Disassembler.cpp 44.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
//===-- Disassembler.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Core/Disassembler.h"

#include "lldb/Core/AddressRange.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Mangled.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/SourceManager.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Interpreter/OptionValue.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Interpreter/OptionValueRegex.h"
#include "lldb/Interpreter/OptionValueString.h"
#include "lldb/Interpreter/OptionValueUInt64.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "lldb/lldb-private-enumerations.h"
#include "lldb/lldb-private-interfaces.h"
#include "lldb/lldb-private-types.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"

#include <cstdint>
#include <cstring>
#include <utility>

#include <assert.h>

#define DEFAULT_DISASM_BYTE_SIZE 32

using namespace lldb;
using namespace lldb_private;

DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch,
                                        const char *flavor,
                                        const char *plugin_name) {
  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat,
                     "Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
                     arch.GetArchitectureName(), plugin_name);

  DisassemblerCreateInstance create_callback = nullptr;

  if (plugin_name) {
    ConstString const_plugin_name(plugin_name);
    create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName(
        const_plugin_name);
    if (create_callback) {
      DisassemblerSP disassembler_sp(create_callback(arch, flavor));

      if (disassembler_sp)
        return disassembler_sp;
    }
  } else {
    for (uint32_t idx = 0;
         (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(
              idx)) != nullptr;
         ++idx) {
      DisassemblerSP disassembler_sp(create_callback(arch, flavor));

      if (disassembler_sp)
        return disassembler_sp;
    }
  }
  return DisassemblerSP();
}

DisassemblerSP Disassembler::FindPluginForTarget(const Target &target,
                                                 const ArchSpec &arch,
                                                 const char *flavor,
                                                 const char *plugin_name) {
  if (flavor == nullptr) {
    // FIXME - we don't have the mechanism in place to do per-architecture
    // settings.  But since we know that for now we only support flavors on x86
    // & x86_64,
    if (arch.GetTriple().getArch() == llvm::Triple::x86 ||
        arch.GetTriple().getArch() == llvm::Triple::x86_64)
      flavor = target.GetDisassemblyFlavor();
  }
  return FindPlugin(arch, flavor, plugin_name);
}

static Address ResolveAddress(Target &target, const Address &addr) {
  if (!addr.IsSectionOffset()) {
    Address resolved_addr;
    // If we weren't passed in a section offset address range, try and resolve
    // it to something
    bool is_resolved = target.GetSectionLoadList().IsEmpty()
                           ? target.GetImages().ResolveFileAddress(
                                 addr.GetOffset(), resolved_addr)
                           : target.GetSectionLoadList().ResolveLoadAddress(
                                 addr.GetOffset(), resolved_addr);

    // We weren't able to resolve the address, just treat it as a raw address
    if (is_resolved && resolved_addr.IsValid())
      return resolved_addr;
  }
  return addr;
}

lldb::DisassemblerSP Disassembler::DisassembleRange(
    const ArchSpec &arch, const char *plugin_name, const char *flavor,
    Target &target, const AddressRange &range, bool prefer_file_cache) {
  if (range.GetByteSize() <= 0)
    return {};

  if (!range.GetBaseAddress().IsValid())
    return {};

  lldb::DisassemblerSP disasm_sp =
      Disassembler::FindPluginForTarget(target, arch, flavor, plugin_name);

  if (!disasm_sp)
    return {};

  const size_t bytes_disassembled = disasm_sp->ParseInstructions(
      target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()},
      nullptr, prefer_file_cache);
  if (bytes_disassembled == 0)
    return {};

  return disasm_sp;
}

lldb::DisassemblerSP
Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name,
                               const char *flavor, const Address &start,
                               const void *src, size_t src_len,
                               uint32_t num_instructions, bool data_from_file) {
  if (!src)
    return {};

  lldb::DisassemblerSP disasm_sp =
      Disassembler::FindPlugin(arch, flavor, plugin_name);

  if (!disasm_sp)
    return {};

  DataExtractor data(src, src_len, arch.GetByteOrder(),
                     arch.GetAddressByteSize());

  (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false,
                                      data_from_file);
  return disasm_sp;
}

bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
                               const char *plugin_name, const char *flavor,
                               const ExecutionContext &exe_ctx,
                               const Address &address, Limit limit,
                               bool mixed_source_and_assembly,
                               uint32_t num_mixed_context_lines,
                               uint32_t options, Stream &strm) {
  if (!exe_ctx.GetTargetPtr())
    return false;

  lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget(
      exe_ctx.GetTargetRef(), arch, flavor, plugin_name));
  if (!disasm_sp)
    return false;

  const bool prefer_file_cache = false;
  size_t bytes_disassembled = disasm_sp->ParseInstructions(
      exe_ctx.GetTargetRef(), address, limit, &strm, prefer_file_cache);
  if (bytes_disassembled == 0)
    return false;

  disasm_sp->PrintInstructions(debugger, arch, exe_ctx,
                               mixed_source_and_assembly,
                               num_mixed_context_lines, options, strm);
  return true;
}

