Writer.cpp 70.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
//===- Writer.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "CallGraphSort.h"
#include "Config.h"
#include "DLL.h"
#include "InputFiles.h"
#include "LLDMapFile.h"
#include "MapFile.h"
#include "PDB.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Timer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <cstdio>
#include <map>
#include <memory>
#include <utility>

using namespace llvm;
using namespace llvm::COFF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::coff;

/* To re-generate DOSProgram:
$ cat > /tmp/DOSProgram.asm
org 0
        ; Copy cs to ds.
        push cs
        pop ds
        ; Point ds:dx at the $-terminated string.
        mov dx, str
        ; Int 21/AH=09h: Write string to standard output.
        mov ah, 0x9
        int 0x21
        ; Int 21/AH=4Ch: Exit with return code (in AL).
        mov ax, 0x4C01
        int 0x21
str:
        db 'This program cannot be run in DOS mode.$'
align 8, db 0
$ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
$ xxd -i /tmp/DOSProgram.bin
*/
static unsigned char dosProgram[] = {
  0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
  0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
  0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
  0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
  0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
};
static_assert(sizeof(dosProgram) % 8 == 0,
              "DOSProgram size must be multiple of 8");

static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");

static const int numberOfDataDirectory = 16;

// Global vector of all output sections. After output sections are finalized,
// this can be indexed by Chunk::getOutputSection.
static std::vector<OutputSection *> outputSections;

OutputSection *Chunk::getOutputSection() const {
  return osidx == 0 ? nullptr : outputSections[osidx - 1];
}

void OutputSection::clear() { outputSections.clear(); }

namespace {

class DebugDirectoryChunk : public NonSectionChunk {
public:
  DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
                      bool writeRepro)
      : records(r), writeRepro(writeRepro) {}

  size_t getSize() const override {
    return (records.size() + int(writeRepro)) * sizeof(debug_directory);
  }

  void writeTo(uint8_t *b) const override {
    auto *d = reinterpret_cast<debug_directory *>(b);

    for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
      Chunk *c = record.second;
      OutputSection *os = c->getOutputSection();
      uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
      fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
      ++d;
    }

    if (writeRepro) {
      // FIXME: The COFF spec allows either a 0-sized entry to just say
      // "the timestamp field is really a hash", or a 4-byte size field
      // followed by that many bytes containing a longer hash (with the
      // lowest 4 bytes usually being the timestamp in little-endian order).
      // Consider storing the full 8 bytes computed by xxHash64 here.
      fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
    }
  }

  void setTimeDateStamp(uint32_t timeDateStamp) {
    for (support::ulittle32_t *tds : timeDateStamps)
      *tds = timeDateStamp;
  }

private:
  void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
                 uint64_t rva, uint64_t offs) const {
    d->Characteristics = 0;
    d->TimeDateStamp = 0;
    d->MajorVersion = 0;
    d->MinorVersion = 0;
    d->Type = debugType;
    d->SizeOfData = size;
    d->AddressOfRawData = rva;
    d->PointerToRawData = offs;

    timeDateStamps.push_back(&d->TimeDateStamp);
  }

  mutable std::vector<support::ulittle32_t *> timeDateStamps;
  const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
  bool writeRepro;
};

class CVDebugRecordChunk : public NonSectionChunk {
public:
  size_t getSize() const override {
    return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
  }

  void writeTo(uint8_t *b) const override {
    // Save off the DebugInfo entry to backfill the file signature (build id)
    // in Writer::writeBuildId
    buildId = reinterpret_cast<codeview::DebugInfo *>(b);

    // variable sized field (PDB Path)
    char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
    if (!config->pdbAltPath.empty())
      memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
    p[config->pdbAltPath.size()] = '\0';
  }

  mutable codeview::DebugInfo *buildId = nullptr;
};

class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
public:
  ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}

  size_t getSize() const override { return 4; }

  void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }

  uint32_t characteristics = 0;
};

// PartialSection represents a group of chunks that contribute to an
// OutputSection. Collating a collection of PartialSections of same name and
// characteristics constitutes the OutputSection.
class PartialSectionKey {
public:
  StringRef name;
  unsigned characteristics;

  bool operator<(const PartialSectionKey &other) const {
    int c = name.compare(other.name);
    if (c == 1)
      return false;
    if (c == 0)
      return characteristics < other.characteristics;
    return true;
  }
};

// The writer writes a SymbolTable result to a file.
class Writer {
public:
  Writer() : buffer(errorHandler().outputBuffer) {}
  void run();

private:
  void createSections();
  void createMiscChunks();
  void createImportTables();
  void appendImportThunks();
  void locateImportTables();
  void createExportTable();
  void mergeSections();
  void removeUnusedSections();
  void assignAddresses();
  void finalizeAddresses();
  void removeEmptySections();
  void assignOutputSectionIndices();
  void createSymbolAndStringTable();
  void openFile(StringRef outputPath);
  template <typename PEHeaderTy> void writeHeader();
  void createSEHTable();
  void createRuntimePseudoRelocs();
  void insertCtorDtorSymbols();
  void createGuardCFTables();
  void markSymbolsForRVATable(ObjFile *file,
                              ArrayRef<SectionChunk *> symIdxChunks,
                              SymbolRVASet &tableSymbols);
  void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
                        StringRef countSym);
  void setSectionPermissions();
  void writeSections();
  void writeBuildId();
  void sortSections();
  void sortExceptionTable();
  void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
  void addSyntheticIdata();
  void fixPartialSectionChars(StringRef name, uint32_t chars);
  bool fixGnuImportChunks();
  PartialSection *createPartialSection(StringRef name, uint32_t outChars);
  PartialSection *findPartialSection(StringRef name, uint32_t outChars);

  llvm::Optional<coff_symbol16> createSymbol(Defined *d);
  size_t addEntryToStringTable(StringRef str);

