Relocations.cpp 83.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
//===- Relocations.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains platform-independent functions to process relocations.
// I'll describe the overview of this file here.
//
// Simple relocations are easy to handle for the linker. For example,
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
// with the relative offsets to the target symbols. It would just be
// reading records from relocation sections and applying them to output.
//
// But not all relocations are that easy to handle. For example, for
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
// symbols if they don't exist, and fix up locations with GOT entry
// offsets from the beginning of GOT section. So there is more than
// fixing addresses in relocation processing.
//
// ELF defines a large number of complex relocations.
//
// The functions in this file analyze relocations and do whatever needs
// to be done. It includes, but not limited to, the following.
//
//  - create GOT/PLT entries
//  - create new relocations in .dynsym to let the dynamic linker resolve
//    them at runtime (since ELF supports dynamic linking, not all
//    relocations can be resolved at link-time)
//  - create COPY relocs and reserve space in .bss
//  - replace expensive relocs (in terms of runtime cost) with cheap ones
//  - error out infeasible combinations such as PIC and non-relative relocs
//
// Note that the functions in this file don't actually apply relocations
// because it doesn't know about the output file nor the output file buffer.
// It instead stores Relocation objects to InputSection's Relocations
// vector to let it apply later in InputSection::writeTo.
//
//===----------------------------------------------------------------------===//

#include "Relocations.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;

static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
  for (BaseCommand *base : script->sectionCommands)
    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
      if (cmd->sym == &sym)
        return cmd->location;
  return None;
}

static std::string getDefinedLocation(const Symbol &sym) {
  std::string msg = "\n>>> defined in ";
  if (sym.file)
    msg += toString(sym.file);
  else if (Optional<std::string> loc = getLinkerScriptLocation(sym))
    msg += *loc;
  return msg;
}

// Construct a message in the following format.
//
// >>> defined in /home/alice/src/foo.o
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
// >>>               /home/alice/src/bar.o:(.text+0x1)
static std::string getLocation(InputSectionBase &s, const Symbol &sym,
                               uint64_t off) {
  std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
  std::string src = s.getSrcMsg(sym, off);
  if (!src.empty())
    msg += src + "\n>>>               ";
  return msg + s.getObjMsg(off);
}

void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
                           int64_t min, uint64_t max) {
  ErrorPlace errPlace = getErrorPlace(loc);
  std::string hint;
  if (rel.sym && !rel.sym->isLocal())
    hint = "; references " + lld::toString(*rel.sym) +
           getDefinedLocation(*rel.sym);

  if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
    hint += "; consider recompiling with -fdebug-types-section to reduce size "
            "of debug sections";

  errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
              " out of range: " + v.str() + " is not in [" + Twine(min).str() +
              ", " + Twine(max).str() + "]" + hint);
}

void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
                           const Twine &msg) {
  ErrorPlace errPlace = getErrorPlace(loc);
  std::string hint;
  if (!sym.getName().empty())
    hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
  errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
              " is not in [" + Twine(llvm::minIntN(n)) + ", " +
              Twine(llvm::maxIntN(n)) + "]" + hint);
}

namespace {
// Build a bitmask with one bit set for each RelExpr.
//
// Constexpr function arguments can't be used in static asserts, so we
// use template arguments to build the mask.
// But function template partial specializations don't exist (needed
// for base case of the recursion), so we need a dummy struct.
template <RelExpr... Exprs> struct RelExprMaskBuilder {
  static inline uint64_t build() { return 0; }
};

// Specialization for recursive case.
template <RelExpr Head, RelExpr... Tail>
struct RelExprMaskBuilder<Head, Tail...> {
  static inline uint64_t build() {
    static_assert(0 <= Head && Head < 64,
                  "RelExpr is too large for 64-bit mask!");
    return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
  }
};
} // namespace

// Return true if `Expr` is one of `Exprs`.
// There are fewer than 64 RelExpr's, so we can represent any set of
// RelExpr's as a constant bit mask and test for membership with a
// couple cheap bitwise operations.
template <RelExpr... Exprs> bool oneof(RelExpr expr) {
  assert(0 <= expr && (int)expr < 64 &&
         "RelExpr is too large for 64-bit mask!");
  return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
}

// This function is similar to the `handleTlsRelocation`. MIPS does not
// support any relaxations for TLS relocations so by factoring out MIPS
// handling in to the separate function we can simplify the code and do not
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
// Mips has a custom MipsGotSection that handles the writing of GOT entries
// without dynamic relocations.
static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
                                        InputSectionBase &c, uint64_t offset,
                                        int64_t addend, RelExpr expr) {
  if (expr == R_MIPS_TLSLD) {
    in.mipsGot->addTlsIndex(*c.file);
    c.relocations.push_back({expr, type, offset, addend, &sym});
    return 1;
  }
  if (expr == R_MIPS_TLSGD) {
    in.mipsGot->addDynTlsEntry(*c.file, sym);
    c.relocations.push_back({expr, type, offset, addend, &sym});
    return 1;
  }
  return 0;
}

// Notes about General Dynamic and Local Dynamic TLS models below. They may
// require the generation of a pair of GOT entries that have associated dynamic
// relocations. The pair of GOT entries created are of the form GOT[e0] Module
// Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
// symbol in TLS block.
//
// Returns the number of relocations processed.
template <class ELFT>
static unsigned
handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
                    typename ELFT::uint offset, int64_t addend, RelExpr expr) {
  if (!sym.isTls())
    return 0;

  if (config->emachine == EM_MIPS)
    return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);

  if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
          expr) &&
      config->shared) {
    if (in.got->addDynTlsEntry(sym)) {
      uint64_t off = in.got->getGlobalDynOffset(sym);
      mainPart->relaDyn->addReloc(
          {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
    }
    if (expr != R_TLSDESC_CALL)
      c.relocations.push_back({expr, type, offset, addend, &sym});
    return 1;
  }

  bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
                     config->emachine != EM_HEXAGON &&
                     config->emachine != EM_RISCV;

  // If we are producing an executable and the symbol is non-preemptable, it
  // must be defined and the code sequence can be relaxed to use Local-Exec.
  //
  // ARM and RISC-V do not support any relaxations for TLS relocations, however,
  // we can omit the DTPMOD dynamic relocations and resolve them at link time
  // because them are always 1. This may be necessary for static linking as
  // DTPMOD may not be expected at load time.
  bool isLocalInExecutable = !sym.isPreemptible && !config->shared;

  // Local Dynamic is for access to module local TLS variables, while still
  // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
  // module index, with a special value of 0 for the current module. GOT[e1] is
  // unused. There only needs to be one module index entry.
  if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
          expr)) {
    // Local-Dynamic relocs can be relaxed to Local-Exec.
    if (toExecRelax) {
      c.relocations.push_back(
          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
           offset, addend, &sym});
      return target->getTlsGdRelaxSkip(type);
    }
    if (expr == R_TLSLD_HINT)
      return 1;
    if (in.got->addTlsIndex()) {
      if (isLocalInExecutable)
        in.got->relocations.push_back(
            {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
      else
        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
                                in.got->getTlsIndexOff(), nullptr);
    }
    c.relocations.push_back({expr, type, offset, addend, &sym});
    return 1;
  }

  // Local-Dynamic relocs can be relaxed to Local-Exec.
  if (expr == R_DTPREL && toExecRelax) {
    c.relocations.push_back(
        {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
         offset, addend, &sym});
    return 1;
  }

  // Local-Dynamic sequence where offset of tls variable relative to dynamic
  // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
  if (expr == R_TLSLD_GOT_OFF) {
    if (!sym.isInGot()) {
      in.got->addEntry(sym);
      uint64_t off = sym.getGotOffset();
      in.got->relocations.push_back(
          {R_ABS, target->tlsOffsetRel, off, 0, &sym});
    }
    c.relocations.push_back({expr, type, offset, addend, &sym});
    return 1;
  }

  if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
            R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
    if (!toExecRelax) {
      if (in.got->addDynTlsEntry(sym)) {
        uint64_t off = in.got->getGlobalDynOffset(sym);

        if (isLocalInExecutable)
          // Write one to the GOT slot.
          in.got->relocations.push_back(
              {R_ADDEND, target->symbolicRel, off, 1, &sym});
        else
          mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);