Disassembler::SourceLine
Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) {
  if (!sc.function)
    return {};

  if (!sc.line_entry.IsValid())
    return {};

  LineEntry prologue_end_line = sc.line_entry;
  FileSpec func_decl_file;
  uint32_t func_decl_line;
  sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line);

  if (func_decl_file != prologue_end_line.file &&
      func_decl_file != prologue_end_line.original_file)
    return {};

  SourceLine decl_line;
  decl_line.file = func_decl_file;
  decl_line.line = func_decl_line;
  // TODO: Do we care about column on these entries?  If so, we need to plumb
  // that through GetStartLineSourceInfo.
  decl_line.column = 0;
  return decl_line;
}

void Disassembler::AddLineToSourceLineTables(
    SourceLine &line,
    std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) {
  if (line.IsValid()) {
    auto source_lines_seen_pos = source_lines_seen.find(line.file);
    if (source_lines_seen_pos == source_lines_seen.end()) {
      std::set<uint32_t> lines;
      lines.insert(line.line);
      source_lines_seen.emplace(line.file, lines);
    } else {
      source_lines_seen_pos->second.insert(line.line);
    }
  }
}

bool Disassembler::ElideMixedSourceAndDisassemblyLine(
    const ExecutionContext &exe_ctx, const SymbolContext &sc,
    SourceLine &line) {

  // TODO: should we also check target.process.thread.step-avoid-libraries ?

  const RegularExpression *avoid_regex = nullptr;

  // Skip any line #0 entries - they are implementation details
  if (line.line == 0)
    return false;

  ThreadSP thread_sp = exe_ctx.GetThreadSP();
  if (thread_sp) {
    avoid_regex = thread_sp->GetSymbolsToAvoidRegexp();
  } else {
    TargetSP target_sp = exe_ctx.GetTargetSP();
    if (target_sp) {
      Status error;
      OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue(
          &exe_ctx, "target.process.thread.step-avoid-regexp", false, error);
      if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) {
        OptionValueRegex *re = value_sp->GetAsRegex();
        if (re) {
          avoid_regex = re->GetCurrentValue();
        }
      }
    }
  }
  if (avoid_regex && sc.symbol != nullptr) {
    const char *function_name =
        sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments)
            .GetCString();
    if (function_name && avoid_regex->Execute(function_name)) {
      // skip this source line
      return true;
    }
  }
  // don't skip this source line
  return false;
}

void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch,
                                     const ExecutionContext &exe_ctx,
                                     bool mixed_source_and_assembly,
                                     uint32_t num_mixed_context_lines,
                                     uint32_t options, Stream &strm) {
  // We got some things disassembled...
  size_t num_instructions_found = GetInstructionList().GetSize();

  const uint32_t max_opcode_byte_size =
      GetInstructionList().GetMaxOpcocdeByteSize();
  SymbolContext sc;
  SymbolContext prev_sc;
  AddressRange current_source_line_range;
  const Address *pc_addr_ptr = nullptr;
  StackFrame *frame = exe_ctx.GetFramePtr();

  TargetSP target_sp(exe_ctx.GetTargetSP());
  SourceManager &source_manager =
      target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager();

  if (frame) {
    pc_addr_ptr = &frame->GetFrameCodeAddress();
  }
  const uint32_t scope =
      eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
  const bool use_inline_block_range = false;

  const FormatEntity::Entry *disassembly_format = nullptr;
  FormatEntity::Entry format;
  if (exe_ctx.HasTargetScope()) {
    disassembly_format =
        exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat();
  } else {
    FormatEntity::Parse("${addr}: ", format);
    disassembly_format = &format;
  }

  // First pass: step through the list of instructions, find how long the
  // initial addresses strings are, insert padding in the second pass so the
  // opcodes all line up nicely.