  OutputSection *findSection(StringRef name);
  void addBaserels();
  void addBaserelBlocks(std::vector<Baserel> &v);

  uint32_t getSizeOfInitializedData();

  std::unique_ptr<FileOutputBuffer> &buffer;
  std::map<PartialSectionKey, PartialSection *> partialSections;
  std::vector<char> strtab;
  std::vector<llvm::object::coff_symbol16> outputSymtab;
  IdataContents idata;
  Chunk *importTableStart = nullptr;
  uint64_t importTableSize = 0;
  Chunk *edataStart = nullptr;
  Chunk *edataEnd = nullptr;
  Chunk *iatStart = nullptr;
  uint64_t iatSize = 0;
  DelayLoadContents delayIdata;
  EdataContents edata;
  bool setNoSEHCharacteristic = false;

  DebugDirectoryChunk *debugDirectory = nullptr;
  std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
  CVDebugRecordChunk *buildId = nullptr;
  ArrayRef<uint8_t> sectionTable;

  uint64_t fileSize;
  uint32_t pointerToSymbolTable = 0;
  uint64_t sizeOfImage;
  uint64_t sizeOfHeaders;

  OutputSection *textSec;
  OutputSection *rdataSec;
  OutputSection *buildidSec;
  OutputSection *dataSec;
  OutputSection *pdataSec;
  OutputSection *idataSec;
  OutputSection *edataSec;
  OutputSection *didatSec;
  OutputSection *rsrcSec;
  OutputSection *relocSec;
  OutputSection *ctorsSec;
  OutputSection *dtorsSec;

  // The first and last .pdata sections in the output file.
  //
  // We need to keep track of the location of .pdata in whichever section it
  // gets merged into so that we can sort its contents and emit a correct data
  // directory entry for the exception table. This is also the case for some
  // other sections (such as .edata) but because the contents of those sections
  // are entirely linker-generated we can keep track of their locations using
  // the chunks that the linker creates. All .pdata chunks come from input
  // files, so we need to keep track of them separately.
  Chunk *firstPdata = nullptr;
  Chunk *lastPdata;
};
} // anonymous namespace

static Timer codeLayoutTimer("Code Layout", Timer::root());
static Timer diskCommitTimer("Commit Output File", Timer::root());

void lld::coff::writeResult() { Writer().run(); }

void OutputSection::addChunk(Chunk *c) {
  chunks.push_back(c);
}

void OutputSection::insertChunkAtStart(Chunk *c) {
  chunks.insert(chunks.begin(), c);
}

void OutputSection::setPermissions(uint32_t c) {
  header.Characteristics &= ~permMask;
  header.Characteristics |= c;
}

void OutputSection::merge(OutputSection *other) {
  chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
  other->chunks.clear();
  contribSections.insert(contribSections.end(), other->contribSections.begin(),
                         other->contribSections.end());
  other->contribSections.clear();
}

// Write the section header to a given buffer.
void OutputSection::writeHeaderTo(uint8_t *buf) {
  auto *hdr = reinterpret_cast<coff_section *>(buf);
  *hdr = header;
  if (stringTableOff) {
    // If name is too long, write offset into the string table as a name.
    sprintf(hdr->Name, "/%d", stringTableOff);
  } else {
    assert(!config->debug || name.size() <= COFF::NameSize ||
           (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
    strncpy(hdr->Name, name.data(),
            std::min(name.size(), (size_t)COFF::NameSize));
  }
}

void OutputSection::addContributingPartialSection(PartialSection *sec) {
  contribSections.push_back(sec);
}

// Check whether the target address S is in range from a relocation
// of type relType at address P.
static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
  if (config->machine == ARMNT) {
    int64_t diff = AbsoluteDifference(s, p + 4) + margin;
    switch (relType) {
    case IMAGE_REL_ARM_BRANCH20T:
      return isInt<21>(diff);
    case IMAGE_REL_ARM_BRANCH24T:
    case IMAGE_REL_ARM_BLX23T:
      return isInt<25>(diff);
    default:
      return true;
    }
  } else if (config->machine == ARM64) {
    int64_t diff = AbsoluteDifference(s, p) + margin;
    switch (relType) {
    case IMAGE_REL_ARM64_BRANCH26:
      return isInt<28>(diff);
    case IMAGE_REL_ARM64_BRANCH19:
      return isInt<21>(diff);
    case IMAGE_REL_ARM64_BRANCH14:
      return isInt<16>(diff);
    default:
      return true;
    }
  } else {
    llvm_unreachable("Unexpected architecture");
  }
}