        // If the symbol is preemptible we need the dynamic linker to write
        // the offset too.
        uint64_t offsetOff = off + config->wordsize;
        if (sym.isPreemptible)
          mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
                                  &sym);
        else
          in.got->relocations.push_back(
              {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
      }
      c.relocations.push_back({expr, type, offset, addend, &sym});
      return 1;
    }

    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
    // depending on the symbol being locally defined or not.
    if (sym.isPreemptible) {
      c.relocations.push_back(
          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type,
           offset, addend, &sym});
      if (!sym.isInGot()) {
        in.got->addEntry(sym);
        mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
                                &sym);
      }
    } else {
      c.relocations.push_back(
          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type,
           offset, addend, &sym});
    }
    return target->getTlsGdRelaxSkip(type);
  }

  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
  // defined.
  if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
            R_TLSIE_HINT>(expr) &&
      toExecRelax && isLocalInExecutable) {
    c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
    return 1;
  }

  if (expr == R_TLSIE_HINT)
    return 1;
  return 0;
}

static RelType getMipsPairType(RelType type, bool isLocal) {
  switch (type) {
  case R_MIPS_HI16:
    return R_MIPS_LO16;
  case R_MIPS_GOT16:
    // In case of global symbol, the R_MIPS_GOT16 relocation does not
    // have a pair. Each global symbol has a unique entry in the GOT
    // and a corresponding instruction with help of the R_MIPS_GOT16
    // relocation loads an address of the symbol. In case of local
    // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
    // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
    // relocations handle low 16 bits of the address. That allows
    // to allocate only one GOT entry for every 64 KBytes of local data.
    return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
  case R_MICROMIPS_GOT16:
    return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
  case R_MIPS_PCHI16:
    return R_MIPS_PCLO16;
  case R_MICROMIPS_HI16:
    return R_MICROMIPS_LO16;
  default:
    return R_MIPS_NONE;
  }
}

// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
static bool isAbsolute(const Symbol &sym) {
  if (sym.isUndefWeak())
    return true;
  if (const auto *dr = dyn_cast<Defined>(&sym))
    return dr->section == nullptr; // Absolute symbol.
  return false;
}

static bool isAbsoluteValue(const Symbol &sym) {
  return isAbsolute(sym) || sym.isTls();
}

// Returns true if Expr refers a PLT entry.
static bool needsPlt(RelExpr expr) {
  return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
}

// Returns true if Expr refers a GOT entry. Note that this function
// returns false for TLS variables even though they need GOT, because
// TLS variables uses GOT differently than the regular variables.
static bool needsGot(RelExpr expr) {
  return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
               R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>(
      expr);
}

// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr expr) {
  return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
               R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
               R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
}

// Returns true if a given relocation can be computed at link-time.
//
// For instance, we know the offset from a relocation to its target at
// link-time if the relocation is PC-relative and refers a
// non-interposable function in the same executable. This function
// will return true for such relocation.
//
// If this function returns false, that means we need to emit a
// dynamic relocation so that the relocation will be fixed at load-time.
static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
                                     InputSectionBase &s, uint64_t relOff) {
  // These expressions always compute a constant
  if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
            R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
            R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
            R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
            R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
            R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
            R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>(
          e))
    return true;

  // These never do, except if the entire file is position dependent or if
  // only the low bits are used.
  if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
    return target->usesOnlyLowPageBits(type) || !config->isPic;

  if (sym.isPreemptible)
    return false;
  if (!config->isPic)
    return true;

  // The size of a non preemptible symbol is a constant.
  if (e == R_SIZE)
    return true;

  // For the target and the relocation, we want to know if they are
  // absolute or relative.
  bool absVal = isAbsoluteValue(sym);
  bool relE = isRelExpr(e);
  if (absVal && !relE)
    return true;
  if (!absVal && relE)
    return true;
  if (!absVal && !relE)
    return target->usesOnlyLowPageBits(type);

  assert(absVal && relE);

  // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
  // in PIC mode. This is a little strange, but it allows us to link function
  // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
  // Normally such a call will be guarded with a comparison, which will load a
  // zero from the GOT.
  if (sym.isUndefWeak())
    return true;

  // We set the final symbols values for linker script defined symbols later.
  // They always can be computed as a link time constant.
  if (sym.scriptDefined)
      return true;

  error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
        toString(sym) + getLocation(s, sym, relOff));
  return true;
}

static RelExpr toPlt(RelExpr expr) {
  switch (expr) {
  case R_PPC64_CALL:
    return R_PPC64_CALL_PLT;
  case R_PC:
    return R_PLT_PC;
  case R_ABS:
    return R_PLT;
  default:
    return expr;
  }
}

static RelExpr fromPlt(RelExpr expr) {
  // We decided not to use a plt. Optimize a reference to the plt to a
  // reference to the symbol itself.
  switch (expr) {
  case R_PLT_PC:
  case R_PPC32_PLTREL:
    return R_PC;
  case R_PPC64_CALL_PLT:
    return R_PPC64_CALL;
  case R_PLT:
    return R_ABS;
  default:
    return expr;
  }
}

// Returns true if a given shared symbol is in a read-only segment in a DSO.
template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
  using Elf_Phdr = typename ELFT::Phdr;

  // Determine if the symbol is read-only by scanning the DSO's program headers.
  const SharedFile &file = ss.getFile();
  for (const Elf_Phdr &phdr :
       check(file.template getObj<ELFT>().program_headers()))
    if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
        !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
        ss.value < phdr.p_vaddr + phdr.p_memsz)
      return true;
  return false;
}

// Returns symbols at the same offset as a given symbol, including SS itself.
//
// If two or more symbols are at the same offset, and at least one of
// them are copied by a copy relocation, all of them need to be copied.
// Otherwise, they would refer to different places at runtime.
template <class ELFT>
static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
  using Elf_Sym = typename ELFT::Sym;

  SharedFile &file = ss.getFile();

  SmallSet<SharedSymbol *, 4> ret;
  for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
    if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
        s.getType() == STT_TLS || s.st_value != ss.value)
      continue;
    StringRef name = check(s.getName(file.getStringTable()));
    Symbol *sym = symtab->find(name);
    if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
      ret.insert(alias);
  }
  return ret;
}

// When a symbol is copy relocated or we create a canonical plt entry, it is
// effectively a defined symbol. In the case of copy relocation the symbol is
// in .bss and in the case of a canonical plt entry it is in .plt. This function
// replaces the existing symbol with a Defined pointing to the appropriate
// location.
static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
                               uint64_t size) {
  Symbol old = sym;

  sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
                      sym.type, value, size, sec});

  sym.pltIndex = old.pltIndex;
  sym.gotIndex = old.gotIndex;
  sym.verdefIndex = old.verdefIndex;
  sym.exportDynamic = true;
  sym.isUsedInRegularObj = true;
}

// Reserve space in .bss or .bss.rel.ro for copy relocation.
//
// The copy relocation is pretty much a hack. If you use a copy relocation
// in your program, not only the symbol name but the symbol's size, RW/RO
// bit and alignment become part of the ABI. In addition to that, if the
// symbol has aliases, the aliases become part of the ABI. That's subtle,
// but if you violate that implicit ABI, that can cause very counter-
// intuitive consequences.
//
// So, what is the copy relocation? It's for linking non-position
// independent code to DSOs. In an ideal world, all references to data
// exported by DSOs should go indirectly through GOT. But if object files
// are compiled as non-PIC, all data references are direct. There is no
// way for the linker to transform the code to use GOT, as machine
// instructions are already set in stone in object files. This is where
// the copy relocation takes a role.
//
// A copy relocation instructs the dynamic linker to copy data from a DSO
// to a specified address (which is usually in .bss) at load-time. If the
// static linker (that's us) finds a direct data reference to a DSO
// symbol, it creates a copy relocation, so that the symbol can be
// resolved as if it were in .bss rather than in a DSO.
//
// As you can see in this function, we create a copy relocation for the
// dynamic linker, and the relocation contains not only symbol name but
// various other information about the symbol. So, such attributes become a
// part of the ABI.
//
// Note for application developers: I can give you a piece of advice if
// you are writing a shared library. You probably should export only
// functions from your library. You shouldn't export variables.
//
// As an example what can happen when you export variables without knowing
// the semantics of copy relocations, assume that you have an exported
// variable of type T. It is an ABI-breaking change to add new members at
// end of T even though doing that doesn't change the layout of the
// existing members. That's because the space for the new members are not
// reserved in .bss unless you recompile the main program. That means they
// are likely to overlap with other data that happens to be laid out next
// to the variable in .bss. This kind of issue is sometimes very hard to
// debug. What's a solution? Instead of exporting a variable V from a DSO,
// define an accessor getV().
template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
  // Copy relocation against zero-sized symbol doesn't make sense.
  uint64_t symSize = ss.getSize();
  if (symSize == 0 || ss.alignment == 0)
    fatal("cannot create a copy relocation for symbol " + toString(ss));

