Disassembler.cpp
44.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
//===-- Disassembler.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/AddressRange.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Mangled.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/SourceManager.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Interpreter/OptionValue.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Interpreter/OptionValueRegex.h"
#include "lldb/Interpreter/OptionValueString.h"
#include "lldb/Interpreter/OptionValueUInt64.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "lldb/lldb-private-enumerations.h"
#include "lldb/lldb-private-interfaces.h"
#include "lldb/lldb-private-types.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"
#include <cstdint>
#include <cstring>
#include <utility>
#include <assert.h>
#define DEFAULT_DISASM_BYTE_SIZE 32
using namespace lldb;
using namespace lldb_private;
DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch,
const char *flavor,
const char *plugin_name) {
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat,
"Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
arch.GetArchitectureName(), plugin_name);
DisassemblerCreateInstance create_callback = nullptr;
if (plugin_name) {
ConstString const_plugin_name(plugin_name);
create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName(
const_plugin_name);
if (create_callback) {
DisassemblerSP disassembler_sp(create_callback(arch, flavor));
if (disassembler_sp)
return disassembler_sp;
}
} else {
for (uint32_t idx = 0;
(create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(
idx)) != nullptr;
++idx) {
DisassemblerSP disassembler_sp(create_callback(arch, flavor));
if (disassembler_sp)
return disassembler_sp;
}
}
return DisassemblerSP();
}
DisassemblerSP Disassembler::FindPluginForTarget(const Target &target,
const ArchSpec &arch,
const char *flavor,
const char *plugin_name) {
if (flavor == nullptr) {
// FIXME - we don't have the mechanism in place to do per-architecture
// settings. But since we know that for now we only support flavors on x86
// & x86_64,
if (arch.GetTriple().getArch() == llvm::Triple::x86 ||
arch.GetTriple().getArch() == llvm::Triple::x86_64)
flavor = target.GetDisassemblyFlavor();
}
return FindPlugin(arch, flavor, plugin_name);
}
static Address ResolveAddress(Target &target, const Address &addr) {
if (!addr.IsSectionOffset()) {
Address resolved_addr;
// If we weren't passed in a section offset address range, try and resolve
// it to something
bool is_resolved = target.GetSectionLoadList().IsEmpty()
? target.GetImages().ResolveFileAddress(
addr.GetOffset(), resolved_addr)
: target.GetSectionLoadList().ResolveLoadAddress(
addr.GetOffset(), resolved_addr);
// We weren't able to resolve the address, just treat it as a raw address
if (is_resolved && resolved_addr.IsValid())
return resolved_addr;
}
return addr;
}
lldb::DisassemblerSP Disassembler::DisassembleRange(
const ArchSpec &arch, const char *plugin_name, const char *flavor,
Target &target, const AddressRange &range, bool prefer_file_cache) {
if (range.GetByteSize() <= 0)
return {};
if (!range.GetBaseAddress().IsValid())
return {};
lldb::DisassemblerSP disasm_sp =
Disassembler::FindPluginForTarget(target, arch, flavor, plugin_name);
if (!disasm_sp)
return {};
const size_t bytes_disassembled = disasm_sp->ParseInstructions(
target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()},
nullptr, prefer_file_cache);
if (bytes_disassembled == 0)
return {};
return disasm_sp;
}
lldb::DisassemblerSP
Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name,
const char *flavor, const Address &start,
const void *src, size_t src_len,
uint32_t num_instructions, bool data_from_file) {
if (!src)
return {};
lldb::DisassemblerSP disasm_sp =
Disassembler::FindPlugin(arch, flavor, plugin_name);
if (!disasm_sp)
return {};
DataExtractor data(src, src_len, arch.GetByteOrder(),
arch.GetAddressByteSize());
(void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false,
data_from_file);
return disasm_sp;
}
bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
const char *plugin_name, const char *flavor,
const ExecutionContext &exe_ctx,
const Address &address, Limit limit,
bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines,
uint32_t options, Stream &strm) {
if (!exe_ctx.GetTargetPtr())
return false;
lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget(
exe_ctx.GetTargetRef(), arch, flavor, plugin_name));
if (!disasm_sp)
return false;
const bool prefer_file_cache = false;
size_t bytes_disassembled = disasm_sp->ParseInstructions(
exe_ctx.GetTargetRef(), address, limit, &strm, prefer_file_cache);
if (bytes_disassembled == 0)
return false;
disasm_sp->PrintInstructions(debugger, arch, exe_ctx,
mixed_source_and_assembly,
num_mixed_context_lines, options, strm);
return true;
}
Disassembler::SourceLine
Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) {
if (!sc.function)
return {};
if (!sc.line_entry.IsValid())
return {};
LineEntry prologue_end_line = sc.line_entry;
FileSpec func_decl_file;
uint32_t func_decl_line;
sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line);
if (func_decl_file != prologue_end_line.file &&
func_decl_file != prologue_end_line.original_file)
return {};
SourceLine decl_line;
decl_line.file = func_decl_file;
decl_line.line = func_decl_line;
// TODO: Do we care about column on these entries? If so, we need to plumb
// that through GetStartLineSourceInfo.