// Return the last thunk for the given target if it is in range,
// or create a new one.
static std::pair<Defined *, bool>
getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
         uint16_t type, int margin) {
  Defined *&lastThunk = lastThunks[target->getRVA()];
  if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
    return {lastThunk, false};
  Chunk *c;
  switch (config->machine) {
  case ARMNT:
    c = make<RangeExtensionThunkARM>(target);
    break;
  case ARM64:
    c = make<RangeExtensionThunkARM64>(target);
    break;
  default:
    llvm_unreachable("Unexpected architecture");
  }
  Defined *d = make<DefinedSynthetic>("", c);
  lastThunk = d;
  return {d, true};
}

// This checks all relocations, and for any relocation which isn't in range
// it adds a thunk after the section chunk that contains the relocation.
// If the latest thunk for the specific target is in range, that is used
// instead of creating a new thunk. All range checks are done with the
// specified margin, to make sure that relocations that originally are in
// range, but only barely, also get thunks - in case other added thunks makes
// the target go out of range.
//
// After adding thunks, we verify that all relocations are in range (with
// no extra margin requirements). If this failed, we restart (throwing away
// the previously created thunks) and retry with a wider margin.
static bool createThunks(OutputSection *os, int margin) {
  bool addressesChanged = false;
  DenseMap<uint64_t, Defined *> lastThunks;
  DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
  size_t thunksSize = 0;
  // Recheck Chunks.size() each iteration, since we can insert more
  // elements into it.
  for (size_t i = 0; i != os->chunks.size(); ++i) {
    SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
    if (!sc)
      continue;
    size_t thunkInsertionSpot = i + 1;

    // Try to get a good enough estimate of where new thunks will be placed.
    // Offset this by the size of the new thunks added so far, to make the
    // estimate slightly better.
    size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
    ObjFile *file = sc->file;
    std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
    ArrayRef<coff_relocation> originalRelocs =
        file->getCOFFObj()->getRelocations(sc->header);
    for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
      const coff_relocation &rel = originalRelocs[j];
      Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);

      // The estimate of the source address P should be pretty accurate,
      // but we don't know whether the target Symbol address should be
      // offset by thunksSize or not (or by some of thunksSize but not all of
      // it), giving us some uncertainty once we have added one thunk.
      uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;

      Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
      if (!sym)
        continue;

      uint64_t s = sym->getRVA();

      if (isInRange(rel.Type, s, p, margin))
        continue;

      // If the target isn't in range, hook it up to an existing or new
      // thunk.
      Defined *thunk;
      bool wasNew;
      std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
      if (wasNew) {
        Chunk *thunkChunk = thunk->getChunk();
        thunkChunk->setRVA(
            thunkInsertionRVA); // Estimate of where it will be located.
        os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
        thunkInsertionSpot++;
        thunksSize += thunkChunk->getSize();
        thunkInsertionRVA += thunkChunk->getSize();
        addressesChanged = true;
      }

      // To redirect the relocation, add a symbol to the parent object file's
      // symbol table, and replace the relocation symbol table index with the
      // new index.
      auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
      uint32_t &thunkSymbolIndex = insertion.first->second;
      if (insertion.second)
        thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
      relocReplacements.push_back({j, thunkSymbolIndex});
    }

    // Get a writable copy of this section's relocations so they can be
    // modified. If the relocations point into the object file, allocate new
    // memory. Otherwise, this must be previously allocated memory that can be
    // modified in place.
    ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
    MutableArrayRef<coff_relocation> newRelocs;
    if (originalRelocs.data() == curRelocs.data()) {
      newRelocs = makeMutableArrayRef(
          bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
          originalRelocs.size());
    } else {
      newRelocs = makeMutableArrayRef(
          const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
    }

    // Copy each relocation, but replace the symbol table indices which need
    // thunks.
    auto nextReplacement = relocReplacements.begin();
    auto endReplacement = relocReplacements.end();
    for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
      newRelocs[i] = originalRelocs[i];
      if (nextReplacement != endReplacement && nextReplacement->first == i) {
        newRelocs[i].SymbolTableIndex = nextReplacement->second;
        ++nextReplacement;
      }
    }

    sc->setRelocs(newRelocs);
  }
  return addressesChanged;
}

// Verify that all relocations are in range, with no extra margin requirements.
static bool verifyRanges(const std::vector<Chunk *> chunks) {
  for (Chunk *c : chunks) {
    SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
    if (!sc)
      continue;

    ArrayRef<coff_relocation> relocs = sc->getRelocs();
    for (size_t j = 0, e = relocs.size(); j < e; ++j) {
      const coff_relocation &rel = relocs[j];
      Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);

      Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
      if (!sym)
        continue;

      uint64_t p = sc->getRVA() + rel.VirtualAddress;
      uint64_t s = sym->getRVA();

      if (!isInRange(rel.Type, s, p, 0))
        return false;
    }
  }
  return true;
}