  // See if this symbol is in a read-only segment. If so, preserve the symbol's
  // memory protection by reserving space in the .bss.rel.ro section.
  bool isRO = isReadOnly<ELFT>(ss);
  BssSection *sec =
      make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
  OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();

  // At this point, sectionBases has been migrated to sections. Append sec to
  // sections.
  if (osec->sectionCommands.empty() ||
      !isa<InputSectionDescription>(osec->sectionCommands.back()))
    osec->sectionCommands.push_back(make<InputSectionDescription>(""));
  auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
  isd->sections.push_back(sec);
  osec->commitSection(sec);

  // Look through the DSO's dynamic symbol table for aliases and create a
  // dynamic symbol for each one. This causes the copy relocation to correctly
  // interpose any aliases.
  for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
    replaceWithDefined(*sym, sec, 0, sym->size);

  mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
}

// MIPS has an odd notion of "paired" relocations to calculate addends.
// For example, if a relocation is of R_MIPS_HI16, there must be a
// R_MIPS_LO16 relocation after that, and an addend is calculated using
// the two relocations.
template <class ELFT, class RelTy>
static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
                                 InputSectionBase &sec, RelExpr expr,
                                 bool isLocal) {
  if (expr == R_MIPS_GOTREL && isLocal)
    return sec.getFile<ELFT>()->mipsGp0;

  // The ABI says that the paired relocation is used only for REL.
  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (RelTy::IsRela)
    return 0;

  RelType type = rel.getType(config->isMips64EL);
  uint32_t pairTy = getMipsPairType(type, isLocal);
  if (pairTy == R_MIPS_NONE)
    return 0;

  const uint8_t *buf = sec.data().data();
  uint32_t symIndex = rel.getSymbol(config->isMips64EL);

  // To make things worse, paired relocations might not be contiguous in
  // the relocation table, so we need to do linear search. *sigh*
  for (const RelTy *ri = &rel; ri != end; ++ri)
    if (ri->getType(config->isMips64EL) == pairTy &&
        ri->getSymbol(config->isMips64EL) == symIndex)
      return target->getImplicitAddend(buf + ri->r_offset, pairTy);

  warn("can't find matching " + toString(pairTy) + " relocation for " +
       toString(type));
  return 0;
}

// Returns an addend of a given relocation. If it is RELA, an addend
// is in a relocation itself. If it is REL, we need to read it from an
// input section.
template <class ELFT, class RelTy>
static int64_t computeAddend(const RelTy &rel, const RelTy *end,
                             InputSectionBase &sec, RelExpr expr,
                             bool isLocal) {
  int64_t addend;
  RelType type = rel.getType(config->isMips64EL);

  if (RelTy::IsRela) {
    addend = getAddend<ELFT>(rel);
  } else {
    const uint8_t *buf = sec.data().data();
    addend = target->getImplicitAddend(buf + rel.r_offset, type);
  }

  if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
    addend += getPPC64TocBase();
  if (config->emachine == EM_MIPS)
    addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);

  return addend;
}

// Custom error message if Sym is defined in a discarded section.
template <class ELFT>
static std::string maybeReportDiscarded(Undefined &sym) {
  auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
  if (!file || !sym.discardedSecIdx ||
      file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
    return "";
  ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
      CHECK(file->getObj().sections(), file);

  std::string msg;
  if (sym.type == ELF::STT_SECTION) {
    msg = "relocation refers to a discarded section: ";
    msg += CHECK(
        file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
  } else {
    msg = "relocation refers to a symbol in a discarded section: " +
          toString(sym);
  }
  msg += "\n>>> defined in " + toString(file);

  Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
  if (elfSec.sh_type != SHT_GROUP)
    return msg;

  // If the discarded section is a COMDAT.
  StringRef signature = file->getShtGroupSignature(objSections, elfSec);
  if (const InputFile *prevailing =
          symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
    msg += "\n>>> section group signature: " + signature.str() +
           "\n>>> prevailing definition is in " + toString(prevailing);
  return msg;
}

// Undefined diagnostics are collected in a vector and emitted once all of
// them are known, so that some postprocessing on the list of undefined symbols
// can happen before lld emits diagnostics.
struct UndefinedDiag {
  Symbol *sym;
  struct Loc {
    InputSectionBase *sec;
    uint64_t offset;
  };
  std::vector<Loc> locs;
  bool isWarning;
};

static std::vector<UndefinedDiag> undefs;

// Check whether the definition name def is a mangled function name that matches
// the reference name ref.
static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
  llvm::ItaniumPartialDemangler d;
  std::string name = def.str();
  if (d.partialDemangle(name.c_str()))
    return false;
  char *buf = d.getFunctionName(nullptr, nullptr);
  if (!buf)
    return false;
  bool ret = ref == buf;
  free(buf);
  return ret;
}

// Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
// the suggested symbol, which is either in the symbol table, or in the same
// file of sym.
template <class ELFT>
static const Symbol *getAlternativeSpelling(const Undefined &sym,
                                            std::string &pre_hint,
                                            std::string &post_hint) {
  DenseMap<StringRef, const Symbol *> map;
  if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
    // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
    // will give an error. Don't suggest an alternative spelling.
    if (file && sym.discardedSecIdx != 0 &&
        file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
      return nullptr;

    // Build a map of local defined symbols.
    for (const Symbol *s : sym.file->getSymbols())
      if (s->isLocal() && s->isDefined())
        map.try_emplace(s->getName(), s);
  }

  auto suggest = [&](StringRef newName) -> const Symbol * {
    // If defined locally.
    if (const Symbol *s = map.lookup(newName))
      return s;

    // If in the symbol table and not undefined.
    if (const Symbol *s = symtab->find(newName))
      if (!s->isUndefined())
        return s;

    return nullptr;
  };

  // This loop enumerates all strings of Levenshtein distance 1 as typo
  // correction candidates and suggests the one that exists as a non-undefined
  // symbol.
  StringRef name = sym.getName();
  for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
    // Insert a character before name[i].
    std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
    for (char c = '0'; c <= 'z'; ++c) {
      newName[i] = c;
      if (const Symbol *s = suggest(newName))
        return s;
    }
    if (i == e)
      break;

    // Substitute name[i].
    newName = std::string(name);
    for (char c = '0'; c <= 'z'; ++c) {
      newName[i] = c;
      if (const Symbol *s = suggest(newName))
        return s;
    }

    // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
    // common.
    if (i + 1 < e) {
      newName[i] = name[i + 1];
      newName[i + 1] = name[i];
      if (const Symbol *s = suggest(newName))
        return s;
    }

    // Delete name[i].
    newName = (name.substr(0, i) + name.substr(i + 1)).str();
    if (const Symbol *s = suggest(newName))
      return s;
  }

  // Case mismatch, e.g. Foo vs FOO.
  for (auto &it : map)
    if (name.equals_lower(it.first))
      return it.second;
  for (Symbol *sym : symtab->symbols())
    if (!sym->isUndefined() && name.equals_lower(sym->getName()))
      return sym;

