading data

  addr_t sp = reg_ctx->GetSP(0);

  if (!sp)
    return false;

  addr_t current_stack_argument = sp + 8; // jump over return address

  uint32_t argument_register_ids[6];

  argument_register_ids[0] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[1] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[2] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[3] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[4] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[5] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
          ->kinds[eRegisterKindLLDB];

  unsigned int current_argument_register = 0;

  for (value_index = 0; value_index < num_values; ++value_index) {
    Value *value = values.GetValueAtIndex(value_index);

    if (!value)
      return false;

    // We currently only support extracting values with Clang QualTypes. Do we
    // care about others?
    CompilerType compiler_type = value->GetCompilerType();
    llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
    if (!bit_size)
      return false;
    bool is_signed;

    if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
      ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
                          argument_register_ids, current_argument_register,
                          current_stack_argument);
    } else if (compiler_type.IsPointerType()) {
      ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
                          argument_register_ids, current_argument_register,
                          current_stack_argument);
    }
  }

  return true;
}

Status ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
                                            lldb::ValueObjectSP &new_value_sp) {
  Status error;
  if (!new_value_sp) {
    error.SetErrorString("Empty value object for return value.");
    return error;
  }

  CompilerType compiler_type = new_value_sp->GetCompilerType();
  if (!compiler_type) {
    error.SetErrorString("Null clang type for return value.");
    return error;
  }

  Thread *thread = frame_sp->GetThread().get();

  bool is_signed;
  uint32_t count;
  bool is_complex;

  RegisterContext *reg_ctx = thread->GetRegisterContext().get();

  bool set_it_simple = false;
  if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
      compiler_type.IsPointerType()) {
    const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);

    DataExtractor data;
    Status data_error;
    size_t num_bytes = new_value_sp->GetData(data, data_error);
    if (data_error.Fail()) {
      error.SetErrorStringWithFormat(
          "Couldn't convert return value to raw data: %s",
          data_error.AsCString());
      return error;
    }
    lldb::offset_t offset = 0;
    if (num_bytes <= 8) {
      uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);

      if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
        set_it_simple = true;
    } else {
      error.SetErrorString("We don't support returning longer than 64 bit "
                           "integer values at present.");
    }
  } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
    if (is_complex)
      error.SetErrorString(
          "We don't support returning complex values at present");
    else {
      llvm::Optional<uint64_t> bit_width =
          compiler_type.GetBitSize(frame_sp.get());
      if (!bit_width) {
        error.SetErrorString("can't get type size");
        return error;
      }
      if (*bit_width <= 64) {
        const RegisterInfo *xmm0_info =
            reg_ctx->GetRegisterInfoByName("xmm0", 0);
        RegisterValue xmm0_value;
        DataExtractor data;
        Status data_error;
        size_t num_bytes = new_value_sp->GetData(data, data_error);
        if (data_error.Fail()) {
          error.SetErrorStringWithFormat(
              "Couldn't convert return value to raw data: %s",
              data_error.AsCString());
          return error;
        }

        unsigned char buffer[16];
        ByteOrder byte_order = data.GetByteOrder();

        data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
        xmm0_value.SetBytes(buffer, 16, byte_order);
        reg_ctx->WriteRegister(xmm0_info, xmm0_value);
        set_it_simple = true;
      } else {
        // FIXME - don't know how to do 80 bit long doubles yet.
        error.SetErrorString(
            "We don't support returning float values > 64 bits at present");
      }
    }
  }

  if (!set_it_simple) {
    // Okay we've got a structure or something that doesn't fit in a simple
    // register. We should figure out where it really goes, but we don't
    // support this yet.
    error.SetErrorString("We only support setting simple integer and float "
                         "return types at present.");
  }

  return error;
}

ValueObjectSP ABISysV_x86_64::GetReturnValueObjectSimple(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;
  Value value;

  if (!return_compiler_type)
    return return_valobj_sp;

  // value.SetContext (Value::eContextTypeClangType, return_value_type);
  value.SetCompilerType(return_compiler_type);