// Assign addresses and add thunks if necessary.
void Writer::finalizeAddresses() {
  assignAddresses();
  if (config->machine != ARMNT && config->machine != ARM64)
    return;

  size_t origNumChunks = 0;
  for (OutputSection *sec : outputSections) {
    sec->origChunks = sec->chunks;
    origNumChunks += sec->chunks.size();
  }

  int pass = 0;
  int margin = 1024 * 100;
  while (true) {
    // First check whether we need thunks at all, or if the previous pass of
    // adding them turned out ok.
    bool rangesOk = true;
    size_t numChunks = 0;
    for (OutputSection *sec : outputSections) {
      if (!verifyRanges(sec->chunks)) {
        rangesOk = false;
        break;
      }
      numChunks += sec->chunks.size();
    }
    if (rangesOk) {
      if (pass > 0)
        log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
            "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
      return;
    }

    if (pass >= 10)
      fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");

    if (pass > 0) {
      // If the previous pass didn't work out, reset everything back to the
      // original conditions before retrying with a wider margin. This should
      // ideally never happen under real circumstances.
      for (OutputSection *sec : outputSections)
        sec->chunks = sec->origChunks;
      margin *= 2;
    }

    // Try adding thunks everywhere where it is needed, with a margin
    // to avoid things going out of range due to the added thunks.
    bool addressesChanged = false;
    for (OutputSection *sec : outputSections)
      addressesChanged |= createThunks(sec, margin);
    // If the verification above thought we needed thunks, we should have
    // added some.
    assert(addressesChanged);

    // Recalculate the layout for the whole image (and verify the ranges at
    // the start of the next round).
    assignAddresses();

    pass++;
  }
}

// The main function of the writer.
void Writer::run() {
  ScopedTimer t1(codeLayoutTimer);

  createImportTables();
  createSections();
  createMiscChunks();
  appendImportThunks();
  createExportTable();
  mergeSections();
  removeUnusedSections();
  finalizeAddresses();
  removeEmptySections();
  assignOutputSectionIndices();
  setSectionPermissions();
  createSymbolAndStringTable();

  if (fileSize > UINT32_MAX)
    fatal("image size (" + Twine(fileSize) + ") " +
        "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");

  openFile(config->outputFile);
  if (config->is64()) {
    writeHeader<pe32plus_header>();
  } else {
    writeHeader<pe32_header>();
  }
  writeSections();
  sortExceptionTable();

  t1.stop();

  if (!config->pdbPath.empty() && config->debug) {
    assert(buildId);
    createPDB(symtab, outputSections, sectionTable, buildId->buildId);
  }
  writeBuildId();

  writeLLDMapFile(outputSections);
  writeMapFile(outputSections);

  if (errorCount())
    return;

  ScopedTimer t2(diskCommitTimer);
  if (auto e = buffer->commit())
    fatal("failed to write the output file: " + toString(std::move(e)));
}

static StringRef getOutputSectionName(StringRef name) {
  StringRef s = name.split('$').first;

  // Treat a later period as a separator for MinGW, for sections like
  // ".ctors.01234".
  return s.substr(0, s.find('.', 1));
}

// For /order.
static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
  auto getPriority = [](const Chunk *c) {
    if (auto *sec = dyn_cast<SectionChunk>(c))
      if (sec->sym)
        return config->order.lookup(sec->sym->getName());
    return 0;
  };

  llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
    return getPriority(a) < getPriority(b);
  });
}

// Change the characteristics of existing PartialSections that belong to the
// section Name to Chars.
void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
  for (auto it : partialSections) {
    PartialSection *pSec = it.second;
    StringRef curName = pSec->name;
    if (!curName.consume_front(name) ||
        (!curName.empty() && !curName.startswith("$")))
      continue;
    if (pSec->characteristics == chars)
      continue;
    PartialSection *destSec = createPartialSection(pSec->name, chars);
    destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
                           pSec->chunks.end());
    pSec->chunks.clear();
  }
}

// Sort concrete section chunks from GNU import libraries.
//
// GNU binutils doesn't use short import files, but instead produces import
// libraries that consist of object files, with section chunks for the .idata$*
// sections. These are linked just as regular static libraries. Each import
// library consists of one header object, one object file for every imported
// symbol, and one trailer object. In order for the .idata tables/lists to
// be formed correctly, the section chunks within each .idata$* section need
// to be grouped by library, and sorted alphabetically within each library
// (which makes sure the header comes first and the trailer last).
bool Writer::fixGnuImportChunks() {
  uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;

  // Make sure all .idata$* section chunks are mapped as RDATA in order to
  // be sorted into the same sections as our own synthesized .idata chunks.
  fixPartialSectionChars(".idata", rdata);

  bool hasIdata = false;
  // Sort all .idata$* chunks, grouping chunks from the same library,
  // with alphabetical ordering of the object fils within a library.
  for (auto it : partialSections) {
    PartialSection *pSec = it.second;
    if (!pSec->name.startswith(".idata"))
      continue;

    if (!pSec->chunks.empty())
      hasIdata = true;
    llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
      SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
      SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
      if (!sc1 || !sc2) {
        // if SC1, order them ascending. If SC2 or both null,
        // S is not less than T.
        return sc1 != nullptr;
      }
      // Make a string with "libraryname/objectfile" for sorting, achieving
      // both grouping by library and sorting of objects within a library,
      // at once.
      std::string key1 =
          (sc1->file->parentName + "/" + sc1->file->getName()).str();
      std::string key2 =
          (sc2->file->parentName + "/" + sc2->file->getName()).str();
      return key1 < key2;
    });
  }
  return hasIdata;
}

// Add generated idata chunks, for imported symbols and DLLs, and a
// terminator in .idata$2.
void Writer::addSyntheticIdata() {
  uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
  idata.create();