  // The reference may be a mangled name while the definition is not. Suggest a
  // missing extern "C".
  if (name.startswith("_Z")) {
    std::string buf = name.str();
    llvm::ItaniumPartialDemangler d;
    if (!d.partialDemangle(buf.c_str()))
      if (char *buf = d.getFunctionName(nullptr, nullptr)) {
        const Symbol *s = suggest(buf);
        free(buf);
        if (s) {
          pre_hint = ": extern \"C\" ";
          return s;
        }
      }
  } else {
    const Symbol *s = nullptr;
    for (auto &it : map)
      if (canSuggestExternCForCXX(name, it.first)) {
        s = it.second;
        break;
      }
    if (!s)
      for (Symbol *sym : symtab->symbols())
        if (canSuggestExternCForCXX(name, sym->getName())) {
          s = sym;
          break;
        }
    if (s) {
      pre_hint = " to declare ";
      post_hint = " as extern \"C\"?";
      return s;
    }
  }

  return nullptr;
}

template <class ELFT>
static void reportUndefinedSymbol(const UndefinedDiag &undef,
                                  bool correctSpelling) {
  Symbol &sym = *undef.sym;

  auto visibility = [&]() -> std::string {
    switch (sym.visibility) {
    case STV_INTERNAL:
      return "internal ";
    case STV_HIDDEN:
      return "hidden ";
    case STV_PROTECTED:
      return "protected ";
    default:
      return "";
    }
  };

  std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
  if (msg.empty())
    msg = "undefined " + visibility() + "symbol: " + toString(sym);

  const size_t maxUndefReferences = 3;
  size_t i = 0;
  for (UndefinedDiag::Loc l : undef.locs) {
    if (i >= maxUndefReferences)
      break;
    InputSectionBase &sec = *l.sec;
    uint64_t offset = l.offset;

    msg += "\n>>> referenced by ";
    std::string src = sec.getSrcMsg(sym, offset);
    if (!src.empty())
      msg += src + "\n>>>               ";
    msg += sec.getObjMsg(offset);
    i++;
  }

  if (i < undef.locs.size())
    msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
               .str();

  if (correctSpelling) {
    std::string pre_hint = ": ", post_hint;
    if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
            cast<Undefined>(sym), pre_hint, post_hint)) {
      msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
      if (corrected->file)
        msg += "\n>>> defined in: " + toString(corrected->file);
    }
  }

  if (sym.getName().startswith("_ZTV"))
    msg +=
        "\n>>> the vtable symbol may be undefined because the class is missing "
        "its key function (see https://lld.llvm.org/missingkeyfunction)";

  if (undef.isWarning)
    warn(msg);
  else
    error(msg);
}

template <class ELFT> void elf::reportUndefinedSymbols() {
  // Find the first "undefined symbol" diagnostic for each diagnostic, and
  // collect all "referenced from" lines at the first diagnostic.
  DenseMap<Symbol *, UndefinedDiag *> firstRef;
  for (UndefinedDiag &undef : undefs) {
    assert(undef.locs.size() == 1);
    if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
      canon->locs.push_back(undef.locs[0]);
      undef.locs.clear();
    } else
      firstRef[undef.sym] = &undef;
  }

  // Enable spell corrector for the first 2 diagnostics.
  for (auto it : enumerate(undefs))
    if (!it.value().locs.empty())
      reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
  undefs.clear();
}

// Report an undefined symbol if necessary.
// Returns true if the undefined symbol will produce an error message.
static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
                                 uint64_t offset) {
  if (!sym.isUndefined() || sym.isWeak())
    return false;

  bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
  if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
    return false;

  // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
  // which references a switch table in a discarded .rodata/.text section. The
  // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
  // spec says references from outside the group to a STB_LOCAL symbol are not
  // allowed. Work around the bug.
  //
  // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
  // because .LC0-.LTOC is not representable if the two labels are in different
  // .got2
  if (cast<Undefined>(sym).discardedSecIdx != 0 &&
      (sec.name == ".got2" || sec.name == ".toc"))
    return false;

  bool isWarning =
      (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
      config->noinhibitExec;
  undefs.push_back({&sym, {{&sec, offset}}, isWarning});
  return !isWarning;
}

// MIPS N32 ABI treats series of successive relocations with the same offset
// as a single relocation. The similar approach used by N64 ABI, but this ABI
// packs all relocations into the single relocation record. Here we emulate
// this for the N32 ABI. Iterate over relocation with the same offset and put
// theirs types into the single bit-set.
template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
  RelType type = 0;
  uint64_t offset = rel->r_offset;

  int n = 0;
  while (rel != end && rel->r_offset == offset)
    type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
  return type;
}

// .eh_frame sections are mergeable input sections, so their input
// offsets are not linearly mapped to output section. For each input
// offset, we need to find a section piece containing the offset and
// add the piece's base address to the input offset to compute the
// output offset. That isn't cheap.
//
// This class is to speed up the offset computation. When we process
// relocations, we access offsets in the monotonically increasing
// order. So we can optimize for that access pattern.
//
// For sections other than .eh_frame, this class doesn't do anything.
namespace {
class OffsetGetter {
public:
  explicit OffsetGetter(InputSectionBase &sec) {
    if (auto *eh = dyn_cast<EhInputSection>(&sec))
      pieces = eh->pieces;
  }

  // Translates offsets in input sections to offsets in output sections.
  // Given offset must increase monotonically. We assume that Piece is
  // sorted by inputOff.
  uint64_t get(uint64_t off) {
    if (pieces.empty())
      return off;

    while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
      ++i;
    if (i == pieces.size())
      fatal(".eh_frame: relocation is not in any piece");

    // Pieces must be contiguous, so there must be no holes in between.
    assert(pieces[i].inputOff <= off && "Relocation not in any piece");

    // Offset -1 means that the piece is dead (i.e. garbage collected).
    if (pieces[i].outputOff == -1)
      return -1;
    return pieces[i].outputOff + off - pieces[i].inputOff;
  }

private:
  ArrayRef<EhSectionPiece> pieces;
  size_t i = 0;
};
} // namespace

static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
                             Symbol *sym, int64_t addend, RelExpr expr,
                             RelType type) {
  Partition &part = isec->getPartition();

  // Add a relative relocation. If relrDyn section is enabled, and the
  // relocation offset is guaranteed to be even, add the relocation to
  // the relrDyn section, otherwise add it to the relaDyn section.
  // relrDyn sections don't support odd offsets. Also, relrDyn sections
  // don't store the addend values, so we must write it to the relocated
  // address.
  if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
    isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
    part.relrDyn->relocs.push_back({isec, offsetInSec});
    return;
  }
  part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
                         expr, type);
}

template <class PltSection, class GotPltSection>
static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
                        RelocationBaseSection *rel, RelType type, Symbol &sym) {
  plt->addEntry(sym);
  gotPlt->addEntry(sym);
  rel->addReloc(
      {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
}

static void addGotEntry(Symbol &sym) {
  in.got->addEntry(sym);

  RelExpr expr = sym.isTls() ? R_TLS : R_ABS;
  uint64_t off = sym.getGotOffset();

  // If a GOT slot value can be calculated at link-time, which is now,
  // we can just fill that out.
  //
  // (We don't actually write a value to a GOT slot right now, but we
  // add a static relocation to a Relocations vector so that
  // InputSection::relocate will do the work for us. We may be able
  // to just write a value now, but it is a TODO.)
  bool isLinkTimeConstant =
      !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
  if (isLinkTimeConstant) {
    in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
    return;
  }

  // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
  // the GOT slot will be fixed at load-time.
  if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
    addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
    return;
  }
  mainPart->relaDyn->addReloc(
      sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
      sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
}

// Return true if we can define a symbol in the executable that
// contains the value/function of a symbol defined in a shared
// library.
static bool canDefineSymbolInExecutable(Symbol &sym) {
  // If the symbol has default visibility the symbol defined in the
  // executable will preempt it.
  // Note that we want the visibility of the shared symbol itself, not
  // the visibility of the symbol in the output file we are producing. That is
  // why we use Sym.stOther.
  if ((sym.stOther & 0x3) == STV_DEFAULT)
    return true;

  // If we are allowed to break address equality of functions, defining
  // a plt entry will allow the program to call the function in the
  // .so, but the .so and the executable will no agree on the address
  // of the function. Similar logic for objects.
  return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
          (sym.isObject() && config->ignoreDataAddressEquality));
}

// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
// This would have some drawbacks. For example, we would only know if .rela.dyn
// is needed after applying relocations. If it is, it will go after rw and rx
// sections. Given that it is ro, we will need an extra PT_LOAD. This
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT, class RelTy>
static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
                            uint64_t offset, Symbol &sym, const RelTy &rel,
                            int64_t addend) {
  // If the relocation is known to be a link-time constant, we know no dynamic
  // relocation will be created, pass the control to relocateAlloc() or
  // relocateNonAlloc() to resolve it.
  //
  // The behavior of an undefined weak reference is implementation defined. If
  // the relocation is to a weak undef, and we are producing an executable, let
  // relocate{,Non}Alloc() resolve it.
  if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
      (!config->shared && sym.isUndefWeak())) {
    sec.relocations.push_back({expr, type, offset, addend, &sym});
    return;
  }

  bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
  if (canWrite) {
    RelType rel = target->getDynRel(type);
    if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
      addRelativeReloc(&sec, offset, &sym, addend, expr, type);
      return;
    } else if (rel != 0) {
      if (config->emachine == EM_MIPS && rel == target->symbolicRel)
        rel = target->relativeRel;
      sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
                                           R_ADDEND, type);