  // Also build up the source line mapping if this is mixed source & assembly
  // mode. Calculate the source line for each assembly instruction (eliding
  // inlined functions which the user wants to skip).

  std::map<FileSpec, std::set<uint32_t>> source_lines_seen;
  Symbol *previous_symbol = nullptr;

  size_t address_text_size = 0;
  for (size_t i = 0; i < num_instructions_found; ++i) {
    Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
    if (inst) {
      const Address &addr = inst->GetAddress();
      ModuleSP module_sp(addr.GetModule());
      if (module_sp) {
        const SymbolContextItem resolve_mask = eSymbolContextFunction |
                                               eSymbolContextSymbol |
                                               eSymbolContextLineEntry;
        uint32_t resolved_mask =
            module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc);
        if (resolved_mask) {
          StreamString strmstr;
          Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr,
                                              &exe_ctx, &addr, strmstr);
          size_t cur_line = strmstr.GetSizeOfLastLine();
          if (cur_line > address_text_size)
            address_text_size = cur_line;

          // Add entries to our "source_lines_seen" map+set which list which
          // sources lines occur in this disassembly session.  We will print
          // lines of context around a source line, but we don't want to print
          // a source line that has a line table entry of its own - we'll leave
          // that source line to be printed when it actually occurs in the
          // disassembly.

          if (mixed_source_and_assembly && sc.line_entry.IsValid()) {
            if (sc.symbol != previous_symbol) {
              SourceLine decl_line = GetFunctionDeclLineEntry(sc);
              if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line))
                AddLineToSourceLineTables(decl_line, source_lines_seen);
            }
            if (sc.line_entry.IsValid()) {
              SourceLine this_line;
              this_line.file = sc.line_entry.file;
              this_line.line = sc.line_entry.line;
              this_line.column = sc.line_entry.column;
              if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line))
                AddLineToSourceLineTables(this_line, source_lines_seen);
            }
          }
        }
        sc.Clear(false);
      }
    }
  }

  previous_symbol = nullptr;
  SourceLine previous_line;
  for (size_t i = 0; i < num_instructions_found; ++i) {
    Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();

    if (inst) {
      const Address &addr = inst->GetAddress();
      const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
      SourceLinesToDisplay source_lines_to_display;

      prev_sc = sc;

      ModuleSP module_sp(addr.GetModule());
      if (module_sp) {
        uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(
            addr, eSymbolContextEverything, sc);
        if (resolved_mask) {
          if (mixed_source_and_assembly) {

            // If we've started a new function (non-inlined), print all of the
            // source lines from the function declaration until the first line
            // table entry - typically the opening curly brace of the function.
            if (previous_symbol != sc.symbol) {
              // The default disassembly format puts an extra blank line
              // between functions - so when we're displaying the source
              // context for a function, we don't want to add a blank line
              // after the source context or we'll end up with two of them.
              if (previous_symbol != nullptr)
                source_lines_to_display.print_source_context_end_eol = false;

              previous_symbol = sc.symbol;
              if (sc.function && sc.line_entry.IsValid()) {
                LineEntry prologue_end_line = sc.line_entry;
                if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
                                                        prologue_end_line)) {
                  FileSpec func_decl_file;
                  uint32_t func_decl_line;
                  sc.function->GetStartLineSourceInfo(func_decl_file,
                                                      func_decl_line);
                  if (func_decl_file == prologue_end_line.file ||
                      func_decl_file == prologue_end_line.original_file) {
                    // Add all the lines between the function declaration and
                    // the first non-prologue source line to the list of lines
                    // to print.
                    for (uint32_t lineno = func_decl_line;
                         lineno <= prologue_end_line.line; lineno++) {
                      SourceLine this_line;
                      this_line.file = func_decl_file;
                      this_line.line = lineno;
                      source_lines_to_display.lines.push_back(this_line);
                    }
                    // Mark the last line as the "current" one.  Usually this
                    // is the open curly brace.
                    if (source_lines_to_display.lines.size() > 0)
                      source_lines_to_display.current_source_line =
                          source_lines_to_display.lines.size() - 1;
                  }
                }
              }
              sc.GetAddressRange(scope, 0, use_inline_block_range,
                                 current_source_line_range);
            }

            // If we've left a previous source line's address range, print a
            // new source line
            if (!current_source_line_range.ContainsFileAddress(addr)) {
              sc.GetAddressRange(scope, 0, use_inline_block_range,
                                 current_source_line_range);

              if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) {
                SourceLine this_line;
                this_line.file = sc.line_entry.file;
                this_line.line = sc.line_entry.line;

                if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
                                                        this_line)) {
                  // Only print this source line if it is different from the
                  // last source line we printed.  There may have been inlined
                  // functions between these lines that we elided, resulting in
                  // the same line being printed twice in a row for a
                  // contiguous block of assembly instructions.
                  if (this_line != previous_line) {