  // Add the .idata content in the right section groups, to allow
  // chunks from other linked in object files to be grouped together.
  // See Microsoft PE/COFF spec 5.4 for details.
  auto add = [&](StringRef n, std::vector<Chunk *> &v) {
    PartialSection *pSec = createPartialSection(n, rdata);
    pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
  };

  // The loader assumes a specific order of data.
  // Add each type in the correct order.
  add(".idata$2", idata.dirs);
  add(".idata$4", idata.lookups);
  add(".idata$5", idata.addresses);
  if (!idata.hints.empty())
    add(".idata$6", idata.hints);
  add(".idata$7", idata.dllNames);
}

// Locate the first Chunk and size of the import directory list and the
// IAT.
void Writer::locateImportTables() {
  uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;

  if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
    if (!importDirs->chunks.empty())
      importTableStart = importDirs->chunks.front();
    for (Chunk *c : importDirs->chunks)
      importTableSize += c->getSize();
  }

  if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
    if (!importAddresses->chunks.empty())
      iatStart = importAddresses->chunks.front();
    for (Chunk *c : importAddresses->chunks)
      iatSize += c->getSize();
  }
}

// Return whether a SectionChunk's suffix (the dollar and any trailing
// suffix) should be removed and sorted into the main suffixless
// PartialSection.
static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
  // On MinGW, comdat groups are formed by putting the comdat group name
  // after the '$' in the section name. For .eh_frame$<symbol>, that must
  // still be sorted before the .eh_frame trailer from crtend.o, thus just
  // strip the section name trailer. For other sections, such as
  // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
  // ".tls$"), they must be strictly sorted after .tls. And for the
  // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
  // suffix for sorting. Thus, to play it safe, only strip the suffix for
  // the standard sections.
  if (!config->mingw)
    return false;
  if (!sc || !sc->isCOMDAT())
    return false;
  return name.startswith(".text$") || name.startswith(".data$") ||
         name.startswith(".rdata$") || name.startswith(".pdata$") ||
         name.startswith(".xdata$") || name.startswith(".eh_frame$");
}

void Writer::sortSections() {
  if (!config->callGraphProfile.empty()) {
    DenseMap<const SectionChunk *, int> order = computeCallGraphProfileOrder();
    for (auto it : order) {
      if (DefinedRegular *sym = it.first->sym)
        config->order[sym->getName()] = it.second;
    }
  }
  if (!config->order.empty())
    for (auto it : partialSections)
      sortBySectionOrder(it.second->chunks);
}

// Create output section objects and add them to OutputSections.
void Writer::createSections() {
  // First, create the builtin sections.
  const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
  const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
  const uint32_t code = IMAGE_SCN_CNT_CODE;
  const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
  const uint32_t r = IMAGE_SCN_MEM_READ;
  const uint32_t w = IMAGE_SCN_MEM_WRITE;
  const uint32_t x = IMAGE_SCN_MEM_EXECUTE;

  SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
  auto createSection = [&](StringRef name, uint32_t outChars) {
    OutputSection *&sec = sections[{name, outChars}];
    if (!sec) {
      sec = make<OutputSection>(name, outChars);
      outputSections.push_back(sec);
    }
    return sec;
  };

  // Try to match the section order used by link.exe.
  textSec = createSection(".text", code | r | x);
  createSection(".bss", bss | r | w);
  rdataSec = createSection(".rdata", data | r);
  buildidSec = createSection(".buildid", data | r);
  dataSec = createSection(".data", data | r | w);
  pdataSec = createSection(".pdata", data | r);
  idataSec = createSection(".idata", data | r);
  edataSec = createSection(".edata", data | r);
  didatSec = createSection(".didat", data | r);
  rsrcSec = createSection(".rsrc", data | r);
  relocSec = createSection(".reloc", data | discardable | r);
  ctorsSec = createSection(".ctors", data | r | w);
  dtorsSec = createSection(".dtors", data | r | w);

  // Then bin chunks by name and output characteristics.
  for (Chunk *c : symtab->getChunks()) {
    auto *sc = dyn_cast<SectionChunk>(c);
    if (sc && !sc->live) {
      if (config->verbose)
        sc->printDiscardedMessage();
      continue;
    }
    StringRef name = c->getSectionName();
    if (shouldStripSectionSuffix(sc, name))
      name = name.split('$').first;
    PartialSection *pSec = createPartialSection(name,
                                                c->getOutputCharacteristics());
    pSec->chunks.push_back(c);
  }

  fixPartialSectionChars(".rsrc", data | r);
  fixPartialSectionChars(".edata", data | r);
  // Even in non MinGW cases, we might need to link against GNU import
  // libraries.
  bool hasIdata = fixGnuImportChunks();
  if (!idata.empty())
    hasIdata = true;

  if (hasIdata)
    addSyntheticIdata();

  sortSections();

  if (hasIdata)
    locateImportTables();