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return return_valobj_sp;

  const uint32_t type_flags = return_compiler_type.GetTypeInfo();
  if (type_flags & eTypeIsScalar) {
    value.SetValueType(Value::eValueTypeScalar);

    bool success = false;
    if (type_flags & eTypeIsInteger) {
      // Extract the register context so we can read arguments from registers

      llvm::Optional<uint64_t> byte_size =
          return_compiler_type.GetByteSize(&thread);
      if (!byte_size)
        return return_valobj_sp;
      uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
          reg_ctx->GetRegisterInfoByName("rax", 0), 0);
      const bool is_signed = (type_flags & eTypeIsSigned) != 0;
      switch (*byte_size) {
      default:
        break;

      case sizeof(uint64_t):
        if (is_signed)
          value.GetScalar() = (int64_t)(raw_value);
        else
          value.GetScalar() = (uint64_t)(raw_value);
        success = true;
        break;

      case sizeof(uint32_t):
        if (is_signed)
          value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
        else
          value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
        success = true;
        break;

      case sizeof(uint16_t):
        if (is_signed)
          value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
        else
          value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
        success = true;
        break;

      case sizeof(uint8_t):
        if (is_signed)
          value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
        else
          value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
        success = true;
        break;
      }
    } else if (type_flags & eTypeIsFloat) {
      if (type_flags & eTypeIsComplex) {
        // Don't handle complex yet.
      } else {
        llvm::Optional<uint64_t> byte_size =
            return_compiler_type.GetByteSize(&thread);
        if (byte_size && *byte_size <= sizeof(long double)) {
          const RegisterInfo *xmm0_info =
              reg_ctx->GetRegisterInfoByName("xmm0", 0);
          RegisterValue xmm0_value;
          if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) {
            DataExtractor data;
            if (xmm0_value.GetData(data)) {
              lldb::offset_t offset = 0;
              if (*byte_size == sizeof(float)) {
                value.GetScalar() = (float)data.GetFloat(&offset);
                success = true;
              } else if (*byte_size == sizeof(double)) {
                value.GetScalar() = (double)data.GetDouble(&offset);
                success = true;
              } else if (*byte_size == sizeof(long double)) {
                // Don't handle long double since that can be encoded as 80 bit
                // floats...
              }
            }
          }
        }
      }
    }

    if (success)
      return_valobj_sp = ValueObjectConstResult::Create(
          thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
  } else if (type_flags & eTypeIsPointer) {
    unsigned rax_id =
        reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
    value.GetScalar() =
        (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
                                                                      0);
    value.SetValueType(Value::eValueTypeScalar);
    return_valobj_sp = ValueObjectConstResult::Create(
        thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
  } else if (type_flags & eTypeIsVector) {
    llvm::Optional<uint64_t> byte_size =
        return_compiler_type.GetByteSize(&thread);
    if (byte_size && *byte_size > 0) {
      const RegisterInfo *altivec_reg =
          reg_ctx->GetRegisterInfoByName("xmm0", 0);
      if (altivec_reg == nullptr)
        altivec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);

      if (altivec_reg) {
        if (*byte_size <= altivec_reg->byte_size) {
          ProcessSP process_sp(thread.GetProcess());
          if (process_sp) {
            std::unique_ptr<DataBufferHeap> heap_data_up(
                new DataBufferHeap(*byte_size, 0));
            const ByteOrder byte_order = process_sp->GetByteOrder();
            RegisterValue reg_value;
            if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
              Status error;
              if (reg_value.GetAsMemoryData(
                      altivec_reg, heap_data_up->GetBytes(),
                      heap_data_up->GetByteSize(), byte_order, error)) {
                DataExtractor data(DataBufferSP(heap_data_up.release()),
                                   byte_order,
                                   process_sp->GetTarget()
                                       .GetArchitecture()
                                       .GetAddressByteSize());
                return_valobj_sp = ValueObjectConstResult::Create(
                    &thread, return_compiler_type, ConstString(""), data);
              }
            }
          }
        } else if (*byte_size <= altivec_reg->byte_size * 2) {
          const RegisterInfo *altivec_reg2 =
              reg_ctx->GetRegisterInfoByName("xmm1", 0);
          if (altivec_reg2) {
            ProcessSP process_sp(thread.GetProcess());
            if (process_sp) {
              std::unique_ptr<DataBufferHeap> heap_data_up(
                  new DataBufferHeap(*byte_size, 0));
              const ByteOrder byte_order = process_sp->GetByteOrder();
              RegisterValue reg_value;
              RegisterValue reg_value2;
              if (reg_ctx->ReadRegister(altivec_reg, reg_value) &&
                  reg_ctx->ReadRegister(altivec_reg2, reg_value2)) {