decl_line.column = 0;
return decl_line;
}
void Disassembler::AddLineToSourceLineTables(
SourceLine &line,
std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) {
if (line.IsValid()) {
auto source_lines_seen_pos = source_lines_seen.find(line.file);
if (source_lines_seen_pos == source_lines_seen.end()) {
std::set<uint32_t> lines;
lines.insert(line.line);
source_lines_seen.emplace(line.file, lines);
} else {
source_lines_seen_pos->second.insert(line.line);
}
}
}
bool Disassembler::ElideMixedSourceAndDisassemblyLine(
const ExecutionContext &exe_ctx, const SymbolContext &sc,
SourceLine &line) {
// TODO: should we also check target.process.thread.step-avoid-libraries ?
const RegularExpression *avoid_regex = nullptr;
// Skip any line #0 entries - they are implementation details
if (line.line == 0)
return false;
ThreadSP thread_sp = exe_ctx.GetThreadSP();
if (thread_sp) {
avoid_regex = thread_sp->GetSymbolsToAvoidRegexp();
} else {
TargetSP target_sp = exe_ctx.GetTargetSP();
if (target_sp) {
Status error;
OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue(
&exe_ctx, "target.process.thread.step-avoid-regexp", false, error);
if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) {
OptionValueRegex *re = value_sp->GetAsRegex();
if (re) {
avoid_regex = re->GetCurrentValue();
}
}
}
}
if (avoid_regex && sc.symbol != nullptr) {
const char *function_name =
sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments)
.GetCString();
if (function_name && avoid_regex->Execute(function_name)) {
// skip this source line
return true;
}
}
// don't skip this source line
return false;
}
void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch,
const ExecutionContext &exe_ctx,
bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines,
uint32_t options, Stream &strm) {
// We got some things disassembled...
size_t num_instructions_found = GetInstructionList().GetSize();
const uint32_t max_opcode_byte_size =
GetInstructionList().GetMaxOpcocdeByteSize();
SymbolContext sc;
SymbolContext prev_sc;
AddressRange current_source_line_range;
const Address *pc_addr_ptr = nullptr;
StackFrame *frame = exe_ctx.GetFramePtr();
TargetSP target_sp(exe_ctx.GetTargetSP());
SourceManager &source_manager =
target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager();
if (frame) {
pc_addr_ptr = &frame->GetFrameCodeAddress();
}
const uint32_t scope =
eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
const bool use_inline_block_range = false;
const FormatEntity::Entry *disassembly_format = nullptr;
FormatEntity::Entry format;
if (exe_ctx.HasTargetScope()) {
disassembly_format =
exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat();
} else {
FormatEntity::Parse("${addr}: ", format);
disassembly_format = &format;
}
// First pass: step through the list of instructions, find how long the
// initial addresses strings are, insert padding in the second pass so the
// opcodes all line up nicely.