      // MIPS ABI turns using of GOT and dynamic relocations inside out.
      // While regular ABI uses dynamic relocations to fill up GOT entries
      // MIPS ABI requires dynamic linker to fills up GOT entries using
      // specially sorted dynamic symbol table. This affects even dynamic
      // relocations against symbols which do not require GOT entries
      // creation explicitly, i.e. do not have any GOT-relocations. So if
      // a preemptible symbol has a dynamic relocation we anyway have
      // to create a GOT entry for it.
      // If a non-preemptible symbol has a dynamic relocation against it,
      // dynamic linker takes it st_value, adds offset and writes down
      // result of the dynamic relocation. In case of preemptible symbol
      // dynamic linker performs symbol resolution, writes the symbol value
      // to the GOT entry and reads the GOT entry when it needs to perform
      // a dynamic relocation.
      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
      if (config->emachine == EM_MIPS)
        in.mipsGot->addEntry(*sec.file, sym, addend, expr);
      return;
    }
  }

  // When producing an executable, we can perform copy relocations (for
  // STT_OBJECT) and canonical PLT (for STT_FUNC).
  if (!config->shared) {
    if (!canDefineSymbolInExecutable(sym)) {
      errorOrWarn("cannot preempt symbol: " + toString(sym) +
                  getLocation(sec, sym, offset));
      return;
    }

    if (sym.isObject()) {
      // Produce a copy relocation.
      if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
        if (!config->zCopyreloc)
          error("unresolvable relocation " + toString(type) +
                " against symbol '" + toString(*ss) +
                "'; recompile with -fPIC or remove '-z nocopyreloc'" +
                getLocation(sec, sym, offset));
        addCopyRelSymbol<ELFT>(*ss);
      }
      sec.relocations.push_back({expr, type, offset, addend, &sym});
      return;
    }

    // This handles a non PIC program call to function in a shared library. In
    // an ideal world, we could just report an error saying the relocation can
    // overflow at runtime. In the real world with glibc, crt1.o has a
    // R_X86_64_PC32 pointing to libc.so.
    //
    // The general idea on how to handle such cases is to create a PLT entry and
    // use that as the function value.
    //
    // For the static linking part, we just return a plt expr and everything
    // else will use the PLT entry as the address.
    //
    // The remaining problem is making sure pointer equality still works. We
    // need the help of the dynamic linker for that. We let it know that we have
    // a direct reference to a so symbol by creating an undefined symbol with a
    // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
    // the value of the symbol we created. This is true even for got entries, so
    // pointer equality is maintained. To avoid an infinite loop, the only entry
    // that points to the real function is a dedicated got entry used by the
    // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
    // R_386_JMP_SLOT, etc).

    // For position independent executable on i386, the plt entry requires ebx
    // to be set. This causes two problems:
    // * If some code has a direct reference to a function, it was probably
    //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
    // * If a library definition gets preempted to the executable, it will have
    //   the wrong ebx value.
    if (sym.isFunc()) {
      if (config->pie && config->emachine == EM_386)
        errorOrWarn("symbol '" + toString(sym) +
                    "' cannot be preempted; recompile with -fPIE" +
                    getLocation(sec, sym, offset));
      if (!sym.isInPlt())
        addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
      if (!sym.isDefined()) {
        replaceWithDefined(
            sym, in.plt,
            target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
        if (config->emachine == EM_PPC) {
          // PPC32 canonical PLT entries are at the beginning of .glink
          cast<Defined>(sym).value = in.plt->headerSize;
          in.plt->headerSize += 16;
          cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
        }
      }
      sym.needsPltAddr = true;
      sec.relocations.push_back({expr, type, offset, addend, &sym});
      return;
    }
  }

  if (config->isPic) {
    if (!canWrite && !isRelExpr(expr))
      errorOrWarn(
          "can't create dynamic relocation " + toString(type) + " against " +
          (sym.getName().empty() ? "local symbol"
                                 : "symbol: " + toString(sym)) +
          " in readonly segment; recompile object files with -fPIC "
          "or pass '-Wl,-z,notext' to allow text relocations in the output" +
          getLocation(sec, sym, offset));
    else
      errorOrWarn(
          "relocation " + toString(type) + " cannot be used against " +
          (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
          "; recompile with -fPIC" + getLocation(sec, sym, offset));
    return;
  }

  errorOrWarn("symbol '" + toString(sym) + "' has no type" +
              getLocation(sec, sym, offset));
}

template <class ELFT, class RelTy>
static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
                      RelTy *start, RelTy *end) {
  const RelTy &rel = *i;
  uint32_t symIndex = rel.getSymbol(config->isMips64EL);
  Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
  RelType type;

  // Deal with MIPS oddity.
  if (config->mipsN32Abi) {
    type = getMipsN32RelType(i, end);
  } else {
    type = rel.getType(config->isMips64EL);
    ++i;
  }

  // Get an offset in an output section this relocation is applied to.
  uint64_t offset = getOffset.get(rel.r_offset);
  if (offset == uint64_t(-1))
    return;

  // Error if the target symbol is undefined. Symbol index 0 may be used by
  // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
  if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
    return;

  const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
  RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);

  // Ignore R_*_NONE and other marker relocations.
  if (expr == R_NONE)
    return;

  if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
    warn("using ifunc symbols when text relocations are allowed may produce "
         "a binary that will segfault, if the object file is linked with "
         "old version of glibc (glibc 2.28 and earlier). If this applies to "
         "you, consider recompiling the object files without -fPIC and "
         "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
         "turn off this warning." +
         getLocation(sec, sym, offset));
  }

  // Read an addend.
  int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());

  if (config->emachine == EM_PPC64) {
    // For a call to __tls_get_addr, the instruction needs to be relocated by
    // two relocations, R_PPC64_TLSGD/R_PPC64_TLSLD and R_PPC64_REL24[_NOTOC].
    // R_PPC64_TLSGD/R_PPC64_TLSLD should precede R_PPC64_REL24[_NOTOC].
    if ((type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) &&
        sym.getName() == "__tls_get_addr") {
      bool err = i - start < 2;
      if (!err) {
        // Subtract 2 to get the previous iterator because we have already done
        // ++i above. This is now safe because we know that i-1 is not the
        // start.
        const RelTy &prevRel = *(i - 2);
        RelType prevType = prevRel.getType(config->isMips64EL);
        err = prevRel.r_offset != rel.r_offset ||
              (prevType != R_PPC64_TLSGD && prevType != R_PPC64_TLSLD);
      }

      if (err)
        errorOrWarn("call to __tls_get_addr is missing a "
                    "R_PPC64_TLSGD/R_PPC64_TLSLD relocation" +
                    getLocation(sec, sym, offset));
    }

    // We can separate the small code model relocations into 2 categories:
    // 1) Those that access the compiler generated .toc sections.
    // 2) Those that access the linker allocated got entries.
    // lld allocates got entries to symbols on demand. Since we don't try to
    // sort the got entries in any way, we don't have to track which objects
    // have got-based small code model relocs. The .toc sections get placed
    // after the end of the linker allocated .got section and we do sort those
    // so sections addressed with small code model relocations come first.
    if (isPPC64SmallCodeModelTocReloc(type))
      sec.file->ppc64SmallCodeModelTocRelocs = true;

    // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
    // InputSectionBase::relocateAlloc().
    if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
        cast<Defined>(sym).section->name == ".toc")
      ppc64noTocRelax.insert({&sym, addend});

    if (type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) {
      if (i == end) {
        errorOrWarn("R_PPC64_TLSGD may not be the last relocation" +
                    getLocation(sec, sym, offset));
        return;
      }

      // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
      // so we can discern it later from the toc-case.
      if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
        ++offset;
    }
  }