                    std::vector<uint32_t> previous_lines;
                    for (uint32_t i = 0;
                         i < num_mixed_context_lines &&
                         (this_line.line - num_mixed_context_lines) > 0;
                         i++) {
                      uint32_t line =
                          this_line.line - num_mixed_context_lines + i;
                      auto pos = source_lines_seen.find(this_line.file);
                      if (pos != source_lines_seen.end()) {
                        if (pos->second.count(line) == 1) {
                          previous_lines.clear();
                        } else {
                          previous_lines.push_back(line);
                        }
                      }
                    }
                    for (size_t i = 0; i < previous_lines.size(); i++) {
                      SourceLine previous_line;
                      previous_line.file = this_line.file;
                      previous_line.line = previous_lines[i];
                      auto pos = source_lines_seen.find(previous_line.file);
                      if (pos != source_lines_seen.end()) {
                        pos->second.insert(previous_line.line);
                      }
                      source_lines_to_display.lines.push_back(previous_line);
                    }

                    source_lines_to_display.lines.push_back(this_line);
                    source_lines_to_display.current_source_line =
                        source_lines_to_display.lines.size() - 1;

                    for (uint32_t i = 0; i < num_mixed_context_lines; i++) {
                      SourceLine next_line;
                      next_line.file = this_line.file;
                      next_line.line = this_line.line + i + 1;
                      auto pos = source_lines_seen.find(next_line.file);
                      if (pos != source_lines_seen.end()) {
                        if (pos->second.count(next_line.line) == 1)
                          break;
                        pos->second.insert(next_line.line);
                      }
                      source_lines_to_display.lines.push_back(next_line);
                    }
                  }
                  previous_line = this_line;
                }
              }
            }
          }
        } else {
          sc.Clear(true);
        }
      }

      if (source_lines_to_display.lines.size() > 0) {
        strm.EOL();
        for (size_t idx = 0; idx < source_lines_to_display.lines.size();
             idx++) {
          SourceLine ln = source_lines_to_display.lines[idx];
          const char *line_highlight = "";
          if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) {
            line_highlight = "->";
          } else if (idx == source_lines_to_display.current_source_line) {
            line_highlight = "**";
          }
          source_manager.DisplaySourceLinesWithLineNumbers(
              ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm);
        }
        if (source_lines_to_display.print_source_context_end_eol)
          strm.EOL();
      }

      const bool show_bytes = (options & eOptionShowBytes) != 0;
      inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc,
                 &prev_sc, nullptr, address_text_size);
      strm.EOL();
    } else {
      break;
    }
  }
}

bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
                               const char *plugin_name, const char *flavor,
                               const ExecutionContext &exe_ctx,
                               uint32_t num_instructions,
                               bool mixed_source_and_assembly,
                               uint32_t num_mixed_context_lines,
                               uint32_t options, Stream &strm) {
  AddressRange range;
  StackFrame *frame = exe_ctx.GetFramePtr();
  if (frame) {
    SymbolContext sc(
        frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
    if (sc.function) {
      range = sc.function->GetAddressRange();
    } else if (sc.symbol && sc.symbol->ValueIsAddress()) {
      range.GetBaseAddress() = sc.symbol->GetAddressRef();
      range.SetByteSize(sc.symbol->GetByteSize());
    } else {
      range.GetBaseAddress() = frame->GetFrameCodeAddress();
    }

    if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
      range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE);
  }

  return Disassemble(
      debugger, arch, plugin_name, flavor, exe_ctx, range.GetBaseAddress(),
      {Limit::Instructions, num_instructions}, mixed_source_and_assembly,
      num_mixed_context_lines, options, strm);
}

Instruction::Instruction(const Address &address, AddressClass addr_class)
    : m_address(address), m_address_class(addr_class), m_opcode(),
      m_calculated_strings(false) {}

Instruction::~Instruction() = default;

AddressClass Instruction::GetAddressClass() {
  if (m_address_class == AddressClass::eInvalid)
    m_address_class = m_address.GetAddressClass();
  return m_address_class;
}

void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size,
                       bool show_address, bool show_bytes,
                       const ExecutionContext *exe_ctx,
                       const SymbolContext *sym_ctx,
                       const SymbolContext *prev_sym_ctx,
                       const FormatEntity::Entry *disassembly_addr_format,
                       size_t max_address_text_size) {
  size_t opcode_column_width = 7;
  const size_t operand_column_width = 25;

  CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);

  StreamString ss;

  if (show_address) {
    Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx,
                                        prev_sym_ctx, exe_ctx, &m_address, ss);
    ss.FillLastLineToColumn(max_address_text_size, ' ');
  }

  if (show_bytes) {
    if (m_opcode.GetType() == Opcode::eTypeBytes) {
      // x86_64 and i386 are the only ones that use bytes right now so pad out
      // the byte dump to be able to always show 15 bytes (3 chars each) plus a
      // space
      if (max_opcode_byte_size > 0)
        m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
      else
        m_opcode.Dump(&ss, 15 * 3 + 1);
    } else {
      // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000
      // (10 spaces) plus two for padding...
      if (max_opcode_byte_size > 0)
        m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
      else
        m_opcode.Dump(&ss, 12);
    }
  }

  const size_t opcode_pos = ss.GetSizeOfLastLine();