  // Then create an OutputSection for each section.
  // '$' and all following characters in input section names are
  // discarded when determining output section. So, .text$foo
  // contributes to .text, for example. See PE/COFF spec 3.2.
  for (auto it : partialSections) {
    PartialSection *pSec = it.second;
    StringRef name = getOutputSectionName(pSec->name);
    uint32_t outChars = pSec->characteristics;

    if (name == ".CRT") {
      // In link.exe, there is a special case for the I386 target where .CRT
      // sections are treated as if they have output characteristics DATA | R if
      // their characteristics are DATA | R | W. This implements the same
      // special case for all architectures.
      outChars = data | r;

      log("Processing section " + pSec->name + " -> " + name);

      sortCRTSectionChunks(pSec->chunks);
    }

    OutputSection *sec = createSection(name, outChars);
    for (Chunk *c : pSec->chunks)
      sec->addChunk(c);

    sec->addContributingPartialSection(pSec);
  }

  // Finally, move some output sections to the end.
  auto sectionOrder = [&](const OutputSection *s) {
    // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
    // because the loader cannot handle holes. Stripping can remove other
    // discardable ones than .reloc, which is first of them (created early).
    if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
      return 2;
    // .rsrc should come at the end of the non-discardable sections because its
    // size may change by the Win32 UpdateResources() function, causing
    // subsequent sections to move (see https://crbug.com/827082).
    if (s == rsrcSec)
      return 1;
    return 0;
  };
  llvm::stable_sort(outputSections,
                    [&](const OutputSection *s, const OutputSection *t) {
                      return sectionOrder(s) < sectionOrder(t);
                    });
}

void Writer::createMiscChunks() {
  for (MergeChunk *p : MergeChunk::instances) {
    if (p) {
      p->finalizeContents();
      rdataSec->addChunk(p);
    }
  }

  // Create thunks for locally-dllimported symbols.
  if (!symtab->localImportChunks.empty()) {
    for (Chunk *c : symtab->localImportChunks)
      rdataSec->addChunk(c);
  }

  // Create Debug Information Chunks
  OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
  if (config->debug || config->repro || config->cetCompat) {
    debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
    debugDirectory->setAlignment(4);
    debugInfoSec->addChunk(debugDirectory);
  }

  if (config->debug) {
    // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
    // output a PDB no matter what, and this chunk provides the only means of
    // allowing a debugger to match a PDB and an executable.  So we need it even
    // if we're ultimately not going to write CodeView data to the PDB.
    buildId = make<CVDebugRecordChunk>();
    debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
  }

  if (config->cetCompat) {
    ExtendedDllCharacteristicsChunk *extendedDllChars =
        make<ExtendedDllCharacteristicsChunk>(
            IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT);
    debugRecords.push_back(
        {COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, extendedDllChars});
  }

  if (debugRecords.size() > 0) {
    for (std::pair<COFF::DebugType, Chunk *> r : debugRecords)
      debugInfoSec->addChunk(r.second);
  }

  // Create SEH table. x86-only.
  if (config->safeSEH)
    createSEHTable();

  // Create /guard:cf tables if requested.
  if (config->guardCF != GuardCFLevel::Off)
    createGuardCFTables();

  if (config->autoImport)
    createRuntimePseudoRelocs();

  if (config->mingw)
    insertCtorDtorSymbols();
}

// Create .idata section for the DLL-imported symbol table.
// The format of this section is inherently Windows-specific.
// IdataContents class abstracted away the details for us,
// so we just let it create chunks and add them to the section.
void Writer::createImportTables() {
  // Initialize DLLOrder so that import entries are ordered in
  // the same order as in the command line. (That affects DLL
  // initialization order, and this ordering is MSVC-compatible.)
  for (ImportFile *file : ImportFile::instances) {
    if (!file->live)
      continue;

    std::string dll = StringRef(file->dllName).lower();
    if (config->dllOrder.count(dll) == 0)
      config->dllOrder[dll] = config->dllOrder.size();

    if (file->impSym && !isa<DefinedImportData>(file->impSym))
      fatal(toString(*file->impSym) + " was replaced");
    DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
    if (config->delayLoads.count(StringRef(file->dllName).lower())) {
      if (!file->thunkSym)
        fatal("cannot delay-load " + toString(file) +
              " due to import of data: " + toString(*impSym));
      delayIdata.add(impSym);
    } else {
      idata.add(impSym);
    }
  }
}

void Writer::appendImportThunks() {
  if (ImportFile::instances.empty())
    return;

  for (ImportFile *file : ImportFile::instances) {
    if (!file->live)
      continue;

    if (!file->thunkSym)
      continue;

    if (!isa<DefinedImportThunk>(file->thunkSym))
      fatal(toString(*file->thunkSym) + " was replaced");
    DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
    if (file->thunkLive)
      textSec->addChunk(thunk->getChunk());
  }

  if (!delayIdata.empty()) {
    Defined *helper = cast<Defined>(config->delayLoadHelper);
    delayIdata.create(helper);
    for (Chunk *c : delayIdata.getChunks())
      didatSec->addChunk(c);
    for (Chunk *c : delayIdata.getDataChunks())
      dataSec->addChunk(c);
    for (Chunk *c : delayIdata.getCodeChunks())
      textSec->addChunk(c);
  }
}

void Writer::createExportTable() {
  if (!edataSec->chunks.empty()) {
    // Allow using a custom built export table from input object files, instead
    // of having the linker synthesize the tables.
    if (config->hadExplicitExports)
      warn("literal .edata sections override exports");
  } else if (!config->exports.empty()) {
    for (Chunk *c : edata.chunks)
      edataSec->addChunk(c);
  }
  if (!edataSec->chunks.empty()) {
    edataStart = edataSec->chunks.front();
    edataEnd = edataSec->chunks.back();
  }
}

void Writer::removeUnusedSections() {
  // Remove sections that we can be sure won't get content, to avoid
  // allocating space for their section headers.
  auto isUnused = [this](OutputSection *s) {
    if (s == relocSec)
      return false; // This section is populated later.
    // MergeChunks have zero size at this point, as their size is finalized
    // later. Only remove sections that have no Chunks at all.
    return s->chunks.empty();
  };
  outputSections.erase(
      std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
      outputSections.end());
}