// Also build up the source line mapping if this is mixed source & assembly
// mode. Calculate the source line for each assembly instruction (eliding
// inlined functions which the user wants to skip).
std::map<FileSpec, std::set<uint32_t>> source_lines_seen;
Symbol *previous_symbol = nullptr;
size_t address_text_size = 0;
for (size_t i = 0; i < num_instructions_found; ++i) {
Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
if (inst) {
const Address &addr = inst->GetAddress();
ModuleSP module_sp(addr.GetModule());
if (module_sp) {
const SymbolContextItem resolve_mask = eSymbolContextFunction |
eSymbolContextSymbol |
eSymbolContextLineEntry;
uint32_t resolved_mask =
module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc);
if (resolved_mask) {
StreamString strmstr;
Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr,
&exe_ctx, &addr, strmstr);
size_t cur_line = strmstr.GetSizeOfLastLine();
if (cur_line > address_text_size)
address_text_size = cur_line;
// Add entries to our "source_lines_seen" map+set which list which
// sources lines occur in this disassembly session. We will print
// lines of context around a source line, but we don't want to print
// a source line that has a line table entry of its own - we'll leave
// that source line to be printed when it actually occurs in the
// disassembly.
if (mixed_source_and_assembly && sc.line_entry.IsValid()) {
if (sc.symbol != previous_symbol) {
SourceLine decl_line = GetFunctionDeclLineEntry(sc);
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line))
AddLineToSourceLineTables(decl_line, source_lines_seen);
}
if (sc.line_entry.IsValid()) {
SourceLine this_line;
this_line.file = sc.line_entry.file;
this_line.line = sc.line_entry.line;
this_line.column = sc.line_entry.column;
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line))
AddLineToSourceLineTables(this_line, source_lines_seen);
}
}
}
sc.Clear(false);
}
}
}
previous_symbol = nullptr;
SourceLine previous_line;
for (size_t i = 0; i < num_instructions_found; ++i) {
Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
if (inst) {
const Address &addr = inst->GetAddress();
const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
SourceLinesToDisplay source_lines_to_display;
prev_sc = sc;
ModuleSP module_sp(addr.GetModule());
if (module_sp) {
uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(
addr, eSymbolContextEverything, sc);
if (resolved_mask) {
if (mixed_source_and_assembly) {
// If we've started a new function (non-inlined), print all of the
// source lines from the function declaration until the first line
// table entry - typically the opening curly brace of the function.
if (previous_symbol != sc.symbol) {
// The default disassembly format puts an extra blank line
// between functions - so when we're displaying the source
// context for a function, we don't want to add a blank line
// after the source context or we'll end up with two of them.
if (previous_symbol != nullptr)
source_lines_to_display.print_source_context_end_eol = false;
previous_symbol = sc.symbol;
if (sc.function && sc.line_entry.IsValid()) {
LineEntry prologue_end_line = sc.line_entry;
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
prologue_end_line)) {
FileSpec func_decl_file;
uint32_t func_decl_line;
sc.function->GetStartLineSourceInfo(func_decl_file,
func_decl_line);
if (func_decl_file == prologue_end_line.file ||
func_decl_file == prologue_end_line.original_file) {
// Add all the lines between the function declaration and
// the first non-prologue source line to the list of lines
// to print.
for (uint32_t lineno = func_decl_line;
lineno <= prologue_end_line.line; lineno++) {
SourceLine this_line;
this_line.file = func_decl_file;
this_line.line = lineno;
source_lines_to_display.lines.push_back(this_line);
}
// Mark the last line as the "current" one. Usually this
// is the open curly brace.
if (source_lines_to_display.lines.size() > 0)
source_lines_to_display.current_source_line =
source_lines_to_display.lines.size() - 1;
}
}
}
sc.GetAddressRange(scope, 0, use_inline_block_range,
current_source_line_range);
}
// If we've left a previous source line's address range, print a
// new source line
if (!current_source_line_range.ContainsFileAddress(addr)) {
sc.GetAddressRange(scope, 0, use_inline_block_range,
current_source_line_range);
if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) {
SourceLine this_line;
this_line.file = sc.line_entry.file;
this_line.line = sc.line_entry.line;
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
this_line)) {
// Only print this source line if it is different from the
// last source line we printed. There may have been inlined
// functions between these lines that we elided, resulting in
// the same line being printed twice in a row for a
// contiguous block of assembly instructions.