                Status error;
                if (reg_value.GetAsMemoryData(
                        altivec_reg, heap_data_up->GetBytes(),
                        altivec_reg->byte_size, byte_order, error) &&
                    reg_value2.GetAsMemoryData(
                        altivec_reg2,
                        heap_data_up->GetBytes() + altivec_reg->byte_size,
                        heap_data_up->GetByteSize() - altivec_reg->byte_size,
                        byte_order, error)) {
                  DataExtractor data(DataBufferSP(heap_data_up.release()),
                                     byte_order,
                                     process_sp->GetTarget()
                                         .GetArchitecture()
                                         .GetAddressByteSize());
                  return_valobj_sp = ValueObjectConstResult::Create(
                      &thread, return_compiler_type, ConstString(""), data);
                }
              }
            }
          }
        }
      }
    }
  }

  return return_valobj_sp;
}

// The compiler will flatten the nested aggregate type into single
// layer and push the value to stack
// This helper function will flatten an aggregate type
// and return true if it can be returned in register(s) by value
// return false if the aggregate is in memory
static bool FlattenAggregateType(
    Thread &thread, ExecutionContext &exe_ctx,
    CompilerType &return_compiler_type,
    uint32_t data_byte_offset,
    std::vector<uint32_t> &aggregate_field_offsets,
    std::vector<CompilerType> &aggregate_compiler_types) {

  const uint32_t num_children = return_compiler_type.GetNumFields();
  for (uint32_t idx = 0; idx < num_children; ++idx) {
    std::string name;
    bool is_signed;
    uint32_t count;
    bool is_complex;

    uint64_t field_bit_offset = 0;
    CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
        idx, name, &field_bit_offset, nullptr, nullptr);
    llvm::Optional<uint64_t> field_bit_width =
          field_compiler_type.GetBitSize(&thread);

    // if we don't know the size of the field (e.g. invalid type), exit
    if (!field_bit_width || *field_bit_width == 0) {
      return false;
    }

    uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset;

    const uint32_t field_type_flags = field_compiler_type.GetTypeInfo();
    if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
        field_compiler_type.IsPointerType() ||
        field_compiler_type.IsFloatingPointType(count, is_complex)) {
      aggregate_field_offsets.push_back(field_byte_offset);
      aggregate_compiler_types.push_back(field_compiler_type);
    } else if (field_type_flags & eTypeHasChildren) {
      if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type,
                                field_byte_offset, aggregate_field_offsets,
                                aggregate_compiler_types)) {
        return false;
      }
    }
  }
  return true;
}

ValueObjectSP ABISysV_x86_64::GetReturnValueObjectImpl(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;

  if (!return_compiler_type)
    return return_valobj_sp;

  ExecutionContext exe_ctx(thread.shared_from_this());
  return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
  if (return_valobj_sp)
    return return_valobj_sp;

  RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
  if (!reg_ctx_sp)
    return return_valobj_sp;

  llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
  if (!bit_width)
    return return_valobj_sp;
  if (return_compiler_type.IsAggregateType()) {
    Target *target = exe_ctx.GetTargetPtr();
    bool is_memory = true;
    std::vector<uint32_t> aggregate_field_offsets;
    std::vector<CompilerType> aggregate_compiler_types;
    if (return_compiler_type.GetTypeSystem()->CanPassInRegisters(
          return_compiler_type) &&
      *bit_width <= 128 &&
      FlattenAggregateType(thread, exe_ctx, return_compiler_type,
                          0, aggregate_field_offsets,
                          aggregate_compiler_types)) {
      ByteOrder byte_order = target->GetArchitecture().GetByteOrder();
      DataBufferSP data_sp(new DataBufferHeap(16, 0));
      DataExtractor return_ext(data_sp, byte_order,
                               target->GetArchitecture().GetAddressByteSize());

      const RegisterInfo *rax_info =
          reg_ctx_sp->GetRegisterInfoByName("rax", 0);
      const RegisterInfo *rdx_info =
          reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
      const RegisterInfo *xmm0_info =
          reg_ctx_sp->GetRegisterInfoByName("xmm0", 0);
      const RegisterInfo *xmm1_info =
          reg_ctx_sp->GetRegisterInfoByName("xmm1", 0);

      RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value;
      reg_ctx_sp->ReadRegister(rax_info, rax_value);
      reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
      reg_ctx_sp->ReadRegister(xmm0_info, xmm0_value);
      reg_ctx_sp->ReadRegister(xmm1_info, xmm1_value);

      DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data;

      rax_value.GetData(rax_data);
      rdx_value.GetData(rdx_data);
      xmm0_value.GetData(xmm0_data);
      xmm1_value.GetData(xmm1_data);

      uint32_t fp_bytes =
          0; // Tracks how much of the xmm registers we've consumed so far
      uint32_t integer_bytes =
          0; // Tracks how much of the rax/rds registers we've consumed so far