// The Windows loader doesn't seem to like empty sections,
// so we remove them if any.
void Writer::removeEmptySections() {
  auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
  outputSections.erase(
      std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
      outputSections.end());
}

void Writer::assignOutputSectionIndices() {
  // Assign final output section indices, and assign each chunk to its output
  // section.
  uint32_t idx = 1;
  for (OutputSection *os : outputSections) {
    os->sectionIndex = idx;
    for (Chunk *c : os->chunks)
      c->setOutputSectionIdx(idx);
    ++idx;
  }

  // Merge chunks are containers of chunks, so assign those an output section
  // too.
  for (MergeChunk *mc : MergeChunk::instances)
    if (mc)
      for (SectionChunk *sc : mc->sections)
        if (sc && sc->live)
          sc->setOutputSectionIdx(mc->getOutputSectionIdx());
}

size_t Writer::addEntryToStringTable(StringRef str) {
  assert(str.size() > COFF::NameSize);
  size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
  strtab.insert(strtab.end(), str.begin(), str.end());
  strtab.push_back('\0');
  return offsetOfEntry;
}

Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
  coff_symbol16 sym;
  switch (def->kind()) {
  case Symbol::DefinedAbsoluteKind:
    sym.Value = def->getRVA();
    sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
    break;
  case Symbol::DefinedSyntheticKind:
    // Relative symbols are unrepresentable in a COFF symbol table.
    return None;
  default: {
    // Don't write symbols that won't be written to the output to the symbol
    // table.
    Chunk *c = def->getChunk();
    if (!c)
      return None;
    OutputSection *os = c->getOutputSection();
    if (!os)
      return None;

    sym.Value = def->getRVA() - os->getRVA();
    sym.SectionNumber = os->sectionIndex;
    break;
  }
  }

  // Symbols that are runtime pseudo relocations don't point to the actual
  // symbol data itself (as they are imported), but points to the IAT entry
  // instead. Avoid emitting them to the symbol table, as they can confuse
  // debuggers.
  if (def->isRuntimePseudoReloc)
    return None;

  StringRef name = def->getName();
  if (name.size() > COFF::NameSize) {
    sym.Name.Offset.Zeroes = 0;
    sym.Name.Offset.Offset = addEntryToStringTable(name);
  } else {
    memset(sym.Name.ShortName, 0, COFF::NameSize);
    memcpy(sym.Name.ShortName, name.data(), name.size());
  }

  if (auto *d = dyn_cast<DefinedCOFF>(def)) {
    COFFSymbolRef ref = d->getCOFFSymbol();
    sym.Type = ref.getType();
    sym.StorageClass = ref.getStorageClass();
  } else {
    sym.Type = IMAGE_SYM_TYPE_NULL;
    sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
  }
  sym.NumberOfAuxSymbols = 0;
  return sym;
}

void Writer::createSymbolAndStringTable() {
  // PE/COFF images are limited to 8 byte section names. Longer names can be
  // supported by writing a non-standard string table, but this string table is
  // not mapped at runtime and the long names will therefore be inaccessible.
  // link.exe always truncates section names to 8 bytes, whereas binutils always
  // preserves long section names via the string table. LLD adopts a hybrid
  // solution where discardable sections have long names preserved and
  // non-discardable sections have their names truncated, to ensure that any
  // section which is mapped at runtime also has its name mapped at runtime.
  for (OutputSection *sec : outputSections) {
    if (sec->name.size() <= COFF::NameSize)
      continue;
    if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
      continue;
    if (config->warnLongSectionNames) {
      warn("section name " + sec->name +
           " is longer than 8 characters and will use a non-standard string "
           "table");
    }
    sec->setStringTableOff(addEntryToStringTable(sec->name));
  }

  if (config->debugDwarf || config->debugSymtab) {
    for (ObjFile *file : ObjFile::instances) {
      for (Symbol *b : file->getSymbols()) {
        auto *d = dyn_cast_or_null<Defined>(b);
        if (!d || d->writtenToSymtab)
          continue;
        d->writtenToSymtab = true;

        if (Optional<coff_symbol16> sym = createSymbol(d))
          outputSymtab.push_back(*sym);
      }
    }
  }

  if (outputSymtab.empty() && strtab.empty())
    return;

