SyntheticSections.h 40.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
//===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Synthetic sections represent chunks of linker-created data. If you
// need to create a chunk of data that to be included in some section
// in the result, you probably want to create that as a synthetic section.
//
// Synthetic sections are designed as input sections as opposed to
// output sections because we want to allow them to be manipulated
// using linker scripts just like other input sections from regular
// files.
//
//===----------------------------------------------------------------------===//

#ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
#define LLD_ELF_SYNTHETIC_SECTIONS_H

#include "DWARF.h"
#include "EhFrame.h"
#include "InputSection.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Endian.h"
#include <functional>

namespace lld {
namespace elf {
class Defined;
struct PhdrEntry;
class SymbolTableBaseSection;
class VersionNeedBaseSection;

class SyntheticSection : public InputSection {
public:
  SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
                   StringRef name)
      : InputSection(nullptr, flags, type, alignment, {}, name,
                     InputSectionBase::Synthetic) {
    markLive();
  }

  virtual ~SyntheticSection() = default;
  virtual void writeTo(uint8_t *buf) = 0;
  virtual size_t getSize() const = 0;
  virtual void finalizeContents() {}
  // If the section has the SHF_ALLOC flag and the size may be changed if
  // thunks are added, update the section size.
  virtual bool updateAllocSize() { return false; }
  virtual bool isNeeded() const { return true; }

  static bool classof(const SectionBase *d) {
    return d->kind() == InputSectionBase::Synthetic;
  }
};

struct CieRecord {
  EhSectionPiece *cie = nullptr;
  std::vector<EhSectionPiece *> fdes;
};

// Section for .eh_frame.
class EhFrameSection final : public SyntheticSection {
public:
  EhFrameSection();
  void writeTo(uint8_t *buf) override;
  void finalizeContents() override;
  bool isNeeded() const override { return !sections.empty(); }
  size_t getSize() const override { return size; }

  static bool classof(const SectionBase *d) {
    return SyntheticSection::classof(d) && d->name == ".eh_frame";
  }

  void addSection(EhInputSection *sec);

  std::vector<EhInputSection *> sections;
  size_t numFdes = 0;

  struct FdeData {
    uint32_t pcRel;
    uint32_t fdeVARel;
  };

  std::vector<FdeData> getFdeData() const;
  ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
  template <class ELFT>
  void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);

private:
  // This is used only when parsing EhInputSection. We keep it here to avoid
  // allocating one for each EhInputSection.
  llvm::DenseMap<size_t, CieRecord *> offsetToCie;

  uint64_t size = 0;

  template <class ELFT, class RelTy>
  void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
  template <class ELFT> void addSectionAux(EhInputSection *s);
  template <class ELFT, class RelTy>
  void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
                             llvm::DenseSet<size_t> &ciesWithLSDA,
                             llvm::function_ref<void(InputSection &)> fn);

  template <class ELFT, class RelTy>
  CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);

  template <class ELFT, class RelTy>
  Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);

  uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;

  std::vector<CieRecord *> cieRecords;

  // CIE records are uniquified by their contents and personality functions.
  llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
};

class GotSection : public SyntheticSection {
public:
  GotSection();
  size_t getSize() const override { return size; }
  void finalizeContents() override;
  bool isNeeded() const override;
  void writeTo(uint8_t *buf) override;

  void addEntry(Symbol &sym);
  bool addDynTlsEntry(Symbol &sym);
  bool addTlsIndex();
  uint64_t getGlobalDynAddr(const Symbol &b) const;
  uint64_t getGlobalDynOffset(const Symbol &b) const;

  uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
  uint32_t getTlsIndexOff() const { return tlsIndexOff; }

  // Flag to force GOT to be in output if we have relocations
  // that relies on its address.
  bool hasGotOffRel = false;

protected:
  size_t numEntries = 0;
  uint32_t tlsIndexOff = -1;
  uint64_t size = 0;
};

// .note.GNU-stack section.
class GnuStackSection : public SyntheticSection {
public:
  GnuStackSection()
      : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
  void writeTo(uint8_t *buf) override {}
  size_t getSize() const override { return 0; }
};

class GnuPropertySection : public SyntheticSection {
public:
  GnuPropertySection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
};