if (this_line != previous_line) {
std::vector<uint32_t> previous_lines;
for (uint32_t i = 0;
i < num_mixed_context_lines &&
(this_line.line - num_mixed_context_lines) > 0;
i++) {
uint32_t line =
this_line.line - num_mixed_context_lines + i;
auto pos = source_lines_seen.find(this_line.file);
if (pos != source_lines_seen.end()) {
if (pos->second.count(line) == 1) {
previous_lines.clear();
} else {
previous_lines.push_back(line);
}
}
}
for (size_t i = 0; i < previous_lines.size(); i++) {
SourceLine previous_line;
previous_line.file = this_line.file;
previous_line.line = previous_lines[i];
auto pos = source_lines_seen.find(previous_line.file);
if (pos != source_lines_seen.end()) {
pos->second.insert(previous_line.line);
}
source_lines_to_display.lines.push_back(previous_line);
}
source_lines_to_display.lines.push_back(this_line);
source_lines_to_display.current_source_line =
source_lines_to_display.lines.size() - 1;
for (uint32_t i = 0; i < num_mixed_context_lines; i++) {
SourceLine next_line;
next_line.file = this_line.file;
next_line.line = this_line.line + i + 1;
auto pos = source_lines_seen.find(next_line.file);
if (pos != source_lines_seen.end()) {
if (pos->second.count(next_line.line) == 1)
break;
pos->second.insert(next_line.line);
}
source_lines_to_display.lines.push_back(next_line);
}
}
previous_line = this_line;
}
}
}
}
} else {
sc.Clear(true);
}
}
if (source_lines_to_display.lines.size() > 0) {
strm.EOL();
for (size_t idx = 0; idx < source_lines_to_display.lines.size();
idx++) {
SourceLine ln = source_lines_to_display.lines[idx];
const char *line_highlight = "";
if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) {
line_highlight = "->";
} else if (idx == source_lines_to_display.current_source_line) {
line_highlight = "**";
}
source_manager.DisplaySourceLinesWithLineNumbers(
ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm);
}
if (source_lines_to_display.print_source_context_end_eol)
strm.EOL();
}
const bool show_bytes = (options & eOptionShowBytes) != 0;
inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc,
&prev_sc, nullptr, address_text_size);
strm.EOL();
} else {
break;
}
}
}
bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
const char *plugin_name, const char *flavor,
const ExecutionContext &exe_ctx,
uint32_t num_instructions,
bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines,
uint32_t options, Stream &strm) {
AddressRange range;
StackFrame *frame = exe_ctx.GetFramePtr();
if (frame) {
SymbolContext sc(
frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
if (sc.function) {
range = sc.function->GetAddressRange();
} else if (sc.symbol && sc.symbol->ValueIsAddress()) {
range.GetBaseAddress() = sc.symbol->GetAddressRef();
range.SetByteSize(sc.symbol->GetByteSize());
} else {
range.GetBaseAddress() = frame->GetFrameCodeAddress();
}
if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE);
}
return Disassemble(
debugger, arch, plugin_name, flavor, exe_ctx, range.GetBaseAddress(),
{Limit::Instructions, num_instructions}, mixed_source_and_assembly,
num_mixed_context_lines, options, strm);
}
Instruction::Instruction(const Address &address, AddressClass addr_class)
: m_address(address), m_address_class(addr_class), m_opcode(),
m_calculated_strings(false) {}
Instruction::~Instruction() = default;
AddressClass Instruction::GetAddressClass() {
if (m_address_class == AddressClass::eInvalid)
m_address_class = m_address.GetAddressClass();
return m_address_class;
}
void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size,
bool show_address, bool show_bytes,
const ExecutionContext *exe_ctx,
const SymbolContext *sym_ctx,
const SymbolContext *prev_sym_ctx,
const FormatEntity::Entry *disassembly_addr_format,
size_t max_address_text_size) {
size_t opcode_column_width = 7;
const size_t operand_column_width = 25;
CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
StreamString ss;
if (show_address) {
Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx,
prev_sym_ctx, exe_ctx, &m_address, ss);
ss.FillLastLineToColumn(max_address_text_size, ' ');
}
if (show_bytes) {
if (m_opcode.GetType() == Opcode::eTypeBytes) {
// x86_64 and i386 are the only ones that use bytes right now so pad out
// the byte dump to be able to always show 15 bytes (3 chars each) plus a
// space
if (max_opcode_byte_size > 0)
m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
else
m_opcode.Dump(&ss, 15 * 3 + 1);
} else {
// Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000
// (10 spaces) plus two for padding...