  // Relax relocations.
  //
  // If we know that a PLT entry will be resolved within the same ELF module, we
  // can skip PLT access and directly jump to the destination function. For
  // example, if we are linking a main executable, all dynamic symbols that can
  // be resolved within the executable will actually be resolved that way at
  // runtime, because the main executable is always at the beginning of a search
  // list. We can leverage that fact.
  if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
    if (expr == R_GOT_PC && !isAbsoluteValue(sym)) {
      expr = target->adjustRelaxExpr(type, relocatedAddr, expr);
    } else {
      // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
      // stub type. It should be ignored if optimized to R_PC.
      if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
        addend &= ~0x8000;
      // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
      // call __tls_get_addr even if the symbol is non-preemptible.
      if (!(config->emachine == EM_HEXAGON &&
           (type == R_HEX_GD_PLT_B22_PCREL ||
            type == R_HEX_GD_PLT_B22_PCREL_X ||
            type == R_HEX_GD_PLT_B32_PCREL_X)))
      expr = fromPlt(expr);
    }
  }

  // If the relocation does not emit a GOT or GOTPLT entry but its computation
  // uses their addresses, we need GOT or GOTPLT to be created.
  //
  // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
  if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
    in.gotPlt->hasGotPltOffRel = true;
  } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
                 expr)) {
    in.got->hasGotOffRel = true;
  }

  // Process some TLS relocations, including relaxing TLS relocations.
  // Note that this function does not handle all TLS relocations.
  if (unsigned processed =
          handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) {
    i += (processed - 1);
    return;
  }

  // We were asked not to generate PLT entries for ifuncs. Instead, pass the
  // direct relocation on through.
  if (sym.isGnuIFunc() && config->zIfuncNoplt) {
    sym.exportDynamic = true;
    mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
    return;
  }

  // Non-preemptible ifuncs require special handling. First, handle the usual
  // case where the symbol isn't one of these.
  if (!sym.isGnuIFunc() || sym.isPreemptible) {
    // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
    if (needsPlt(expr) && !sym.isInPlt())
      addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);

    // Create a GOT slot if a relocation needs GOT.
    if (needsGot(expr)) {
      if (config->emachine == EM_MIPS) {
        // MIPS ABI has special rules to process GOT entries and doesn't
        // require relocation entries for them. A special case is TLS
        // relocations. In that case dynamic loader applies dynamic
        // relocations to initialize TLS GOT entries.
        // See "Global Offset Table" in Chapter 5 in the following document
        // for detailed description:
        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
        in.mipsGot->addEntry(*sec.file, sym, addend, expr);
      } else if (!sym.isInGot()) {
        addGotEntry(sym);
      }
    }
  } else {
    // Handle a reference to a non-preemptible ifunc. These are special in a
    // few ways:
    //
    // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
    //   a fixed value. But assuming that all references to the ifunc are
    //   GOT-generating or PLT-generating, the handling of an ifunc is
    //   relatively straightforward. We create a PLT entry in Iplt, which is
    //   usually at the end of .plt, which makes an indirect call using a
    //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
    //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
    //   which is usually at the end of .rela.plt. Unlike most relocations in
    //   .rela.plt, which may be evaluated lazily without -z now, dynamic
    //   loaders evaluate IRELATIVE relocs eagerly, which means that for
    //   IRELATIVE relocs only, GOT-generating relocations can point directly to
    //   .got.plt without requiring a separate GOT entry.
    //
    // - Despite the fact that an ifunc does not have a fixed value, compilers
    //   that are not passed -fPIC will assume that they do, and will emit
    //   direct (non-GOT-generating, non-PLT-generating) relocations to the
    //   symbol. This means that if a direct relocation to the symbol is
    //   seen, the linker must set a value for the symbol, and this value must
    //   be consistent no matter what type of reference is made to the symbol.
    //   This can be done by creating a PLT entry for the symbol in the way
    //   described above and making it canonical, that is, making all references
    //   point to the PLT entry instead of the resolver. In lld we also store
    //   the address of the PLT entry in the dynamic symbol table, which means
    //   that the symbol will also have the same value in other modules.
    //   Because the value loaded from the GOT needs to be consistent with
    //   the value computed using a direct relocation, a non-preemptible ifunc
    //   may end up with two GOT entries, one in .got.plt that points to the
    //   address returned by the resolver and is used only by the PLT entry,
    //   and another in .got that points to the PLT entry and is used by
    //   GOT-generating relocations.
    //
    // - The fact that these symbols do not have a fixed value makes them an
    //   exception to the general rule that a statically linked executable does
    //   not require any form of dynamic relocation. To handle these relocations
    //   correctly, the IRELATIVE relocations are stored in an array which a
    //   statically linked executable's startup code must enumerate using the
    //   linker-defined symbols __rela?_iplt_{start,end}.
    if (!sym.isInPlt()) {
      // Create PLT and GOTPLT slots for the symbol.
      sym.isInIplt = true;

      // Create a copy of the symbol to use as the target of the IRELATIVE
      // relocation in the igotPlt. This is in case we make the PLT canonical
      // later, which would overwrite the original symbol.
      //
      // FIXME: Creating a copy of the symbol here is a bit of a hack. All
      // that's really needed to create the IRELATIVE is the section and value,
      // so ideally we should just need to copy those.
      auto *directSym = make<Defined>(cast<Defined>(sym));
      addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
                  *directSym);
      sym.pltIndex = directSym->pltIndex;
    }
    if (needsGot(expr)) {
      // Redirect GOT accesses to point to the Igot.
      //
      // This field is also used to keep track of whether we ever needed a GOT
      // entry. If we did and we make the PLT canonical later, we'll need to
      // create a GOT entry pointing to the PLT entry for Sym.
      sym.gotInIgot = true;
    } else if (!needsPlt(expr)) {
      // Make the ifunc's PLT entry canonical by changing the value of its
      // symbol to redirect all references to point to it.
      auto &d = cast<Defined>(sym);
      d.section = in.iplt;
      d.value = sym.pltIndex * target->ipltEntrySize;
      d.size = 0;
      // It's important to set the symbol type here so that dynamic loaders
      // don't try to call the PLT as if it were an ifunc resolver.
      d.type = STT_FUNC;

      if (sym.gotInIgot) {
        // We previously encountered a GOT generating reference that we
        // redirected to the Igot. Now that the PLT entry is canonical we must
        // clear the redirection to the Igot and add a GOT entry. As we've
        // changed the symbol type to STT_FUNC future GOT generating references
        // will naturally use this GOT entry.
        //
        // We don't need to worry about creating a MIPS GOT here because ifuncs
        // aren't a thing on MIPS.
        sym.gotInIgot = false;
        addGotEntry(sym);
      }
    }
  }

  processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
}

template <class ELFT, class RelTy>
static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
  OffsetGetter getOffset(sec);

  // Not all relocations end up in Sec.Relocations, but a lot do.
  sec.relocations.reserve(rels.size());

  for (auto i = rels.begin(), end = rels.end(); i != end;)
    scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end);

  // Sort relocations by offset for more efficient searching for
  // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
  if (config->emachine == EM_RISCV ||
      (config->emachine == EM_PPC64 && sec.name == ".toc"))
    llvm::stable_sort(sec.relocations,
                      [](const Relocation &lhs, const Relocation &rhs) {
                        return lhs.offset < rhs.offset;
                      });
}

template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
  if (s.areRelocsRela)
    scanRelocs<ELFT>(s, s.relas<ELFT>());
  else
    scanRelocs<ELFT>(s, s.rels<ELFT>());
}

static bool mergeCmp(const InputSection *a, const InputSection *b) {
  // std::merge requires a strict weak ordering.
  if (a->outSecOff < b->outSecOff)
    return true;

  if (a->outSecOff == b->outSecOff) {
    auto *ta = dyn_cast<ThunkSection>(a);
    auto *tb = dyn_cast<ThunkSection>(b);

    // Check if Thunk is immediately before any specific Target
    // InputSection for example Mips LA25 Thunks.
    if (ta && ta->getTargetInputSection() == b)
      return true;

    // Place Thunk Sections without specific targets before
    // non-Thunk Sections.
    if (ta && !tb && !ta->getTargetInputSection())
      return true;
  }

  return false;
}

// Call Fn on every executable InputSection accessed via the linker script
// InputSectionDescription::Sections.
static void forEachInputSectionDescription(
    ArrayRef<OutputSection *> outputSections,
    llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
  for (OutputSection *os : outputSections) {
    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
      continue;
    for (BaseCommand *bc : os->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(bc))
        fn(os, isd);
  }
}