// .note.gnu.build-id section.
class BuildIdSection : public SyntheticSection {
  // First 16 bytes are a header.
  static const unsigned headerSize = 16;

public:
  const size_t hashSize;
  BuildIdSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return headerSize + hashSize; }
  void writeBuildId(llvm::ArrayRef<uint8_t> buf);

private:
  uint8_t *hashBuf;
};

// BssSection is used to reserve space for copy relocations and common symbols.
// We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
// that are used for writable symbols, read-only symbols and common symbols,
// respectively.
class BssSection final : public SyntheticSection {
public:
  BssSection(StringRef name, uint64_t size, uint32_t alignment);
  void writeTo(uint8_t *) override {
    llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section");
  }
  bool isNeeded() const override { return size != 0; }
  size_t getSize() const override { return size; }

  static bool classof(const SectionBase *s) { return s->bss; }
  uint64_t size;
};

class MipsGotSection final : public SyntheticSection {
public:
  MipsGotSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }
  bool updateAllocSize() override;
  void finalizeContents() override;
  bool isNeeded() const override;

  // Join separate GOTs built for each input file to generate
  // primary and optional multiple secondary GOTs.
  void build();

  void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
  void addDynTlsEntry(InputFile &file, Symbol &sym);
  void addTlsIndex(InputFile &file);

  uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
                              int64_t addend) const;
  uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
                             int64_t addend) const;
  uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
  uint64_t getTlsIndexOffset(const InputFile *f) const;

  // Returns the symbol which corresponds to the first entry of the global part
  // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
  // table properties.
  // Returns nullptr if the global part is empty.
  const Symbol *getFirstGlobalEntry() const;

  // Returns the number of entries in the local part of GOT including
  // the number of reserved entries.
  unsigned getLocalEntriesNum() const;

  // Return _gp value for primary GOT (nullptr) or particular input file.
  uint64_t getGp(const InputFile *f = nullptr) const;

private:
  // MIPS GOT consists of three parts: local, global and tls. Each part
  // contains different types of entries. Here is a layout of GOT:
  // - Header entries                |
  // - Page entries                  |   Local part
  // - Local entries (16-bit access) |
  // - Local entries (32-bit access) |
  // - Normal global entries         ||  Global part
  // - Reloc-only global entries     ||
  // - TLS entries                   ||| TLS part
  //
  // Header:
  //   Two entries hold predefined value 0x0 and 0x80000000.
  // Page entries:
  //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
  //   relocation against local symbols. They are initialized by higher 16-bit
  //   of the corresponding symbol's value. So each 64kb of address space
  //   requires a single GOT entry.
  // Local entries (16-bit access):
  //   These entries created by GOT relocations against global non-preemptible
  //   symbols so dynamic linker is not necessary to resolve the symbol's
  //   values. "16-bit access" means that corresponding relocations address
  //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
  //   GOT entry.
  // Local entries (32-bit access):
  //   These entries are the same as above but created by relocations which
  //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
  // Normal global entries:
  //   These entries created by GOT relocations against preemptible global
  //   symbols. They need to be initialized by dynamic linker and they ordered
  //   exactly as the corresponding entries in the dynamic symbols table.
  // Reloc-only global entries:
  //   These entries created for symbols that are referenced by dynamic
  //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
  //   addressing, but MIPS ABI requires that these entries be present in GOT.
  // TLS entries:
  //   Entries created by TLS relocations.
  //
  // If the sum of local, global and tls entries is less than 64K only single
  // got is enough. Otherwise, multi-got is created. Series of primary and
  // multiple secondary GOTs have the following layout:
  // - Primary GOT
  //     Header
  //     Local entries
  //     Global entries
  //     Relocation only entries
  //     TLS entries
  //
  // - Secondary GOT
  //     Local entries
  //     Global entries
  //     TLS entries
  // ...
  //
  // All GOT entries required by relocations from a single input file entirely
  // belong to either primary or one of secondary GOTs. To reference GOT entries
  // each GOT has its own _gp value points to the "middle" of the GOT.
  // In the code this value loaded to the register which is used for GOT access.
  //
  // MIPS 32 function's prologue:
  //   lui     v0,0x0
  //   0: R_MIPS_HI16  _gp_disp
  //   addiu   v0,v0,0
  //   4: R_MIPS_LO16  _gp_disp
  //
  // MIPS 64:
  //   lui     at,0x0
  //   14: R_MIPS_GPREL16  main
  //
  // Dynamic linker does not know anything about secondary GOTs and cannot
  // use a regular MIPS mechanism for GOT entries initialization. So we have
  // to use an approach accepted by other architectures and create dynamic
  // relocations R_MIPS_REL32 to initialize global entries (and local in case
  // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
  // requires GOT entries and correspondingly ordered dynamic symbol table
  // entries to deal with dynamic relocations. To handle this problem
  // relocation-only section in the primary GOT contains entries for all
  // symbols referenced in global parts of secondary GOTs. Although the sum
  // of local and normal global entries of the primary got should be less
  // than 64K, the size of the primary got (including relocation-only entries
  // can be greater than 64K, because parts of the primary got that overflow
  // the 64K limit are used only by the dynamic linker at dynamic link-time
  // and not by 16-bit gp-relative addressing at run-time.
  //
  // For complete multi-GOT description see the following link
  // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT

  // Number of "Header" entries.
  static const unsigned headerEntriesNum = 2;

  uint64_t size = 0;

  // Symbol and addend.
  using GotEntry = std::pair<Symbol *, int64_t>;

  struct FileGot {
    InputFile *file = nullptr;
    size_t startIndex = 0;

    struct PageBlock {
      size_t firstIndex;
      size_t count;
      PageBlock() : firstIndex(0), count(0) {}
    };

    // Map output sections referenced by MIPS GOT relocations
    // to the description (index/count) "page" entries allocated
    // for this section.
    llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
    // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
    llvm::MapVector<GotEntry, size_t> local16;
    llvm::MapVector<GotEntry, size_t> local32;
    llvm::MapVector<Symbol *, size_t> global;
    llvm::MapVector<Symbol *, size_t> relocs;
    llvm::MapVector<Symbol *, size_t> tls;
    // Set of symbols referenced by dynamic TLS relocations.
    llvm::MapVector<Symbol *, size_t> dynTlsSymbols;

    // Total number of all entries.
    size_t getEntriesNum() const;
    // Number of "page" entries.
    size_t getPageEntriesNum() const;
    // Number of entries require 16-bit index to access.
    size_t getIndexedEntriesNum() const;
  };

  // Container of GOT created for each input file.
  // After building a final series of GOTs this container
  // holds primary and secondary GOT's.
  std::vector<FileGot> gots;

  // Return (and create if necessary) `FileGot`.
  FileGot &getGot(InputFile &f);

  // Try to merge two GOTs. In case of success the `Dst` contains
  // result of merging and the function returns true. In case of
  // overflow the `Dst` is unchanged and the function returns false.
  bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
};

class GotPltSection final : public SyntheticSection {
public:
  GotPltSection();
  void addEntry(Symbol &sym);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;

  // Flag to force GotPlt to be in output if we have relocations
  // that relies on its address.
  bool hasGotPltOffRel = false;

private:
  std::vector<const Symbol *> entries;
};

// The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
// Symbols that will be relocated by Target->IRelativeRel.
// On most Targets the IgotPltSection will immediately follow the GotPltSection
// on ARM the IgotPltSection will immediately follow the GotSection.
class IgotPltSection final : public SyntheticSection {
public:
  IgotPltSection();
  void addEntry(Symbol &sym);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override { return !entries.empty(); }

private:
  std::vector<const Symbol *> entries;
};

class StringTableSection final : public SyntheticSection {
public:
  StringTableSection(StringRef name, bool dynamic);
  unsigned addString(StringRef s, bool hashIt = true);
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }
  bool isDynamic() const { return dynamic; }

private:
  const bool dynamic;

  uint64_t size = 0;

  llvm::DenseMap<StringRef, unsigned> stringMap;
  std::vector<StringRef> strings;
};

class DynamicReloc {
public:
  DynamicReloc(RelType type, const InputSectionBase *inputSec,
               uint64_t offsetInSec, bool useSymVA, Symbol *sym, int64_t addend)
      : type(type), sym(sym), inputSec(inputSec), offsetInSec(offsetInSec),
        useSymVA(useSymVA), addend(addend), outputSec(nullptr) {}
  // This constructor records dynamic relocation settings used by MIPS
  // multi-GOT implementation. It's to relocate addresses of 64kb pages
  // lie inside the output section.
  DynamicReloc(RelType type, const InputSectionBase *inputSec,
               uint64_t offsetInSec, const OutputSection *outputSec,
               int64_t addend)
      : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
        useSymVA(false), addend(addend), outputSec(outputSec) {}

  uint64_t getOffset() const;
  uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;