if (max_opcode_byte_size > 0)
m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
else
m_opcode.Dump(&ss, 12);
}
}
const size_t opcode_pos = ss.GetSizeOfLastLine();
// The default opcode size of 7 characters is plenty for most architectures
// but some like arm can pull out the occasional vqrshrun.s16. We won't get
// consistent column spacing in these cases, unfortunately.
if (m_opcode_name.length() >= opcode_column_width) {
opcode_column_width = m_opcode_name.length() + 1;
}
ss.PutCString(m_opcode_name);
ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' ');
ss.PutCString(m_mnemonics);
if (!m_comment.empty()) {
ss.FillLastLineToColumn(
opcode_pos + opcode_column_width + operand_column_width, ' ');
ss.PutCString(" ; ");
ss.PutCString(m_comment);
}
s->PutCString(ss.GetString());
}
bool Instruction::DumpEmulation(const ArchSpec &arch) {
std::unique_ptr<EmulateInstruction> insn_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
if (insn_emulator_up) {
insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
return insn_emulator_up->EvaluateInstruction(0);
}
return false;
}
bool Instruction::CanSetBreakpoint () {
return !HasDelaySlot();
}
bool Instruction::HasDelaySlot() {
// Default is false.
return false;
}
OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream,
OptionValue::Type data_type) {
bool done = false;
char buffer[1024];
auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type);
int idx = 0;
while (!done) {
if (!fgets(buffer, 1023, in_file)) {
out_stream->Printf(
"Instruction::ReadArray: Error reading file (fgets).\n");
option_value_sp.reset();
return option_value_sp;
}
std::string line(buffer);
size_t len = line.size();
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
line.resize(len - 1);
}
if ((line.size() == 1) && line[0] == ']') {
done = true;
line.clear();
}
if (!line.empty()) {
std::string value;
static RegularExpression g_reg_exp(
llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$"));
llvm::SmallVector<llvm::StringRef, 2> matches;
if (g_reg_exp.Execute(line, &matches))
value = matches[1].str();
else
value = line;
OptionValueSP data_value_sp;
switch (data_type) {
case OptionValue::eTypeUInt64:
data_value_sp = std::make_shared<OptionValueUInt64>(0, 0);
data_value_sp->SetValueFromString(value);
break;
// Other types can be added later as needed.
default:
data_value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
break;
}
option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp);
++idx;
}
}
return option_value_sp;
}
OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) {
bool done = false;
char buffer[1024];
auto option_value_sp = std::make_shared<OptionValueDictionary>();
static ConstString encoding_key("data_encoding");
OptionValue::Type data_type = OptionValue::eTypeInvalid;
while (!done) {
// Read the next line in the file
if (!fgets(buffer, 1023, in_file)) {
out_stream->Printf(
"Instruction::ReadDictionary: Error reading file (fgets).\n");
option_value_sp.reset();
return option_value_sp;
}
// Check to see if the line contains the end-of-dictionary marker ("}")
std::string line(buffer);
size_t len = line.size();
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
line.resize(len - 1);
}
if ((line.size() == 1) && (line[0] == '}')) {
done = true;
line.clear();
}
// Try to find a key-value pair in the current line and add it to the
// dictionary.
if (!line.empty()) {
static RegularExpression g_reg_exp(llvm::StringRef(
"^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$"));
llvm::SmallVector<llvm::StringRef, 3> matches;
bool reg_exp_success = g_reg_exp.Execute(line, &matches);
std::string key;
std::string value;
if (reg_exp_success) {
key = matches[1].str();
value = matches[2].str();
} else {
out_stream->Printf("Instruction::ReadDictionary: Failure executing "
"regular expression.\n");
option_value_sp.reset();
return option_value_sp;
}
ConstString const_key(key.c_str());
// Check value to see if it's the start of an array or dictionary.
