InputFiles.cpp 22 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Config.h"
#include "DriverUtils.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Target.h"

#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"

using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::macho;

std::vector<InputFile *> macho::inputFiles;

// Open a given file path and return it as a memory-mapped file.
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
  // Open a file.
  auto mbOrErr = MemoryBuffer::getFile(path);
  if (auto ec = mbOrErr.getError()) {
    error("cannot open " + path + ": " + ec.message());
    return None;
  }

  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
  MemoryBufferRef mbref = mb->getMemBufferRef();
  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership

  // If this is a regular non-fat file, return it.
  const char *buf = mbref.getBufferStart();
  auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf);
  if (read32be(&hdr->magic) != MachO::FAT_MAGIC)
    return mbref;

  // Object files and archive files may be fat files, which contains
  // multiple real files for different CPU ISAs. Here, we search for a
  // file that matches with the current link target and returns it as
  // a MemoryBufferRef.
  auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr));

  for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
    if (reinterpret_cast<const char *>(arch + i + 1) >
        buf + mbref.getBufferSize()) {
      error(path + ": fat_arch struct extends beyond end of file");
      return None;
    }

    if (read32be(&arch[i].cputype) != target->cpuType ||
        read32be(&arch[i].cpusubtype) != target->cpuSubtype)
      continue;

    uint32_t offset = read32be(&arch[i].offset);
    uint32_t size = read32be(&arch[i].size);
    if (offset + size > mbref.getBufferSize())
      error(path + ": slice extends beyond end of file");
    return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
  }

  error("unable to find matching architecture in " + path);
  return None;
}

const load_command *macho::findCommand(const mach_header_64 *hdr,
                                       uint32_t type) {
  const uint8_t *p =
      reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);

  for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
    auto *cmd = reinterpret_cast<const load_command *>(p);
    if (cmd->cmd == type)
      return cmd;
    p += cmd->cmdsize;
  }
  return nullptr;
}

void InputFile::parseSections(ArrayRef<section_64> sections) {
  subsections.reserve(sections.size());
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());

  for (const section_64 &sec : sections) {
    InputSection *isec = make<InputSection>();
    isec->file = this;
    isec->name =
        StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
    isec->segname =
        StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
    isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset,
                  static_cast<size_t>(sec.size)};
    if (sec.align >= 32)
      error("alignment " + std::to_string(sec.align) + " of section " +
            isec->name + " is too large");
    else
      isec->align = 1 << sec.align;
    isec->flags = sec.flags;
    subsections.push_back({{0, isec}});
  }
}

// Find the subsection corresponding to the greatest section offset that is <=
// that of the given offset.
//
// offset: an offset relative to the start of the original InputSection (before
// any subsection splitting has occurred). It will be updated to represent the
// same location as an offset relative to the start of the containing
// subsection.
static InputSection *findContainingSubsection(SubsectionMap &map,
                                              uint32_t *offset) {
  auto it = std::prev(map.upper_bound(*offset));
  *offset -= it->first;
  return it->second;
}

void InputFile::parseRelocations(const section_64 &sec,
                                 SubsectionMap &subsecMap) {
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
  ArrayRef<any_relocation_info> anyRelInfos(
      reinterpret_cast<const any_relocation_info *>(buf + sec.reloff),
      sec.nreloc);

  for (const any_relocation_info &anyRelInfo : anyRelInfos) {
    if (anyRelInfo.r_word0 & R_SCATTERED)
      fatal("TODO: Scattered relocations not supported");

    auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo);

    Reloc r;
    r.type = relInfo.r_type;
    r.pcrel = relInfo.r_pcrel;
    r.length = relInfo.r_length;
    uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo);

    if (relInfo.r_extern) {
      r.referent = symbols[relInfo.r_symbolnum];
      r.addend = rawAddend;
    } else {
      if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size())
        fatal("invalid section index in relocation for offset " +
              std::to_string(r.offset) + " in section " + sec.sectname +
              " of " + getName());

      SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
      const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
      uint32_t referentOffset;
      if (relInfo.r_pcrel) {
        // The implicit addend for pcrel section relocations is the pcrel offset
        // in terms of the addresses in the input file. Here we adjust it so
        // that it describes the offset from the start of the referent section.
        // TODO: The offset of 4 is probably not right for ARM64, nor for
        //       relocations with r_length != 2.
        referentOffset =
            sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr;
      } else {
        // The addend for a non-pcrel relocation is its absolute address.
        referentOffset = rawAddend - referentSec.addr;
      }
      r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
      r.addend = referentOffset;
    }

    r.offset = relInfo.r_address;
    InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
    subsec->relocs.push_back(r);
  }
}

static macho::Symbol *createDefined(const structs::nlist_64 &sym,
                                    StringRef name, InputSection *isec,
                                    uint32_t value) {
  if (sym.n_type & N_EXT)
    // Global defined symbol
    return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF);
  // Local defined symbol
  return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF,
                       /*isExternal=*/false);
}

// Absolute symbols are defined symbols that do not have an associated
// InputSection. They cannot be weak.
static macho::Symbol *createAbsolute(const structs::nlist_64 &sym,
                                     StringRef name) {
  if (sym.n_type & N_EXT)
    return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false);
  return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false,
                       /*isExternal=*/false);
}

macho::Symbol *InputFile::parseNonSectionSymbol(const structs::nlist_64 &sym,
                                                StringRef name) {
  uint8_t type = sym.n_type & N_TYPE;
  switch (type) {
  case N_UNDF:
    return sym.n_value == 0
               ? symtab->addUndefined(name)
               : symtab->addCommon(name, this, sym.n_value,
                                   1 << GET_COMM_ALIGN(sym.n_desc));
  case N_ABS:
    return createAbsolute(sym, name);
  case N_PBUD:
  case N_INDR:
    error("TODO: support symbols of type " + std::to_string(type));
    return nullptr;
  case N_SECT:
    llvm_unreachable(
        "N_SECT symbols should not be passed to parseNonSectionSymbol");
  default:
    llvm_unreachable("invalid symbol type");
  }
}

void InputFile::parseSymbols(ArrayRef<structs::nlist_64> nList,
                             const char *strtab, bool subsectionsViaSymbols) {
  // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols
  // out-of-sequence.
  symbols.resize(nList.size());
  std::vector<size_t> altEntrySymIdxs;

  for (size_t i = 0, n = nList.size(); i < n; ++i) {
    const structs::nlist_64 &sym = nList[i];
    StringRef name = strtab + sym.n_strx;

    if ((sym.n_type & N_TYPE) != N_SECT) {
      symbols[i] = parseNonSectionSymbol(sym, name);
      continue;
    }

    const section_64 &sec = sectionHeaders[sym.n_sect - 1];
    SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
    uint64_t offset = sym.n_value - sec.addr;

    // If the input file does not use subsections-via-symbols, all symbols can
    // use the same subsection. Otherwise, we must split the sections along
    // symbol boundaries.
    if (!subsectionsViaSymbols) {
      symbols[i] = createDefined(sym, name, subsecMap[0], offset);
      continue;
    }

    // nList entries aren't necessarily arranged in address order. Therefore,
    // we can't create alt-entry symbols at this point because a later symbol
    // may split its section, which may affect which subsection the alt-entry
    // symbol is assigned to. So we need to handle them in a second pass below.
    if (sym.n_desc & N_ALT_ENTRY) {
      altEntrySymIdxs.push_back(i);
      continue;
    }

    // Find the subsection corresponding to the greatest section offset that is
    // <= that of the current symbol. The subsection that we find either needs
    // to be used directly or split in two.
    uint32_t firstSize = offset;
    InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize);

    if (firstSize == 0) {
      // Alias of an existing symbol, or the first symbol in the section. These
      // are handled by reusing the existing section.
      symbols[i] = createDefined(sym, name, firstIsec, 0);
      continue;
    }