  // Computes the addend of the dynamic relocation. Note that this is not the
  // same as the addend member variable as it also includes the symbol address
  // if useSymVA is true.
  int64_t computeAddend() const;

  RelType type;

  Symbol *sym;
  const InputSectionBase *inputSec = nullptr;
  uint64_t offsetInSec;
  // If this member is true, the dynamic relocation will not be against the
  // symbol but will instead be a relative relocation that simply adds the
  // load address. This means we need to write the symbol virtual address
  // plus the original addend as the final relocation addend.
  bool useSymVA;
  int64_t addend;
  const OutputSection *outputSec;
};

template <class ELFT> class DynamicSection final : public SyntheticSection {
  using Elf_Dyn = typename ELFT::Dyn;
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;
  using Elf_Relr = typename ELFT::Relr;
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;

  // finalizeContents() fills this vector with the section contents.
  std::vector<std::pair<int32_t, std::function<uint64_t()>>> entries;

public:
  DynamicSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }

private:
  void add(int32_t tag, std::function<uint64_t()> fn);
  void addInt(int32_t tag, uint64_t val);
  void addInSec(int32_t tag, InputSection *sec);
  void addInSecRelative(int32_t tag, InputSection *sec);
  void addOutSec(int32_t tag, OutputSection *sec);
  void addSize(int32_t tag, OutputSection *sec);
  void addSym(int32_t tag, Symbol *sym);

  uint64_t size = 0;
};

class RelocationBaseSection : public SyntheticSection {
public:
  RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
                        int32_t sizeDynamicTag);
  void addReloc(RelType dynType, InputSectionBase *isec, uint64_t offsetInSec,
                Symbol *sym);
  // Add a dynamic relocation that might need an addend. This takes care of
  // writing the addend to the output section if needed.
  void addReloc(RelType dynType, InputSectionBase *inputSec,
                uint64_t offsetInSec, Symbol *sym, int64_t addend, RelExpr expr,
                RelType type);
  void addReloc(const DynamicReloc &reloc);
  bool isNeeded() const override { return !relocs.empty(); }
  size_t getSize() const override { return relocs.size() * this->entsize; }
  size_t getRelativeRelocCount() const { return numRelativeRelocs; }
  void finalizeContents() override;
  int32_t dynamicTag, sizeDynamicTag;
  std::vector<DynamicReloc> relocs;

protected:
  size_t numRelativeRelocs = 0;
};

template <class ELFT>
class RelocationSection final : public RelocationBaseSection {
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;

public:
  RelocationSection(StringRef name, bool sort);
  void writeTo(uint8_t *buf) override;

private:
  bool sort;
};

template <class ELFT>
class AndroidPackedRelocationSection final : public RelocationBaseSection {
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;

public:
  AndroidPackedRelocationSection(StringRef name);

  bool updateAllocSize() override;
  size_t getSize() const override { return relocData.size(); }
  void writeTo(uint8_t *buf) override {
    memcpy(buf, relocData.data(), relocData.size());
  }

private:
  SmallVector<char, 0> relocData;
};

struct RelativeReloc {
  uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }

  const InputSectionBase *inputSec;
  uint64_t offsetInSec;
};

class RelrBaseSection : public SyntheticSection {
public:
  RelrBaseSection();
  bool isNeeded() const override { return !relocs.empty(); }
  std::vector<RelativeReloc> relocs;
};

// RelrSection is used to encode offsets for relative relocations.
// Proposal for adding SHT_RELR sections to generic-abi is here:
//   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
// For more details, see the comment in RelrSection::updateAllocSize().
template <class ELFT> class RelrSection final : public RelrBaseSection {
  using Elf_Relr = typename ELFT::Relr;

public:
  RelrSection();

  bool updateAllocSize() override;
  size_t getSize() const override { return relrRelocs.size() * this->entsize; }
  void writeTo(uint8_t *buf) override {
    memcpy(buf, relrRelocs.data(), getSize());
  }

private:
  std::vector<Elf_Relr> relrRelocs;
};

struct SymbolTableEntry {
  Symbol *sym;
  size_t strTabOffset;
};

class SymbolTableBaseSection : public SyntheticSection {
public:
  SymbolTableBaseSection(StringTableSection &strTabSec);
  void finalizeContents() override;
  size_t getSize() const override { return getNumSymbols() * entsize; }
  void addSymbol(Symbol *sym);
  unsigned getNumSymbols() const { return symbols.size() + 1; }
  size_t getSymbolIndex(Symbol *sym);
  ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }

protected:
  void sortSymTabSymbols();