lldb::OptionValueSP value_sp;
assert(value.empty() == false);
assert(key.empty() == false);
if (value[0] == '{') {
assert(value.size() == 1);
// value is a dictionary
value_sp = ReadDictionary(in_file, out_stream);
if (!value_sp) {
option_value_sp.reset();
return option_value_sp;
}
} else if (value[0] == '[') {
assert(value.size() == 1);
// value is an array
value_sp = ReadArray(in_file, out_stream, data_type);
if (!value_sp) {
option_value_sp.reset();
return option_value_sp;
}
// We've used the data_type to read an array; re-set the type to
// Invalid
data_type = OptionValue::eTypeInvalid;
} else if ((value[0] == '0') && (value[1] == 'x')) {
value_sp = std::make_shared<OptionValueUInt64>(0, 0);
value_sp->SetValueFromString(value);
} else {
size_t len = value.size();
if ((value[0] == '"') && (value[len - 1] == '"'))
value = value.substr(1, len - 2);
value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
}
if (const_key == encoding_key) {
// A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data
// indicating the
// data type of an upcoming array (usually the next bit of data to be
// read in).
if (strcmp(value.c_str(), "uint32_t") == 0)
data_type = OptionValue::eTypeUInt64;
} else
option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp,
false);
}
}
return option_value_sp;
}
bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) {
if (!out_stream)
return false;
if (!file_name) {
out_stream->Printf("Instruction::TestEmulation: Missing file_name.");
return false;
}
FILE *test_file = FileSystem::Instance().Fopen(file_name, "r");
if (!test_file) {
out_stream->Printf(
"Instruction::TestEmulation: Attempt to open test file failed.");
return false;
}
char buffer[256];
if (!fgets(buffer, 255, test_file)) {
out_stream->Printf(
"Instruction::TestEmulation: Error reading first line of test file.\n");
fclose(test_file);
return false;
}
if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) {
out_stream->Printf("Instructin::TestEmulation: Test file does not contain "
"emulation state dictionary\n");
fclose(test_file);
return false;
}
// Read all the test information from the test file into an
// OptionValueDictionary.
OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream));
if (!data_dictionary_sp) {
out_stream->Printf(
"Instruction::TestEmulation: Error reading Dictionary Object.\n");
fclose(test_file);
return false;
}
fclose(test_file);
OptionValueDictionary *data_dictionary =
data_dictionary_sp->GetAsDictionary();
static ConstString description_key("assembly_string");
static ConstString triple_key("triple");
OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key);
if (!value_sp) {
out_stream->Printf("Instruction::TestEmulation: Test file does not "
"contain description string.\n");
return false;
}
SetDescription(value_sp->GetStringValue());
value_sp = data_dictionary->GetValueForKey(triple_key);
if (!value_sp) {
out_stream->Printf(
"Instruction::TestEmulation: Test file does not contain triple.\n");
return false;
}
ArchSpec arch;
arch.SetTriple(llvm::Triple(value_sp->GetStringValue()));
bool success = false;
std::unique_ptr<EmulateInstruction> insn_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
if (insn_emulator_up)
success =
insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary);
if (success)
out_stream->Printf("Emulation test succeeded.");
else
out_stream->Printf("Emulation test failed.");
return success;
}
bool Instruction::Emulate(
const ArchSpec &arch, uint32_t evaluate_options, void *baton,
EmulateInstruction::ReadMemoryCallback read_mem_callback,
EmulateInstruction::WriteMemoryCallback write_mem_callback,
EmulateInstruction::ReadRegisterCallback read_reg_callback,
EmulateInstruction::WriteRegisterCallback write_reg_callback) {
std::unique_ptr<EmulateInstruction> insn_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
if (insn_emulator_up) {
insn_emulator_up->SetBaton(baton);
insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback,
read_reg_callback, write_reg_callback);
insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
return insn_emulator_up->EvaluateInstruction(evaluate_options);
}
return false;
}
uint32_t Instruction::GetData(DataExtractor &data) {
return m_opcode.GetData(data);
}
InstructionList::InstructionList() : m_instructions() {}
InstructionList::~InstructionList() = default;
size_t InstructionList::GetSize() const { return m_instructions.size(); }
uint32_t InstructionList::GetMaxOpcocdeByteSize() const {
uint32_t max_inst_size = 0;
collection::const_iterator pos, end;
for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end;