  // The default opcode size of 7 characters is plenty for most architectures
  // but some like arm can pull out the occasional vqrshrun.s16.  We won't get
  // consistent column spacing in these cases, unfortunately.
  if (m_opcode_name.length() >= opcode_column_width) {
    opcode_column_width = m_opcode_name.length() + 1;
  }

  ss.PutCString(m_opcode_name);
  ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' ');
  ss.PutCString(m_mnemonics);

  if (!m_comment.empty()) {
    ss.FillLastLineToColumn(
        opcode_pos + opcode_column_width + operand_column_width, ' ');
    ss.PutCString(" ; ");
    ss.PutCString(m_comment);
  }
  s->PutCString(ss.GetString());
}

bool Instruction::DumpEmulation(const ArchSpec &arch) {
  std::unique_ptr<EmulateInstruction> insn_emulator_up(
      EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
  if (insn_emulator_up) {
    insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
    return insn_emulator_up->EvaluateInstruction(0);
  }

  return false;
}

bool Instruction::CanSetBreakpoint () {
  return !HasDelaySlot();
}

bool Instruction::HasDelaySlot() {
  // Default is false.
  return false;
}

OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream,
                                     OptionValue::Type data_type) {
  bool done = false;
  char buffer[1024];

  auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type);

  int idx = 0;
  while (!done) {
    if (!fgets(buffer, 1023, in_file)) {
      out_stream->Printf(
          "Instruction::ReadArray:  Error reading file (fgets).\n");
      option_value_sp.reset();
      return option_value_sp;
    }

    std::string line(buffer);

    size_t len = line.size();
    if (line[len - 1] == '\n') {
      line[len - 1] = '\0';
      line.resize(len - 1);
    }

    if ((line.size() == 1) && line[0] == ']') {
      done = true;
      line.clear();
    }

    if (!line.empty()) {
      std::string value;
      static RegularExpression g_reg_exp(
          llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$"));
      llvm::SmallVector<llvm::StringRef, 2> matches;
      if (g_reg_exp.Execute(line, &matches))
        value = matches[1].str();
      else
        value = line;

      OptionValueSP data_value_sp;
      switch (data_type) {
      case OptionValue::eTypeUInt64:
        data_value_sp = std::make_shared<OptionValueUInt64>(0, 0);
        data_value_sp->SetValueFromString(value);
        break;
      // Other types can be added later as needed.
      default:
        data_value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
        break;
      }

      option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp);
      ++idx;
    }
  }

  return option_value_sp;
}

OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) {
  bool done = false;
  char buffer[1024];

  auto option_value_sp = std::make_shared<OptionValueDictionary>();
  static ConstString encoding_key("data_encoding");
  OptionValue::Type data_type = OptionValue::eTypeInvalid;

  while (!done) {
    // Read the next line in the file
    if (!fgets(buffer, 1023, in_file)) {
      out_stream->Printf(
          "Instruction::ReadDictionary: Error reading file (fgets).\n");
      option_value_sp.reset();
      return option_value_sp;
    }

    // Check to see if the line contains the end-of-dictionary marker ("}")
    std::string line(buffer);

    size_t len = line.size();
    if (line[len - 1] == '\n') {
      line[len - 1] = '\0';
      line.resize(len - 1);
    }

    if ((line.size() == 1) && (line[0] == '}')) {
      done = true;
      line.clear();
    }

    // Try to find a key-value pair in the current line and add it to the
    // dictionary.
    if (!line.empty()) {
      static RegularExpression g_reg_exp(llvm::StringRef(
          "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$"));

      llvm::SmallVector<llvm::StringRef, 3> matches;

      bool reg_exp_success = g_reg_exp.Execute(line, &matches);
      std::string key;
      std::string value;
      if (reg_exp_success) {
        key = matches[1].str();
        value = matches[2].str();
      } else {
        out_stream->Printf("Instruction::ReadDictionary: Failure executing "
                           "regular expression.\n");
        option_value_sp.reset();
        return option_value_sp;
      }

      ConstString const_key(key.c_str());
      // Check value to see if it's the start of an array or dictionary.