  // A vector of symbols and their string table offsets.
  std::vector<SymbolTableEntry> symbols;

  StringTableSection &strTabSec;

  llvm::once_flag onceFlag;
  llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
  llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
};

template <class ELFT>
class SymbolTableSection final : public SymbolTableBaseSection {
  using Elf_Sym = typename ELFT::Sym;

public:
  SymbolTableSection(StringTableSection &strTabSec);
  void writeTo(uint8_t *buf) override;
};

class SymtabShndxSection final : public SyntheticSection {
public:
  SymtabShndxSection();

  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
  void finalizeContents() override;
};

// Outputs GNU Hash section. For detailed explanation see:
// https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
class GnuHashTableSection final : public SyntheticSection {
public:
  GnuHashTableSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }

  // Adds symbols to the hash table.
  // Sorts the input to satisfy GNU hash section requirements.
  void addSymbols(std::vector<SymbolTableEntry> &symbols);

private:
  // See the comment in writeBloomFilter.
  enum { Shift2 = 26 };

  void writeBloomFilter(uint8_t *buf);
  void writeHashTable(uint8_t *buf);

  struct Entry {
    Symbol *sym;
    size_t strTabOffset;
    uint32_t hash;
    uint32_t bucketIdx;
  };

  std::vector<Entry> symbols;
  size_t maskWords;
  size_t nBuckets = 0;
  size_t size = 0;
};

class HashTableSection final : public SyntheticSection {
public:
  HashTableSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }

private:
  size_t size = 0;
};

// Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
// entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
// at runtime.
//
// On PowerPC, this section contains lazy symbol resolvers. A branch instruction
// jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
// lazy symbol resolver.
//
// On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
// A call instruction jumps to a .plt.sec entry, which will then jump to the
// target (BIND_NOW) or a .plt entry.
class PltSection : public SyntheticSection {
public:
  PltSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
  void addSymbols();
  void addEntry(Symbol &sym);
  size_t getNumEntries() const { return entries.size(); }

  size_t headerSize;

  std::vector<const Symbol *> entries;
};

// Used for non-preemptible ifuncs. It does not have a header. Each entry is
// associated with an IRELATIVE relocation, which will be resolved eagerly at
// runtime. PltSection can only contain entries associated with JUMP_SLOT
// relocations, so IPLT entries are in a separate section.
class IpltSection final : public SyntheticSection {
  std::vector<const Symbol *> entries;

public:
  IpltSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override { return !entries.empty(); }
  void addSymbols();
  void addEntry(Symbol &sym);
};

class PPC32GlinkSection : public PltSection {
public:
  PPC32GlinkSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;

  std::vector<const Symbol *> canonical_plts;
  static constexpr size_t footerSize = 64;
};

// This is x86-only.
class IBTPltSection : public SyntheticSection {
public:
  IBTPltSection();
  void writeTo(uint8_t *Buf) override;
  size_t getSize() const override;
};

class GdbIndexSection final : public SyntheticSection {
public:
  struct AddressEntry {
    InputSection *section;
    uint64_t lowAddress;
    uint64_t highAddress;
    uint32_t cuIndex;
  };

  struct CuEntry {
    uint64_t cuOffset;
    uint64_t cuLength;
  };

  struct NameAttrEntry {
    llvm::CachedHashStringRef name;
    uint32_t cuIndexAndAttrs;
  };

  struct GdbChunk {
    InputSection *sec;
    std::vector<AddressEntry> addressAreas;
    std::vector<CuEntry> compilationUnits;
  };

  struct GdbSymbol {
    llvm::CachedHashStringRef name;
    std::vector<uint32_t> cuVector;
    uint32_t nameOff;
    uint32_t cuVectorOff;
  };