// Thunk Implementation
//
// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
// of code that the linker inserts inbetween a caller and a callee. The thunks
// are added at link time rather than compile time as the decision on whether
// a thunk is needed, such as the caller and callee being out of range, can only
// be made at link time.
//
// It is straightforward to tell given the current state of the program when a
// thunk is needed for a particular call. The more difficult part is that
// the thunk needs to be placed in the program such that the caller can reach
// the thunk and the thunk can reach the callee; furthermore, adding thunks to
// the program alters addresses, which can mean more thunks etc.
//
// In lld we have a synthetic ThunkSection that can hold many Thunks.
// The decision to have a ThunkSection act as a container means that we can
// more easily handle the most common case of a single block of contiguous
// Thunks by inserting just a single ThunkSection.
//
// The implementation of Thunks in lld is split across these areas
// Relocations.cpp : Framework for creating and placing thunks
// Thunks.cpp : The code generated for each supported thunk
// Target.cpp : Target specific hooks that the framework uses to decide when
//              a thunk is used
// Synthetic.cpp : Implementation of ThunkSection
// Writer.cpp : Iteratively call framework until no more Thunks added
//
// Thunk placement requirements:
// Mips LA25 thunks. These must be placed immediately before the callee section
// We can assume that the caller is in range of the Thunk. These are modelled
// by Thunks that return the section they must precede with
// getTargetInputSection().
//
// ARM interworking and range extension thunks. These thunks must be placed
// within range of the caller. All implemented ARM thunks can always reach the
// callee as they use an indirect jump via a register that has no range
// restrictions.
//
// Thunk placement algorithm:
// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
// getTargetInputSection().
//
// For thunks that must be placed within range of the caller there are many
// possible choices given that the maximum range from the caller is usually
// much larger than the average InputSection size. Desirable properties include:
// - Maximize reuse of thunks by multiple callers
// - Minimize number of ThunkSections to simplify insertion
// - Handle impact of already added Thunks on addresses
// - Simple to understand and implement
//
// In lld for the first pass, we pre-create one or more ThunkSections per
// InputSectionDescription at Target specific intervals. A ThunkSection is
// placed so that the estimated end of the ThunkSection is within range of the
// start of the InputSectionDescription or the previous ThunkSection. For
// example:
// InputSectionDescription
// Section 0
// ...
// Section N
// ThunkSection 0
// Section N + 1
// ...
// Section N + K
// Thunk Section 1
//
// The intention is that we can add a Thunk to a ThunkSection that is well
// spaced enough to service a number of callers without having to do a lot
// of work. An important principle is that it is not an error if a Thunk cannot
// be placed in a pre-created ThunkSection; when this happens we create a new
// ThunkSection placed next to the caller. This allows us to handle the vast
// majority of thunks simply, but also handle rare cases where the branch range
// is smaller than the target specific spacing.
//
// The algorithm is expected to create all the thunks that are needed in a
// single pass, with a small number of programs needing a second pass due to
// the insertion of thunks in the first pass increasing the offset between
// callers and callees that were only just in range.
//
// A consequence of allowing new ThunkSections to be created outside of the
// pre-created ThunkSections is that in rare cases calls to Thunks that were in
// range in pass K, are out of range in some pass > K due to the insertion of
// more Thunks in between the caller and callee. When this happens we retarget
// the relocation back to the original target and create another Thunk.

// Remove ThunkSections that are empty, this should only be the initial set
// precreated on pass 0.

// Insert the Thunks for OutputSection OS into their designated place
// in the Sections vector, and recalculate the InputSection output section
// offsets.
// This may invalidate any output section offsets stored outside of InputSection
void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
  forEachInputSectionDescription(
      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
        if (isd->thunkSections.empty())
          return;

        // Remove any zero sized precreated Thunks.
        llvm::erase_if(isd->thunkSections,
                       [](const std::pair<ThunkSection *, uint32_t> &ts) {
                         return ts.first->getSize() == 0;
                       });

        // ISD->ThunkSections contains all created ThunkSections, including
        // those inserted in previous passes. Extract the Thunks created this
        // pass and order them in ascending outSecOff.
        std::vector<ThunkSection *> newThunks;
        for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
          if (ts.second == pass)
            newThunks.push_back(ts.first);
        llvm::stable_sort(newThunks,
                          [](const ThunkSection *a, const ThunkSection *b) {
                            return a->outSecOff < b->outSecOff;
                          });

        // Merge sorted vectors of Thunks and InputSections by outSecOff
        std::vector<InputSection *> tmp;
        tmp.reserve(isd->sections.size() + newThunks.size());

        std::merge(isd->sections.begin(), isd->sections.end(),
                   newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
                   mergeCmp);

        isd->sections = std::move(tmp);
      });
}

// Find or create a ThunkSection within the InputSectionDescription (ISD) that
// is in range of Src. An ISD maps to a range of InputSections described by a
// linker script section pattern such as { .text .text.* }.
ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
                                           InputSectionDescription *isd,
                                           uint32_t type, uint64_t src) {
  for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
    ThunkSection *ts = tp.first;
    uint64_t tsBase = os->addr + ts->outSecOff;
    uint64_t tsLimit = tsBase + ts->getSize();
    if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
      return ts;
  }

  // No suitable ThunkSection exists. This can happen when there is a branch
  // with lower range than the ThunkSection spacing or when there are too
  // many Thunks. Create a new ThunkSection as close to the InputSection as
  // possible. Error if InputSection is so large we cannot place ThunkSection
  // anywhere in Range.
  uint64_t thunkSecOff = isec->outSecOff;
  if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
    thunkSecOff = isec->outSecOff + isec->getSize();
    if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
      fatal("InputSection too large for range extension thunk " +
            isec->getObjMsg(src - (os->addr + isec->outSecOff)));
  }
  return addThunkSection(os, isd, thunkSecOff);
}

// Add a Thunk that needs to be placed in a ThunkSection that immediately
// precedes its Target.
ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
  ThunkSection *ts = thunkedSections.lookup(isec);
  if (ts)
    return ts;

  // Find InputSectionRange within Target Output Section (TOS) that the
  // InputSection (IS) that we need to precede is in.
  OutputSection *tos = isec->getParent();
  for (BaseCommand *bc : tos->sectionCommands) {
    auto *isd = dyn_cast<InputSectionDescription>(bc);
    if (!isd || isd->sections.empty())
      continue;

    InputSection *first = isd->sections.front();
    InputSection *last = isd->sections.back();

    if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
      continue;

    ts = addThunkSection(tos, isd, isec->outSecOff);
    thunkedSections[isec] = ts;
    return ts;
  }

  return nullptr;
}

// Create one or more ThunkSections per OS that can be used to place Thunks.
// We attempt to place the ThunkSections using the following desirable
// properties:
// - Within range of the maximum number of callers
// - Minimise the number of ThunkSections
//
// We follow a simple but conservative heuristic to place ThunkSections at
// offsets that are multiples of a Target specific branch range.
// For an InputSectionDescription that is smaller than the range, a single
// ThunkSection at the end of the range will do.
//
// For an InputSectionDescription that is more than twice the size of the range,
// we place the last ThunkSection at range bytes from the end of the
// InputSectionDescription in order to increase the likelihood that the
// distance from a thunk to its target will be sufficiently small to
// allow for the creation of a short thunk.
void ThunkCreator::createInitialThunkSections(
    ArrayRef<OutputSection *> outputSections) {
  uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();

  forEachInputSectionDescription(
      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
        if (isd->sections.empty())
          return;

        uint32_t isdBegin = isd->sections.front()->outSecOff;
        uint32_t isdEnd =
            isd->sections.back()->outSecOff + isd->sections.back()->getSize();
        uint32_t lastThunkLowerBound = -1;
        if (isdEnd - isdBegin > thunkSectionSpacing * 2)
          lastThunkLowerBound = isdEnd - thunkSectionSpacing;

        uint32_t isecLimit;
        uint32_t prevIsecLimit = isdBegin;
        uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;

        for (const InputSection *isec : isd->sections) {
          isecLimit = isec->outSecOff + isec->getSize();
          if (isecLimit > thunkUpperBound) {
            addThunkSection(os, isd, prevIsecLimit);
            thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
          }
          if (isecLimit > lastThunkLowerBound)
            break;
          prevIsecLimit = isecLimit;
        }
        addThunkSection(os, isd, isecLimit);
      });
}

ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
                                            InputSectionDescription *isd,
                                            uint64_t off) {
  auto *ts = make<ThunkSection>(os, off);
  ts->partition = os->partition;
  if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
      !isd->sections.empty()) {
    // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
    // thunks we disturb the base addresses of sections placed after the thunks
    // this makes patches we have generated redundant, and may cause us to
    // generate more patches as different instructions are now in sensitive
    // locations. When we generate more patches we may force more branches to
    // go out of range, causing more thunks to be generated. In pathological
    // cases this can cause the address dependent content pass not to converge.
    // We fix this by rounding up the size of the ThunkSection to 4KiB, this
    // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
    // which means that adding Thunks to the section does not invalidate
    // errata patches for following code.
    // Rounding up the size to 4KiB has consequences for code-size and can
    // trip up linker script defined assertions. For example the linux kernel
    // has an assertion that what LLD represents as an InputSectionDescription
    // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
    // We use the heuristic of rounding up the size when both of the following
    // conditions are true:
    // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
    //     accounts for the case where no single InputSectionDescription is
    //     larger than the OutputSection size. This is conservative but simple.
    // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
    //     any assertion failures that an InputSectionDescription is < 4 KiB
    //     in size.
    uint64_t isdSize = isd->sections.back()->outSecOff +
                       isd->sections.back()->getSize() -
                       isd->sections.front()->outSecOff;
    if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
      ts->roundUpSizeForErrata = true;
  }
  isd->thunkSections.push_back({ts, pass});
  return ts;
}

static bool isThunkSectionCompatible(InputSection *source,
                                     SectionBase *target) {
  // We can't reuse thunks in different loadable partitions because they might
  // not be loaded. But partition 1 (the main partition) will always be loaded.
  if (source->partition != target->partition)
    return target->partition == 1;
  return true;
}

static int64_t getPCBias(RelType type) {
  if (config->emachine != EM_ARM)
    return 0;
  switch (type) {
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    return 4;
  default:
    return 8;
  }
}

std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
                                                Relocation &rel, uint64_t src) {
  std::vector<Thunk *> *thunkVec = nullptr;
  int64_t addend = rel.addend + getPCBias(rel.type);

  // We use a ((section, offset), addend) pair to find the thunk position if
  // possible so that we create only one thunk for aliased symbols or ICFed
  // sections. There may be multiple relocations sharing the same (section,
  // offset + addend) pair. We may revert the relocation back to its original
  // non-Thunk target, so we cannot fold offset + addend.
  if (auto *d = dyn_cast<Defined>(rel.sym))
    if (!d->isInPlt() && d->section)
      thunkVec = &thunkedSymbolsBySectionAndAddend[{
          {d->section->repl, d->value}, addend}];
  if (!thunkVec)
    thunkVec = &thunkedSymbols[{rel.sym, addend}];

  // Check existing Thunks for Sym to see if they can be reused
  for (Thunk *t : *thunkVec)
    if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
        t->isCompatibleWith(*isec, rel) &&
        target->inBranchRange(rel.type, src,
                              t->getThunkTargetSym()->getVA(rel.addend) +
                                  getPCBias(rel.type)))
      return std::make_pair(t, false);

  // No existing compatible Thunk in range, create a new one
  Thunk *t = addThunk(*isec, rel);
  thunkVec->push_back(t);
  return std::make_pair(t, true);
}

// Return true if the relocation target is an in range Thunk.
// Return false if the relocation is not to a Thunk. If the relocation target
// was originally to a Thunk, but is no longer in range we revert the
// relocation back to its original non-Thunk target.
bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
  if (Thunk *t = thunks.lookup(rel.sym)) {
    if (target->inBranchRange(rel.type, src,
                              rel.sym->getVA(rel.addend) + getPCBias(rel.type)))
      return true;
    rel.sym = &t->destination;
    rel.addend = t->addend;
    if (rel.sym->isInPlt())
      rel.expr = toPlt(rel.expr);
  }
  return false;
}

// Process all relocations from the InputSections that have been assigned
// to InputSectionDescriptions and redirect through Thunks if needed. The
// function should be called iteratively until it returns false.
//
// PreConditions:
// All InputSections that may need a Thunk are reachable from
// OutputSectionCommands.
//
// All OutputSections have an address and all InputSections have an offset
// within the OutputSection.
//
// The offsets between caller (relocation place) and callee
// (relocation target) will not be modified outside of createThunks().
//
// PostConditions:
// If return value is true then ThunkSections have been inserted into
// OutputSections. All relocations that needed a Thunk based on the information
// available to createThunks() on entry have been redirected to a Thunk. Note
// that adding Thunks changes offsets between caller and callee so more Thunks
// may be required.
//
// If return value is false then no more Thunks are needed, and createThunks has
// made no changes. If the target requires range extension thunks, currently
// ARM, then any future change in offset between caller and callee risks a
// relocation out of range error.
bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
  bool addressesChanged = false;

  if (pass == 0 && target->getThunkSectionSpacing())
    createInitialThunkSections(outputSections);

  // Create all the Thunks and insert them into synthetic ThunkSections. The
  // ThunkSections are later inserted back into InputSectionDescriptions.
  // We separate the creation of ThunkSections from the insertion of the
  // ThunkSections as ThunkSections are not always inserted into the same
  // InputSectionDescription as the caller.
  forEachInputSectionDescription(
      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
        for (InputSection *isec : isd->sections)
          for (Relocation &rel : isec->relocations) {
            uint64_t src = isec->getVA(rel.offset);

            // If we are a relocation to an existing Thunk, check if it is
            // still in range. If not then Rel will be altered to point to its
            // original target so another Thunk can be generated.
            if (pass > 0 && normalizeExistingThunk(rel, src))
              continue;

            if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
                                    *rel.sym, rel.addend))
              continue;

            Thunk *t;
            bool isNew;
            std::tie(t, isNew) = getThunk(isec, rel, src);

            if (isNew) {
              // Find or create a ThunkSection for the new Thunk
              ThunkSection *ts;
              if (auto *tis = t->getTargetInputSection())
                ts = getISThunkSec(tis);
              else
                ts = getISDThunkSec(os, isec, isd, rel.type, src);
              ts->addThunk(t);
              thunks[t->getThunkTargetSym()] = t;
            }

            // Redirect relocation to Thunk, we never go via the PLT to a Thunk
            rel.sym = t->getThunkTargetSym();
            rel.expr = fromPlt(rel.expr);

            // On AArch64 and PPC, a jump/call relocation may be encoded as
            // STT_SECTION + non-zero addend, clear the addend after
            // redirection.
            if (config->emachine != EM_MIPS)
              rel.addend = -getPCBias(rel.type);
          }

        for (auto &p : isd->thunkSections)
          addressesChanged |= p.first->assignOffsets();
      });

  for (auto &p : thunkedSections)
    addressesChanged |= p.second->assignOffsets();

  // Merge all created synthetic ThunkSections back into OutputSection
  mergeThunks(outputSections);
  ++pass;
  return addressesChanged;
}

// The following aid in the conversion of call x@GDPLT to call __tls_get_addr
// hexagonNeedsTLSSymbol scans for relocations would require a call to
// __tls_get_addr.
// hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
  bool needTlsSymbol = false;
  forEachInputSectionDescription(
      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
        for (InputSection *isec : isd->sections)
          for (Relocation &rel : isec->relocations)
            if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
              needTlsSymbol = true;
              return;
            }
      });
  return needTlsSymbol;
}

void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
  Symbol *sym = symtab->find("__tls_get_addr");
  if (!sym)
    return;
  bool needEntry = true;
  forEachInputSectionDescription(
      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
        for (InputSection *isec : isd->sections)
          for (Relocation &rel : isec->relocations)
            if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
              if (needEntry) {
                addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
                            *sym);
                needEntry = false;
              }
              rel.sym = sym;
            }
      });
}

template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
template void elf::reportUndefinedSymbols<ELF32LE>();
template void elf::reportUndefinedSymbols<ELF32BE>();
template void elf::reportUndefinedSymbols<ELF64LE>();
template void elf::reportUndefinedSymbols<ELF64BE>();