++pos) {
uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
if (max_inst_size < inst_size)
max_inst_size = inst_size;
}
return max_inst_size;
}
InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const {
InstructionSP inst_sp;
if (idx < m_instructions.size())
inst_sp = m_instructions[idx];
return inst_sp;
}
void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes,
const ExecutionContext *exe_ctx) {
const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize();
collection::const_iterator pos, begin, end;
const FormatEntity::Entry *disassembly_format = nullptr;
FormatEntity::Entry format;
if (exe_ctx && exe_ctx->HasTargetScope()) {
disassembly_format =
exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat();
} else {
FormatEntity::Parse("${addr}: ", format);
disassembly_format = &format;
}
for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin;
pos != end; ++pos) {
if (pos != begin)
s->EOL();
(*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx,
nullptr, nullptr, disassembly_format, 0);
}
}
void InstructionList::Clear() { m_instructions.clear(); }
void InstructionList::Append(lldb::InstructionSP &inst_sp) {
if (inst_sp)
m_instructions.push_back(inst_sp);
}
uint32_t
InstructionList::GetIndexOfNextBranchInstruction(uint32_t start,
bool ignore_calls,
bool *found_calls) const {
size_t num_instructions = m_instructions.size();
uint32_t next_branch = UINT32_MAX;
if (found_calls)
*found_calls = false;
for (size_t i = start; i < num_instructions; i++) {
if (m_instructions[i]->DoesBranch()) {
if (ignore_calls && m_instructions[i]->IsCall()) {
if (found_calls)
*found_calls = true;
continue;
}
next_branch = i;
break;
}
}
return next_branch;
}
uint32_t
InstructionList::GetIndexOfInstructionAtAddress(const Address &address) {
size_t num_instructions = m_instructions.size();
uint32_t index = UINT32_MAX;
for (size_t i = 0; i < num_instructions; i++) {
if (m_instructions[i]->GetAddress() == address) {
index = i;
break;
}
}
return index;
}
uint32_t
InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
Target &target) {
Address address;
address.SetLoadAddress(load_addr, &target);
return GetIndexOfInstructionAtAddress(address);
}
size_t Disassembler::ParseInstructions(Target &target, Address start,
Limit limit, Stream *error_strm_ptr,
bool prefer_file_cache) {
m_instruction_list.Clear();
if (!start.IsValid())
return 0;
start = ResolveAddress(target, start);
addr_t byte_size = limit.value;
if (limit.kind == Limit::Instructions)
byte_size *= m_arch.GetMaximumOpcodeByteSize();
auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0');
Status error;
lldb::addr_t load_addr = LLDB_INVALID_ADDRESS;
const size_t bytes_read =
target.ReadMemory(start, prefer_file_cache, data_sp->GetBytes(),
data_sp->GetByteSize(), error, &load_addr);
const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS;
if (bytes_read == 0) {
if (error_strm_ptr) {
if (const char *error_cstr = error.AsCString())
error_strm_ptr->Printf("error: %s\n", error_cstr);
}
return 0;
}
if (bytes_read != data_sp->GetByteSize())
data_sp->SetByteSize(bytes_read);
DataExtractor data(data_sp, m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
return DecodeInstructions(start, data, 0,
limit.kind == Limit::Instructions ? limit.value
: UINT32_MAX,
false, data_from_file);
}
// Disassembler copy constructor
Disassembler::Disassembler(const ArchSpec &arch, const char *flavor)
: m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS),
m_flavor() {
if (flavor == nullptr)
m_flavor.assign("default");
else
m_flavor.assign(flavor);
// If this is an arm variant that can only include thumb (T16, T32)
// instructions, force the arch triple to be "thumbv.." instead of "armv..."
if (arch.IsAlwaysThumbInstructions()) {
std::string thumb_arch_name(arch.GetTriple().getArchName().str());
// Replace "arm" with "thumb" so we get all thumb variants correct
if (thumb_arch_name.size() > 3) {
thumb_arch_name.erase(0, 3);
thumb_arch_name.insert(0, "thumb");
}
m_arch.SetTriple(thumb_arch_name.c_str());
}
}
Disassembler::~Disassembler() = default;
InstructionList &Disassembler::GetInstructionList() {
return m_instruction_list;
}
const InstructionList &Disassembler::GetInstructionList() const {
return m_instruction_list;
}
// Class PseudoInstruction
PseudoInstruction::PseudoInstruction()
: Instruction(Address(), AddressClass::eUnknown), m_description() {}
PseudoInstruction::~PseudoInstruction() = default;
bool PseudoInstruction::DoesBranch() {
// This is NOT a valid question for a pseudo instruction.