      lldb::OptionValueSP value_sp;
      assert(value.empty() == false);
      assert(key.empty() == false);

      if (value[0] == '{') {
        assert(value.size() == 1);
        // value is a dictionary
        value_sp = ReadDictionary(in_file, out_stream);
        if (!value_sp) {
          option_value_sp.reset();
          return option_value_sp;
        }
      } else if (value[0] == '[') {
        assert(value.size() == 1);
        // value is an array
        value_sp = ReadArray(in_file, out_stream, data_type);
        if (!value_sp) {
          option_value_sp.reset();
          return option_value_sp;
        }
        // We've used the data_type to read an array; re-set the type to
        // Invalid
        data_type = OptionValue::eTypeInvalid;
      } else if ((value[0] == '0') && (value[1] == 'x')) {
        value_sp = std::make_shared<OptionValueUInt64>(0, 0);
        value_sp->SetValueFromString(value);
      } else {
        size_t len = value.size();
        if ((value[0] == '"') && (value[len - 1] == '"'))
          value = value.substr(1, len - 2);
        value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
      }

      if (const_key == encoding_key) {
        // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data
        // indicating the
        // data type of an upcoming array (usually the next bit of data to be
        // read in).
        if (strcmp(value.c_str(), "uint32_t") == 0)
          data_type = OptionValue::eTypeUInt64;
      } else
        option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp,
                                                           false);
    }
  }

  return option_value_sp;
}

bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) {
  if (!out_stream)
    return false;

  if (!file_name) {
    out_stream->Printf("Instruction::TestEmulation:  Missing file_name.");
    return false;
  }
  FILE *test_file = FileSystem::Instance().Fopen(file_name, "r");
  if (!test_file) {
    out_stream->Printf(
        "Instruction::TestEmulation: Attempt to open test file failed.");
    return false;
  }

  char buffer[256];
  if (!fgets(buffer, 255, test_file)) {
    out_stream->Printf(
        "Instruction::TestEmulation: Error reading first line of test file.\n");
    fclose(test_file);
    return false;
  }

  if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) {
    out_stream->Printf("Instructin::TestEmulation: Test file does not contain "
                       "emulation state dictionary\n");
    fclose(test_file);
    return false;
  }

  // Read all the test information from the test file into an
  // OptionValueDictionary.

  OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream));
  if (!data_dictionary_sp) {
    out_stream->Printf(
        "Instruction::TestEmulation:  Error reading Dictionary Object.\n");
    fclose(test_file);
    return false;
  }

  fclose(test_file);

  OptionValueDictionary *data_dictionary =
      data_dictionary_sp->GetAsDictionary();
  static ConstString description_key("assembly_string");
  static ConstString triple_key("triple");

  OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key);

  if (!value_sp) {
    out_stream->Printf("Instruction::TestEmulation:  Test file does not "
                       "contain description string.\n");
    return false;
  }

  SetDescription(value_sp->GetStringValue());

  value_sp = data_dictionary->GetValueForKey(triple_key);
  if (!value_sp) {
    out_stream->Printf(
        "Instruction::TestEmulation: Test file does not contain triple.\n");
    return false;
  }

  ArchSpec arch;
  arch.SetTriple(llvm::Triple(value_sp->GetStringValue()));

  bool success = false;
  std::unique_ptr<EmulateInstruction> insn_emulator_up(
      EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
  if (insn_emulator_up)
    success =
        insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary);

  if (success)
    out_stream->Printf("Emulation test succeeded.");
  else
    out_stream->Printf("Emulation test failed.");

  return success;
}

bool Instruction::Emulate(
    const ArchSpec &arch, uint32_t evaluate_options, void *baton,
    EmulateInstruction::ReadMemoryCallback read_mem_callback,
    EmulateInstruction::WriteMemoryCallback write_mem_callback,
    EmulateInstruction::ReadRegisterCallback read_reg_callback,
    EmulateInstruction::WriteRegisterCallback write_reg_callback) {
  std::unique_ptr<EmulateInstruction> insn_emulator_up(
      EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
  if (insn_emulator_up) {
    insn_emulator_up->SetBaton(baton);
    insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback,
                                   read_reg_callback, write_reg_callback);
    insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
    return insn_emulator_up->EvaluateInstruction(evaluate_options);
  }

  return false;
}

uint32_t Instruction::GetData(DataExtractor &data) {
  return m_opcode.GetData(data);
}

InstructionList::InstructionList() : m_instructions() {}

InstructionList::~InstructionList() = default;

size_t InstructionList::GetSize() const { return m_instructions.size(); }

uint32_t InstructionList::GetMaxOpcocdeByteSize() const {
  uint32_t max_inst_size = 0;
  collection::const_iterator pos, end;
  for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end;
       ++pos) {
    uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
    if (max_inst_size < inst_size)
      max_inst_size = inst_size;
  }
  return max_inst_size;
}

InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const {
  InstructionSP inst_sp;
  if (idx < m_instructions.size())
    inst_sp = m_instructions[idx];
  return inst_sp;
}

void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes,
                           const ExecutionContext *exe_ctx) {
  const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize();
  collection::const_iterator pos, begin, end;

  const FormatEntity::Entry *disassembly_format = nullptr;
  FormatEntity::Entry format;
  if (exe_ctx && exe_ctx->HasTargetScope()) {
    disassembly_format =
        exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat();
  } else {
    FormatEntity::Parse("${addr}: ", format);
    disassembly_format = &format;
  }

  for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin;
       pos != end; ++pos) {
    if (pos != begin)
      s->EOL();
    (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx,
                 nullptr, nullptr, disassembly_format, 0);
  }
}

void InstructionList::Clear() { m_instructions.clear(); }

void InstructionList::Append(lldb::InstructionSP &inst_sp) {
  if (inst_sp)
    m_instructions.push_back(inst_sp);
}

uint32_t
InstructionList::GetIndexOfNextBranchInstruction(uint32_t start,
                                                 bool ignore_calls,
                                                 bool *found_calls) const {
  size_t num_instructions = m_instructions.size();

  uint32_t next_branch = UINT32_MAX;
  
  if (found_calls)
    *found_calls = false;
  for (size_t i = start; i < num_instructions; i++) {
    if (m_instructions[i]->DoesBranch()) {
      if (ignore_calls && m_instructions[i]->IsCall()) {
        if (found_calls)
          *found_calls = true;
        continue;
      }
      next_branch = i;
      break;
    }
  }

  return next_branch;
}

uint32_t
InstructionList::GetIndexOfInstructionAtAddress(const Address &address) {
  size_t num_instructions = m_instructions.size();
  uint32_t index = UINT32_MAX;
  for (size_t i = 0; i < num_instructions; i++) {
    if (m_instructions[i]->GetAddress() == address) {
      index = i;
      break;
    }
  }
  return index;
}

uint32_t
InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
                                                    Target &target) {
  Address address;
  address.SetLoadAddress(load_addr, &target);
  return GetIndexOfInstructionAtAddress(address);
}

size_t Disassembler::ParseInstructions(Target &target, Address start,
                                       Limit limit, Stream *error_strm_ptr,
                                       bool prefer_file_cache) {
  m_instruction_list.Clear();

  if (!start.IsValid())
    return 0;

  start = ResolveAddress(target, start);

  addr_t byte_size = limit.value;
  if (limit.kind == Limit::Instructions)
    byte_size *= m_arch.GetMaximumOpcodeByteSize();
  auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0');

  Status error;
  lldb::addr_t load_addr = LLDB_INVALID_ADDRESS;
  const size_t bytes_read =
      target.ReadMemory(start, prefer_file_cache, data_sp->GetBytes(),
                        data_sp->GetByteSize(), error, &load_addr);
  const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS;

  if (bytes_read == 0) {
    if (error_strm_ptr) {
      if (const char *error_cstr = error.AsCString())
        error_strm_ptr->Printf("error: %s\n", error_cstr);
    }
    return 0;
  }

  if (bytes_read != data_sp->GetByteSize())
    data_sp->SetByteSize(bytes_read);
  DataExtractor data(data_sp, m_arch.GetByteOrder(),
                     m_arch.GetAddressByteSize());
  return DecodeInstructions(start, data, 0,
                            limit.kind == Limit::Instructions ? limit.value
                                                              : UINT32_MAX,
                            false, data_from_file);
}

// Disassembler copy constructor
Disassembler::Disassembler(const ArchSpec &arch, const char *flavor)
    : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS),
      m_flavor() {
  if (flavor == nullptr)
    m_flavor.assign("default");
  else
    m_flavor.assign(flavor);

  // If this is an arm variant that can only include thumb (T16, T32)
  // instructions, force the arch triple to be "thumbv.." instead of "armv..."
  if (arch.IsAlwaysThumbInstructions()) {
    std::string thumb_arch_name(arch.GetTriple().getArchName().str());
    // Replace "arm" with "thumb" so we get all thumb variants correct
    if (thumb_arch_name.size() > 3) {
      thumb_arch_name.erase(0, 3);
      thumb_arch_name.insert(0, "thumb");
    }
    m_arch.SetTriple(thumb_arch_name.c_str());
  }
}

Disassembler::~Disassembler() = default;

InstructionList &Disassembler::GetInstructionList() {
  return m_instruction_list;
}

const InstructionList &Disassembler::GetInstructionList() const {
  return m_instruction_list;
}