      // in case of the returned type is a subclass of non-abstract-base class
      // it will have a padding to skip the base content
      if (aggregate_field_offsets.size()) {
        fp_bytes = aggregate_field_offsets[0];
        integer_bytes = aggregate_field_offsets[0];
      }

      const uint32_t num_children = aggregate_compiler_types.size();

      // Since we are in the small struct regime, assume we are not in memory.
      is_memory = false;
      for (uint32_t idx = 0; idx < num_children; idx++) {
        bool is_signed;
        uint32_t count;
        bool is_complex;

        CompilerType field_compiler_type = aggregate_compiler_types[idx];
        uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread));
        uint32_t field_byte_offset = aggregate_field_offsets[idx];

        uint32_t field_bit_width = field_byte_width * 8;

        DataExtractor *copy_from_extractor = nullptr;
        uint32_t copy_from_offset = 0;

        if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
            field_compiler_type.IsPointerType()) {
          if (integer_bytes < 8) {
            if (integer_bytes + field_byte_width <= 8) {
              // This is in RAX, copy from register to our result structure:
              copy_from_extractor = &rax_data;
              copy_from_offset = integer_bytes;
              integer_bytes += field_byte_width;
            } else {
              // The next field wouldn't fit in the remaining space, so we
              // pushed it to rdx.
              copy_from_extractor = &rdx_data;
              copy_from_offset = 0;
              integer_bytes = 8 + field_byte_width;
            }
          } else if (integer_bytes + field_byte_width <= 16) {
            copy_from_extractor = &rdx_data;
            copy_from_offset = integer_bytes - 8;
            integer_bytes += field_byte_width;
          } else {
            // The last field didn't fit.  I can't see how that would happen
            // w/o the overall size being greater than 16 bytes.  For now,
            // return a nullptr return value object.
            return return_valobj_sp;
          }
        } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
          // Structs with long doubles are always passed in memory.
          if (field_bit_width == 128) {
            is_memory = true;
            break;
          } else if (field_bit_width == 64) {
            // These have to be in a single xmm register.
            if (fp_bytes == 0)
              copy_from_extractor = &xmm0_data;
            else
              copy_from_extractor = &xmm1_data;

            copy_from_offset = 0;
            fp_bytes += field_byte_width;
          } else if (field_bit_width == 32) {
            // This one is kind of complicated.  If we are in an "eightbyte"
            // with another float, we'll be stuffed into an xmm register with
            // it.  If we are in an "eightbyte" with one or more ints, then we
            // will be stuffed into the appropriate GPR with them.
            bool in_gpr;
            if (field_byte_offset % 8 == 0) {
              // We are at the beginning of one of the eightbytes, so check the
              // next element (if any)
              if (idx == num_children - 1) {
                in_gpr = false;
              } else {
                CompilerType next_field_compiler_type =
                    aggregate_compiler_types[idx + 1];
                if (next_field_compiler_type.IsIntegerOrEnumerationType(
                        is_signed)) {
                  in_gpr = true;
                } else {
                  copy_from_offset = 0;
                  in_gpr = false;
                }
              }
            } else if (field_byte_offset % 4 == 0) {
              // We are inside of an eightbyte, so see if the field before us
              // is floating point: This could happen if somebody put padding
              // in the structure.
              if (idx == 0) {
                in_gpr = false;
              } else {
                CompilerType prev_field_compiler_type =
                    aggregate_compiler_types[idx - 1];
                if (prev_field_compiler_type.IsIntegerOrEnumerationType(
                        is_signed)) {
                  in_gpr = true;
                } else {
                  copy_from_offset = 4;
                  in_gpr = false;
                }
              }
            } else {
              is_memory = true;
              continue;
            }

            // Okay, we've figured out whether we are in GPR or XMM, now figure
            // out which one.
            if (in_gpr) {
              if (integer_bytes < 8) {
                // This is in RAX, copy from register to our result structure:
                copy_from_extractor = &rax_data;
                copy_from_offset = integer_bytes;
                integer_bytes += field_byte_width;
              } else {
                copy_from_extractor = &rdx_data;
                copy_from_offset = integer_bytes - 8;
                integer_bytes += field_byte_width;
              }
            } else {
              if (fp_bytes < 8)
                copy_from_extractor = &xmm0_data;
              else
                copy_from_extractor = &xmm1_data;

              fp_bytes += field_byte_width;
            }
          }
        }
        // These two tests are just sanity checks.  If I somehow get the type
        // calculation wrong above it is better to just return nothing than to
        // assert or crash.
        if (!copy_from_extractor)
          return return_valobj_sp;
        if (copy_from_offset + field_byte_width >
            copy_from_extractor->GetByteSize())
          return return_valobj_sp;
        copy_from_extractor->CopyByteOrderedData(
            copy_from_offset, field_byte_width,
            data_sp->GetBytes() + field_byte_offset, field_byte_width,
            byte_order);
      }
      if (!is_memory) {
        // The result is in our data buffer.  Let's make a variable object out
        // of it:
        return_valobj_sp = ValueObjectConstResult::Create(
            &thread, return_compiler_type, ConstString(""), return_ext);
      }
    }