    // We saw a symbol definition at a new offset. Split the section into two
    // subsections. The new symbol uses the second subsection.
    auto *secondIsec = make<InputSection>(*firstIsec);
    secondIsec->data = firstIsec->data.slice(firstSize);
    firstIsec->data = firstIsec->data.slice(0, firstSize);
    // TODO: ld64 appears to preserve the original alignment as well as each
    // subsection's offset from the last aligned address. We should consider
    // emulating that behavior.
    secondIsec->align = MinAlign(firstIsec->align, offset);

    subsecMap[offset] = secondIsec;
    // By construction, the symbol will be at offset zero in the new section.
    symbols[i] = createDefined(sym, name, secondIsec, 0);
  }

  for (size_t idx : altEntrySymIdxs) {
    const structs::nlist_64 &sym = nList[idx];
    StringRef name = strtab + sym.n_strx;
    SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
    uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr;
    InputSection *subsec = findContainingSubsection(subsecMap, &off);
    symbols[idx] = createDefined(sym, name, subsec, off);
  }
}

OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
                       StringRef sectName)
    : InputFile(OpaqueKind, mb) {
  InputSection *isec = make<InputSection>();
  isec->file = this;
  isec->name = sectName.take_front(16);
  isec->segname = segName.take_front(16);
  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
  isec->data = {buf, mb.getBufferSize()};
  subsections.push_back({{0, isec}});
}

ObjFile::ObjFile(MemoryBufferRef mb) : InputFile(ObjKind, mb) {
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
  auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());

  if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
    auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
    sectionHeaders = ArrayRef<section_64>{
        reinterpret_cast<const section_64 *>(c + 1), c->nsects};
    parseSections(sectionHeaders);
  }

  // TODO: Error on missing LC_SYMTAB?
  if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
    auto *c = reinterpret_cast<const symtab_command *>(cmd);
    ArrayRef<structs::nlist_64> nList(
        reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms);
    const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
    bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
    parseSymbols(nList, strtab, subsectionsViaSymbols);
  }

  // The relocations may refer to the symbols, so we parse them after we have
  // parsed all the symbols.
  for (size_t i = 0, n = subsections.size(); i < n; ++i)
    parseRelocations(sectionHeaders[i], subsections[i]);
}

// The path can point to either a dylib or a .tbd file.
static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) {
  Optional<MemoryBufferRef> mbref = readFile(path);
  if (!mbref) {
    error("could not read dylib file at " + path);
    return {};
  }

  file_magic magic = identify_magic(mbref->getBuffer());
  if (magic == file_magic::tapi_file)
    return makeDylibFromTAPI(*mbref, umbrella);
  assert(magic == file_magic::macho_dynamically_linked_shared_lib);
  return make<DylibFile>(*mbref, umbrella);
}

// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
// the first document storing child pointers to the rest of them. When we are
// processing a given TBD file, we store that top-level document here. When
// processing re-exports, we search its children for potentially matching
// documents in the same TBD file. Note that the children themselves don't
// point to further documents, i.e. this is a two-level tree.
//
// ld64 allows a TAPI re-export to reference documents nested within other TBD
// files, but that seems like a strange design, so this is an intentional
// deviation.
const InterfaceFile *currentTopLevelTapi = nullptr;

// Re-exports can either refer to on-disk files, or to documents within .tbd
// files.
static Optional<DylibFile *> loadReexport(StringRef path, DylibFile *umbrella) {
  if (path::is_absolute(path, path::Style::posix))
    for (StringRef root : config->systemLibraryRoots)
      if (Optional<std::string> dylibPath =
              resolveDylibPath((root + path).str()))
        return loadDylib(*dylibPath, umbrella);

  // TODO: Expand @loader_path, @executable_path etc

  if (currentTopLevelTapi) {
    for (InterfaceFile &child :
         make_pointee_range(currentTopLevelTapi->documents())) {
      if (path == child.getInstallName())
        return make<DylibFile>(child, umbrella);
      assert(child.documents().empty());
    }
  }

  if (Optional<std::string> dylibPath = resolveDylibPath(path))
    return loadDylib(*dylibPath, umbrella);

  error("unable to locate re-export with install name " + path);
  return {};
}

DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella)
    : InputFile(DylibKind, mb) {
  if (umbrella == nullptr)
    umbrella = this;