  GdbIndexSection();
  template <typename ELFT> static GdbIndexSection *create();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }
  bool isNeeded() const override;

private:
  struct GdbIndexHeader {
    llvm::support::ulittle32_t version;
    llvm::support::ulittle32_t cuListOff;
    llvm::support::ulittle32_t cuTypesOff;
    llvm::support::ulittle32_t addressAreaOff;
    llvm::support::ulittle32_t symtabOff;
    llvm::support::ulittle32_t constantPoolOff;
  };

  void initOutputSize();
  size_t computeSymtabSize() const;

  // Each chunk contains information gathered from debug sections of a
  // single object file.
  std::vector<GdbChunk> chunks;

  // A symbol table for this .gdb_index section.
  std::vector<GdbSymbol> symbols;

  size_t size;
};

// --eh-frame-hdr option tells linker to construct a header for all the
// .eh_frame sections. This header is placed to a section named .eh_frame_hdr
// and also to a PT_GNU_EH_FRAME segment.
// At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
// calling dl_iterate_phdr.
// This section contains a lookup table for quick binary search of FDEs.
// Detailed info about internals can be found in Ian Lance Taylor's blog:
// http://www.airs.com/blog/archives/460 (".eh_frame")
// http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
class EhFrameHeader final : public SyntheticSection {
public:
  EhFrameHeader();
  void write();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
};

// For more information about .gnu.version and .gnu.version_r see:
// https://www.akkadia.org/drepper/symbol-versioning

// The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
// contain symbol version definitions. The number of entries in this section
// shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
// The section shall contain an array of Elf_Verdef structures, optionally
// followed by an array of Elf_Verdaux structures.
class VersionDefinitionSection final : public SyntheticSection {
public:
  VersionDefinitionSection();
  void finalizeContents() override;
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;

private:
  enum { EntrySize = 28 };
  void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
  StringRef getFileDefName();

  unsigned fileDefNameOff;
  std::vector<unsigned> verDefNameOffs;
};

// The .gnu.version section specifies the required version of each symbol in the
// dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
// table entry. An Elf_Versym is just a 16-bit integer that refers to a version
// identifier defined in the either .gnu.version_r or .gnu.version_d section.
// The values 0 and 1 are reserved. All other values are used for versions in
// the own object or in any of the dependencies.
class VersionTableSection final : public SyntheticSection {
public:
  VersionTableSection();
  void finalizeContents() override;
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;
};

// The .gnu.version_r section defines the version identifiers used by
// .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
// Elf_Verneed specifies the version requirements for a single DSO, and contains
// a reference to a linked list of Elf_Vernaux data structures which define the
// mapping from version identifiers to version names.
template <class ELFT>
class VersionNeedSection final : public SyntheticSection {
  using Elf_Verneed = typename ELFT::Verneed;
  using Elf_Vernaux = typename ELFT::Vernaux;

  struct Vernaux {
    uint64_t hash;
    uint32_t verneedIndex;
    uint64_t nameStrTab;
  };

  struct Verneed {
    uint64_t nameStrTab;
    std::vector<Vernaux> vernauxs;
  };

  std::vector<Verneed> verneeds;

public:
  VersionNeedSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
};

// MergeSyntheticSection is a class that allows us to put mergeable sections
// with different attributes in a single output sections. To do that
// we put them into MergeSyntheticSection synthetic input sections which are
// attached to regular output sections.
class MergeSyntheticSection : public SyntheticSection {
public:
  void addSection(MergeInputSection *ms);
  std::vector<MergeInputSection *> sections;

protected:
  MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
                        uint32_t alignment)
      : SyntheticSection(flags, type, alignment, name) {}
};

class MergeTailSection final : public MergeSyntheticSection {
public:
  MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
                   uint32_t alignment);

  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  void finalizeContents() override;

private:
  llvm::StringTableBuilder builder;
};

class MergeNoTailSection final : public MergeSyntheticSection {
public:
  MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
                     uint32_t alignment)
      : MergeSyntheticSection(name, type, flags, alignment) {}

  size_t getSize() const override { return size; }
  void writeTo(uint8_t *buf) override;
  void finalizeContents() override;

private:
  // We use the most significant bits of a hash as a shard ID.
  // The reason why we don't want to use the least significant bits is
  // because DenseMap also uses lower bits to determine a bucket ID.
  // If we use lower bits, it significantly increases the probability of
  // hash collisons.
  size_t getShardId(uint32_t hash) {
    assert((hash >> 31) == 0);
    return hash >> (31 - llvm::countTrailingZeros(numShards));
  }