    // FIXME: This is just taking a guess, rax may very well no longer hold the
    // return storage location.
    // If we are going to do this right, when we make a new frame we should
    // check to see if it uses a memory return, and if we are at the first
    // instruction and if so stash away the return location.  Then we would
    // only return the memory return value if we know it is valid.

    if (is_memory) {
      unsigned rax_id =
          reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
      lldb::addr_t storage_addr =
          (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
                                                                        0);
      return_valobj_sp = ValueObjectMemory::Create(
          &thread, "", Address(storage_addr, nullptr), return_compiler_type);
    }
  }

  return return_valobj_sp;
}

// This defines the CFA as rsp+8
// the saved pc is at CFA-8 (i.e. rsp+0)
// The saved rsp is CFA+0

bool ABISysV_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  uint32_t sp_reg_num = dwarf_rsp;
  uint32_t pc_reg_num = dwarf_rip;

  UnwindPlan::RowSP row(new UnwindPlan::Row);
  row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("x86_64 at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  return true;
}

// This defines the CFA as rbp+16
// The saved pc is at CFA-8 (i.e. rbp+8)
// The saved rbp is at CFA-16 (i.e. rbp+0)
// The saved rsp is CFA+0

bool ABISysV_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  uint32_t fp_reg_num = dwarf_rbp;
  uint32_t sp_reg_num = dwarf_rsp;
  uint32_t pc_reg_num = dwarf_rip;

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  const int32_t ptr_size = 8;
  row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size);
  row->SetOffset(0);

  row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("x86_64 default unwind plan");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
  return true;
}

bool ABISysV_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) {
  return !RegisterIsCalleeSaved(reg_info);
}

// See "Register Usage" in the
// "System V Application Binary Interface"
// "AMD64 Architecture Processor Supplement" (or "x86-64(tm) Architecture
// Processor Supplement" in earlier revisions) (this doc is also commonly
// referred to as the x86-64/AMD64 psABI) Edited by Michael Matz, Jan Hubicka,
// Andreas Jaeger, and Mark Mitchell current version is 0.99.6 released
// 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
// It's being revised & updated at https://github.com/hjl-tools/x86-psABI/

bool ABISysV_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
  if (!reg_info)
    return false;
  assert(reg_info->name != nullptr && "unnamed register?");
  std::string Name = std::string(reg_info->name);
  bool IsCalleeSaved =
      llvm::StringSwitch<bool>(Name)
          .Cases("r12", "r13", "r14", "r15", "rbp", "ebp", "rbx", "ebx", true)
          .Cases("rip", "eip", "rsp", "esp", "sp", "fp", "pc", true)
          .Default(false);
  return IsCalleeSaved;
}

uint32_t ABISysV_x86_64::GetGenericNum(llvm::StringRef name) {
  return llvm::StringSwitch<uint32_t>(name)
      .Case("rip", LLDB_REGNUM_GENERIC_PC)
      .Case("rsp", LLDB_REGNUM_GENERIC_SP)
      .Case("rbp", LLDB_REGNUM_GENERIC_FP)
      .Case("rflags", LLDB_REGNUM_GENERIC_FLAGS)
      .Case("rdi", LLDB_REGNUM_GENERIC_ARG1)
      .Case("rsi", LLDB_REGNUM_GENERIC_ARG2)
      .Case("rdx", LLDB_REGNUM_GENERIC_ARG3)
      .Case("rcx", LLDB_REGNUM_GENERIC_ARG4)
      .Case("r8", LLDB_REGNUM_GENERIC_ARG5)
      .Case("r9", LLDB_REGNUM_GENERIC_ARG6)
      .Default(LLDB_INVALID_REGNUM);
}

void ABISysV_x86_64::Initialize() {
  PluginManager::RegisterPlugin(
      GetPluginNameStatic(), "System V ABI for x86_64 targets", CreateInstance);
}

void ABISysV_x86_64::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

lldb_private::ConstString ABISysV_x86_64::GetPluginNameStatic() {
  static ConstString g_name("sysv-x86_64");
  return g_name;
}

// PluginInterface protocol

lldb_private::ConstString ABISysV_x86_64::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t ABISysV_x86_64::GetPluginVersion() { return 1; }