  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
  auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());

  // Initialize dylibName.
  if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
    auto *c = reinterpret_cast<const dylib_command *>(cmd);
    dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
  } else {
    error("dylib " + getName() + " missing LC_ID_DYLIB load command");
    return;
  }

  // Initialize symbols.
  // TODO: if a re-exported dylib is public (lives in /usr/lib or
  // /System/Library/Frameworks), we should bind to its symbols directly
  // instead of the re-exporting umbrella library.
  if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
    auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
    parseTrie(buf + c->export_off, c->export_size,
              [&](const Twine &name, uint64_t flags) {
                bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
                bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
                symbols.push_back(symtab->addDylib(saver.save(name), umbrella,
                                                   isWeakDef, isTlv));
              });
  } else {
    error("LC_DYLD_INFO_ONLY not found in " + getName());
    return;
  }

  if (hdr->flags & MH_NO_REEXPORTED_DYLIBS)
    return;

  const uint8_t *p =
      reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
  for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
    auto *cmd = reinterpret_cast<const load_command *>(p);
    p += cmd->cmdsize;
    if (cmd->cmd != LC_REEXPORT_DYLIB)
      continue;

    auto *c = reinterpret_cast<const dylib_command *>(cmd);
    StringRef reexportPath =
        reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
    if (Optional<DylibFile *> reexport = loadReexport(reexportPath, umbrella))
      reexported.push_back(*reexport);
  }
}

DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella)
    : InputFile(DylibKind, interface) {
  if (umbrella == nullptr)
    umbrella = this;

  dylibName = saver.save(interface.getInstallName());
  auto addSymbol = [&](const Twine &name) -> void {
    symbols.push_back(symtab->addDylib(saver.save(name), umbrella,
                                       /*isWeakDef=*/false,
                                       /*isTlv=*/false));
  };
  // TODO(compnerd) filter out symbols based on the target platform
  // TODO: handle weak defs, thread locals
  for (const auto symbol : interface.symbols()) {
    if (!symbol->getArchitectures().has(config->arch))
      continue;

    switch (symbol->getKind()) {
    case SymbolKind::GlobalSymbol:
      addSymbol(symbol->getName());
      break;
    case SymbolKind::ObjectiveCClass:
      // XXX ld64 only creates these symbols when -ObjC is passed in. We may
      // want to emulate that.
      addSymbol(objc::klass + symbol->getName());
      addSymbol(objc::metaclass + symbol->getName());
      break;
    case SymbolKind::ObjectiveCClassEHType:
      addSymbol(objc::ehtype + symbol->getName());
      break;
    case SymbolKind::ObjectiveCInstanceVariable:
      addSymbol(objc::ivar + symbol->getName());
      break;
    }
  }

  bool isTopLevelTapi = false;
  if (currentTopLevelTapi == nullptr) {
    currentTopLevelTapi = &interface;
    isTopLevelTapi = true;
  }

  for (InterfaceFileRef intfRef : interface.reexportedLibraries())
    if (Optional<DylibFile *> reexport =
            loadReexport(intfRef.getInstallName(), umbrella))
      reexported.push_back(*reexport);

  if (isTopLevelTapi)
    currentTopLevelTapi = nullptr;
}

ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f)
    : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
  for (const object::Archive::Symbol &sym : file->symbols())
    symtab->addLazy(sym.getName(), this, sym);
}

void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
  object::Archive::Child c =
      CHECK(sym.getMember(), toString(this) +
                                 ": could not get the member for symbol " +
                                 sym.getName());

  if (!seen.insert(c.getChildOffset()).second)
    return;

  MemoryBufferRef mb =
      CHECK(c.getMemoryBufferRef(),
            toString(this) +
                ": could not get the buffer for the member defining symbol " +
                sym.getName());
  auto file = make<ObjFile>(mb);
  symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end());
  subsections.insert(subsections.end(), file->subsections.begin(),
                     file->subsections.end());
}

// Returns "<internal>" or "baz.o".
std::string lld::toString(const InputFile *file) {
  return file ? std::string(file->getName()) : "<internal>";
}