  // Section size
  size_t size;

  // String table contents
  constexpr static size_t numShards = 32;
  std::vector<llvm::StringTableBuilder> shards;
  size_t shardOffsets[numShards];
};

// .MIPS.abiflags section.
template <class ELFT>
class MipsAbiFlagsSection final : public SyntheticSection {
  using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;

public:
  static MipsAbiFlagsSection *create();

  MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
  size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
  void writeTo(uint8_t *buf) override;

private:
  Elf_Mips_ABIFlags flags;
};

// .MIPS.options section.
template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
  using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
  using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;

public:
  static MipsOptionsSection *create();

  MipsOptionsSection(Elf_Mips_RegInfo reginfo);
  void writeTo(uint8_t *buf) override;

  size_t getSize() const override {
    return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
  }

private:
  Elf_Mips_RegInfo reginfo;
};

// MIPS .reginfo section.
template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
  using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;

public:
  static MipsReginfoSection *create();

  MipsReginfoSection(Elf_Mips_RegInfo reginfo);
  size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
  void writeTo(uint8_t *buf) override;

private:
  Elf_Mips_RegInfo reginfo;
};

// This is a MIPS specific section to hold a space within the data segment
// of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
// See "Dynamic section" in Chapter 5 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
class MipsRldMapSection : public SyntheticSection {
public:
  MipsRldMapSection();
  size_t getSize() const override { return config->wordsize; }
  void writeTo(uint8_t *buf) override {}
};

// Representation of the combined .ARM.Exidx input sections. We process these
// as a SyntheticSection like .eh_frame as we need to merge duplicate entries
// and add terminating sentinel entries.
//
// The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
// a table that the unwinder can derive (Addresses are encoded as offsets from
// table):
// | Address of function | Unwind instructions for function |
// where the unwind instructions are either a small number of unwind or the
// special EXIDX_CANTUNWIND entry representing no unwinding information.
// When an exception is thrown from an address A, the unwinder searches the
// table for the closest table entry with Address of function <= A. This means
// that for two consecutive table entries:
// | A1 | U1 |
// | A2 | U2 |
// The range of addresses described by U1 is [A1, A2)
//
// There are two cases where we need a linker generated table entry to fixup
// the address ranges in the table
// Case 1:
// - A sentinel entry added with an address higher than all
// executable sections. This was needed to work around libunwind bug pr31091.
// - After address assignment we need to find the highest addressed executable
// section and use the limit of that section so that the unwinder never
// matches it.
// Case 2:
// - InputSections without a .ARM.exidx section (usually from Assembly)
// need a table entry so that they terminate the range of the previously
// function. This is pr40277.
//
// Instead of storing pointers to the .ARM.exidx InputSections from
// InputObjects, we store pointers to the executable sections that need
// .ARM.exidx sections. We can then use the dependentSections of these to
// either find the .ARM.exidx section or know that we need to generate one.
class ARMExidxSyntheticSection : public SyntheticSection {
public:
  ARMExidxSyntheticSection();

  // Add an input section to the ARMExidxSyntheticSection. Returns whether the
  // section needs to be removed from the main input section list.
  bool addSection(InputSection *isec);

  size_t getSize() const override { return size; }
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;
  // Sort and remove duplicate entries.
  void finalizeContents() override;
  InputSection *getLinkOrderDep() const;

  static bool classof(const SectionBase *d);

  // Links to the ARMExidxSections so we can transfer the relocations once the
  // layout is known.
  std::vector<InputSection *> exidxSections;

private:
  size_t size = 0;

  // Instead of storing pointers to the .ARM.exidx InputSections from
  // InputObjects, we store pointers to the executable sections that need
  // .ARM.exidx sections. We can then use the dependentSections of these to
  // either find the .ARM.exidx section or know that we need to generate one.
  std::vector<InputSection *> executableSections;

  // The executable InputSection with the highest address to use for the
  // sentinel. We store separately from ExecutableSections as merging of
  // duplicate entries may mean this InputSection is removed from
  // ExecutableSections.
  InputSection *sentinel = nullptr;
};

// A container for one or more linker generated thunks. Instances of these
// thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
class ThunkSection : public SyntheticSection {
public:
  // ThunkSection in OS, with desired outSecOff of Off
  ThunkSection(OutputSection *os, uint64_t off);