// Class PseudoInstruction

PseudoInstruction::PseudoInstruction()
    : Instruction(Address(), AddressClass::eUnknown), m_description() {}

PseudoInstruction::~PseudoInstruction() = default;

bool PseudoInstruction::DoesBranch() {
  // This is NOT a valid question for a pseudo instruction.
  return false;
}

bool PseudoInstruction::HasDelaySlot() {
  // This is NOT a valid question for a pseudo instruction.
  return false;
}

size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler,
                                 const lldb_private::DataExtractor &data,
                                 lldb::offset_t data_offset) {
  return m_opcode.GetByteSize();
}

void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) {
  if (!opcode_data)
    return;

  switch (opcode_size) {
  case 8: {
    uint8_t value8 = *((uint8_t *)opcode_data);
    m_opcode.SetOpcode8(value8, eByteOrderInvalid);
    break;
  }
  case 16: {
    uint16_t value16 = *((uint16_t *)opcode_data);
    m_opcode.SetOpcode16(value16, eByteOrderInvalid);
    break;
  }
  case 32: {
    uint32_t value32 = *((uint32_t *)opcode_data);
    m_opcode.SetOpcode32(value32, eByteOrderInvalid);
    break;
  }
  case 64: {
    uint64_t value64 = *((uint64_t *)opcode_data);
    m_opcode.SetOpcode64(value64, eByteOrderInvalid);
    break;
  }
  default:
    break;
  }
}

void PseudoInstruction::SetDescription(llvm::StringRef description) {
  m_description = std::string(description);
}

Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) {
  Operand ret;
  ret.m_type = Type::Register;
  ret.m_register = r;
  return ret;
}

Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm,
                                                          bool neg) {
  Operand ret;
  ret.m_type = Type::Immediate;
  ret.m_immediate = imm;
  ret.m_negative = neg;
  return ret;
}

Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) {
  Operand ret;
  ret.m_type = Type::Immediate;
  if (imm < 0) {
    ret.m_immediate = -imm;
    ret.m_negative = true;
  } else {
    ret.m_immediate = imm;
    ret.m_negative = false;
  }
  return ret;
}

Instruction::Operand
Instruction::Operand::BuildDereference(const Operand &ref) {
  Operand ret;
  ret.m_type = Type::Dereference;
  ret.m_children = {ref};
  return ret;
}

Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs,
                                                    const Operand &rhs) {
  Operand ret;
  ret.m_type = Type::Sum;
  ret.m_children = {lhs, rhs};
  return ret;
}

Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs,
                                                        const Operand &rhs) {
  Operand ret;
  ret.m_type = Type::Product;
  ret.m_children = {lhs, rhs};
  return ret;
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchBinaryOp(
    std::function<bool(const Instruction::Operand &)> base,
    std::function<bool(const Instruction::Operand &)> left,
    std::function<bool(const Instruction::Operand &)> right) {
  return [base, left, right](const Instruction::Operand &op) -> bool {
    return (base(op) && op.m_children.size() == 2 &&
            ((left(op.m_children[0]) && right(op.m_children[1])) ||
             (left(op.m_children[1]) && right(op.m_children[0]))));
  };
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchUnaryOp(
    std::function<bool(const Instruction::Operand &)> base,
    std::function<bool(const Instruction::Operand &)> child) {
  return [base, child](const Instruction::Operand &op) -> bool {
    return (base(op) && op.m_children.size() == 1 && child(op.m_children[0]));
  };
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) {
  return [&info](const Instruction::Operand &op) {
    return (op.m_type == Instruction::Operand::Type::Register &&
            (op.m_register == ConstString(info.name) ||
             op.m_register == ConstString(info.alt_name)));
  };
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::FetchRegOp(ConstString &reg) {
  return [&reg](const Instruction::Operand &op) {
    if (op.m_type != Instruction::Operand::Type::Register) {
      return false;
    }
    reg = op.m_register;
    return true;
  };
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchImmOp(int64_t imm) {
  return [imm](const Instruction::Operand &op) {
    return (op.m_type == Instruction::Operand::Type::Immediate &&
            ((op.m_negative && op.m_immediate == (uint64_t)-imm) ||
             (!op.m_negative && op.m_immediate == (uint64_t)imm)));
  };
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) {
  return [&imm](const Instruction::Operand &op) {
    if (op.m_type != Instruction::Operand::Type::Immediate) {
      return false;
    }
    if (op.m_negative) {
      imm = -((int64_t)op.m_immediate);
    } else {
      imm = ((int64_t)op.m_immediate);
    }
    return true;
  };
}

std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) {
  return [type](const Instruction::Operand &op) { return op.m_type == type; };
}