return false;
}
bool PseudoInstruction::HasDelaySlot() {
// This is NOT a valid question for a pseudo instruction.
return false;
}
size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
lldb::offset_t data_offset) {
return m_opcode.GetByteSize();
}
void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) {
if (!opcode_data)
return;
switch (opcode_size) {
case 8: {
uint8_t value8 = *((uint8_t *)opcode_data);
m_opcode.SetOpcode8(value8, eByteOrderInvalid);
break;
}
case 16: {
uint16_t value16 = *((uint16_t *)opcode_data);
m_opcode.SetOpcode16(value16, eByteOrderInvalid);
break;
}
case 32: {
uint32_t value32 = *((uint32_t *)opcode_data);
m_opcode.SetOpcode32(value32, eByteOrderInvalid);
break;
}
case 64: {
uint64_t value64 = *((uint64_t *)opcode_data);
m_opcode.SetOpcode64(value64, eByteOrderInvalid);
break;
}
default:
break;
}
}
void PseudoInstruction::SetDescription(llvm::StringRef description) {
m_description = std::string(description);
}
Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) {
Operand ret;
ret.m_type = Type::Register;
ret.m_register = r;
return ret;
}
Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm,
bool neg) {
Operand ret;
ret.m_type = Type::Immediate;
ret.m_immediate = imm;
ret.m_negative = neg;
return ret;
}
Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) {
Operand ret;
ret.m_type = Type::Immediate;
if (imm < 0) {
ret.m_immediate = -imm;
ret.m_negative = true;
} else {
ret.m_immediate = imm;
ret.m_negative = false;
}
return ret;
}
Instruction::Operand
Instruction::Operand::BuildDereference(const Operand &ref) {
Operand ret;
ret.m_type = Type::Dereference;
ret.m_children = {ref};
return ret;
}
Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs,
const Operand &rhs) {
Operand ret;
ret.m_type = Type::Sum;
ret.m_children = {lhs, rhs};
return ret;
}
Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs,
const Operand &rhs) {
Operand ret;
ret.m_type = Type::Product;
ret.m_children = {lhs, rhs};
return ret;
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchBinaryOp(
std::function<bool(const Instruction::Operand &)> base,
std::function<bool(const Instruction::Operand &)> left,
std::function<bool(const Instruction::Operand &)> right) {
return [base, left, right](const Instruction::Operand &op) -> bool {
return (base(op) && op.m_children.size() == 2 &&
((left(op.m_children[0]) && right(op.m_children[1])) ||
(left(op.m_children[1]) && right(op.m_children[0]))));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchUnaryOp(
std::function<bool(const Instruction::Operand &)> base,
std::function<bool(const Instruction::Operand &)> child) {
return [base, child](const Instruction::Operand &op) -> bool {
return (base(op) && op.m_children.size() == 1 && child(op.m_children[0]));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) {
return [&info](const Instruction::Operand &op) {
return (op.m_type == Instruction::Operand::Type::Register &&
(op.m_register == ConstString(info.name) ||
op.m_register == ConstString(info.alt_name)));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::FetchRegOp(ConstString ®) {
return [®](const Instruction::Operand &op) {
if (op.m_type != Instruction::Operand::Type::Register) {
return false;
}
reg = op.m_register;
return true;
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchImmOp(int64_t imm) {
return [imm](const Instruction::Operand &op) {
return (op.m_type == Instruction::Operand::Type::Immediate &&
((op.m_negative && op.m_immediate == (uint64_t)-imm) ||
(!op.m_negative && op.m_immediate == (uint64_t)imm)));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) {
return [&imm](const Instruction::Operand &op) {
if (op.m_type != Instruction::Operand::Type::Immediate) {
return false;
}
if (op.m_negative) {
imm = -((int64_t)op.m_immediate);
} else {
imm = ((int64_t)op.m_immediate);
}
return true;
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) {
return [type](const Instruction::Operand &op) { return op.m_type == type; };
}