  // Add a newly created Thunk to this container:
  // Thunk is given offset from start of this InputSection
  // Thunk defines a symbol in this InputSection that can be used as target
  // of a relocation
  void addThunk(Thunk *t);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  InputSection *getTargetInputSection() const;
  bool assignOffsets();

  // When true, round up reported size of section to 4 KiB. See comment
  // in addThunkSection() for more details.
  bool roundUpSizeForErrata = false;

private:
  std::vector<Thunk *> thunks;
  size_t size = 0;
};

// Used to compute outSecOff of .got2 in each object file. This is needed to
// synthesize PLT entries for PPC32 Secure PLT ABI.
class PPC32Got2Section final : public SyntheticSection {
public:
  PPC32Got2Section();
  size_t getSize() const override { return 0; }
  bool isNeeded() const override;
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override {}
};

// This section is used to store the addresses of functions that are called
// in range-extending thunks on PowerPC64. When producing position dependent
// code the addresses are link-time constants and the table is written out to
// the binary. When producing position-dependent code the table is allocated and
// filled in by the dynamic linker.
class PPC64LongBranchTargetSection final : public SyntheticSection {
public:
  PPC64LongBranchTargetSection();
  uint64_t getEntryVA(const Symbol *sym, int64_t addend);
  llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;
  void finalizeContents() override { finalized = true; }

private:
  std::vector<std::pair<const Symbol *, int64_t>> entries;
  llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
  bool finalized = false;
};

template <typename ELFT>
class PartitionElfHeaderSection : public SyntheticSection {
public:
  PartitionElfHeaderSection();
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
};

template <typename ELFT>
class PartitionProgramHeadersSection : public SyntheticSection {
public:
  PartitionProgramHeadersSection();
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
};

class PartitionIndexSection : public SyntheticSection {
public:
  PartitionIndexSection();
  size_t getSize() const override;
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
};

InputSection *createInterpSection();
MergeInputSection *createCommentSection();
MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
                                            uint64_t flags, uint32_t alignment);
template <class ELFT> void splitSections();

template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);

Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
                           uint64_t size, InputSectionBase &section);

void addVerneed(Symbol *ss);

// Linker generated per-partition sections.
struct Partition {
  StringRef name;
  uint64_t nameStrTab;

  SyntheticSection *elfHeader;
  SyntheticSection *programHeaders;
  std::vector<PhdrEntry *> phdrs;

  ARMExidxSyntheticSection *armExidx;
  BuildIdSection *buildId;
  SyntheticSection *dynamic;
  StringTableSection *dynStrTab;
  SymbolTableBaseSection *dynSymTab;
  EhFrameHeader *ehFrameHdr;
  EhFrameSection *ehFrame;
  GnuHashTableSection *gnuHashTab;
  HashTableSection *hashTab;
  RelocationBaseSection *relaDyn;
  RelrBaseSection *relrDyn;
  VersionDefinitionSection *verDef;
  SyntheticSection *verNeed;
  VersionTableSection *verSym;

  unsigned getNumber() const { return this - &partitions[0] + 1; }
};

extern Partition *mainPart;

inline Partition &SectionBase::getPartition() const {
  assert(isLive());
  return partitions[partition - 1];
}

// Linker generated sections which can be used as inputs and are not specific to
// a partition.
struct InStruct {
  InputSection *attributes;
  BssSection *bss;
  BssSection *bssRelRo;
  GotSection *got;
  GotPltSection *gotPlt;
  IgotPltSection *igotPlt;
  PPC64LongBranchTargetSection *ppc64LongBranchTarget;
  MipsGotSection *mipsGot;
  MipsRldMapSection *mipsRldMap;
  SyntheticSection *partEnd;
  SyntheticSection *partIndex;
  PltSection *plt;
  IpltSection *iplt;
  PPC32Got2Section *ppc32Got2;
  IBTPltSection *ibtPlt;
  RelocationBaseSection *relaPlt;
  RelocationBaseSection *relaIplt;
  StringTableSection *shStrTab;
  StringTableSection *strTab;
  SymbolTableBaseSection *symTab;
  SymtabShndxSection *symTabShndx;
};

extern InStruct in;

} // namespace elf
} // namespace lld

#endif