  // We position the symbol table to be adjacent to the end of the last section.
  uint64_t fileOff = fileSize;
  pointerToSymbolTable = fileOff;
  fileOff += outputSymtab.size() * sizeof(coff_symbol16);
  fileOff += 4 + strtab.size();
  fileSize = alignTo(fileOff, config->fileAlign);
}

void Writer::mergeSections() {
  if (!pdataSec->chunks.empty()) {
    firstPdata = pdataSec->chunks.front();
    lastPdata = pdataSec->chunks.back();
  }

  for (auto &p : config->merge) {
    StringRef toName = p.second;
    if (p.first == toName)
      continue;
    StringSet<> names;
    while (1) {
      if (!names.insert(toName).second)
        fatal("/merge: cycle found for section '" + p.first + "'");
      auto i = config->merge.find(toName);
      if (i == config->merge.end())
        break;
      toName = i->second;
    }
    OutputSection *from = findSection(p.first);
    OutputSection *to = findSection(toName);
    if (!from)
      continue;
    if (!to) {
      from->name = toName;
      continue;
    }
    to->merge(from);
  }
}

// Visits all sections to assign incremental, non-overlapping RVAs and
// file offsets.
void Writer::assignAddresses() {
  sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
                  sizeof(data_directory) * numberOfDataDirectory +
                  sizeof(coff_section) * outputSections.size();
  sizeOfHeaders +=
      config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
  sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
  fileSize = sizeOfHeaders;

  // The first page is kept unmapped.
  uint64_t rva = alignTo(sizeOfHeaders, config->align);

  for (OutputSection *sec : outputSections) {
    if (sec == relocSec)
      addBaserels();
    uint64_t rawSize = 0, virtualSize = 0;
    sec->header.VirtualAddress = rva;

    // If /FUNCTIONPADMIN is used, functions are padded in order to create a
    // hotpatchable image.
    const bool isCodeSection =
        (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
        (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
        (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
    uint32_t padding = isCodeSection ? config->functionPadMin : 0;

    for (Chunk *c : sec->chunks) {
      if (padding && c->isHotPatchable())
        virtualSize += padding;
      virtualSize = alignTo(virtualSize, c->getAlignment());
      c->setRVA(rva + virtualSize);
      virtualSize += c->getSize();
      if (c->hasData)
        rawSize = alignTo(virtualSize, config->fileAlign);
    }
    if (virtualSize > UINT32_MAX)
      error("section larger than 4 GiB: " + sec->name);
    sec->header.VirtualSize = virtualSize;
    sec->header.SizeOfRawData = rawSize;
    if (rawSize != 0)
      sec->header.PointerToRawData = fileSize;
    rva += alignTo(virtualSize, config->align);
    fileSize += alignTo(rawSize, config->fileAlign);
  }
  sizeOfImage = alignTo(rva, config->align);

  // Assign addresses to sections in MergeChunks.
  for (MergeChunk *mc : MergeChunk::instances)
    if (mc)
      mc->assignSubsectionRVAs();
}

template <typename PEHeaderTy> void Writer::writeHeader() {
  // Write DOS header. For backwards compatibility, the first part of a PE/COFF
  // executable consists of an MS-DOS MZ executable. If the executable is run
  // under DOS, that program gets run (usually to just print an error message).
  // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
  // the PE header instead.
  uint8_t *buf = buffer->getBufferStart();
  auto *dos = reinterpret_cast<dos_header *>(buf);
  buf += sizeof(dos_header);
  dos->Magic[0] = 'M';
  dos->Magic[1] = 'Z';
  dos->UsedBytesInTheLastPage = dosStubSize % 512;
  dos->FileSizeInPages = divideCeil(dosStubSize, 512);
  dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;

  dos->AddressOfRelocationTable = sizeof(dos_header);
  dos->AddressOfNewExeHeader = dosStubSize;

  // Write DOS program.
  memcpy(buf, dosProgram, sizeof(dosProgram));
  buf += sizeof(dosProgram);

  // Write PE magic
  memcpy(buf, PEMagic, sizeof(PEMagic));
  buf += sizeof(PEMagic);

  // Write COFF header
  auto *coff = reinterpret_cast<coff_file_header *>(buf);
  buf += sizeof(*coff);
  coff->Machine = config->machine;
  coff->NumberOfSections = outputSections.size();
  coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
  if (config->largeAddressAware)
    coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
  if (!config->is64())
    coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
  if (config->dll)
    coff->Characteristics |= IMAGE_FILE_DLL;
  if (config->driverUponly)
    coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
  if (!config->relocatable)
    coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
  if (config->swaprunCD)
    coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
  if (config->swaprunNet)
    coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
  coff->SizeOfOptionalHeader =
      sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;

  // Write PE header
  auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
  buf += sizeof(*pe);
  pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;

  // If {Major,Minor}LinkerVersion is left at 0.0, then for some
  // reason signing the resulting PE file with Authenticode produces a
  // signature that fails to validate on Windows 7 (but is OK on 10).
  // Set it to 14.0, which is what VS2015 outputs, and which avoids
  // that problem.
  pe->MajorLinkerVersion = 14;
  pe->MinorLinkerVersion = 0;

  pe->ImageBase = config->imageBase;
  pe->SectionAlignment = config->align;
  pe->FileAlignment = config->fileAlign;
  pe->MajorImageVersion = config->majorImageVersion;
  pe->MinorImageVersion = config->minorImageVersion;
  pe->MajorOperatingSystemVersion = config->majorOSVersion;
  pe->MinorOperatingSystemVersion = config->minorOSVersion;
  pe->MajorSubsystemVersion = config->majorOSVersion;
  pe->MinorSubsystemVersion = config->minorOSVersion;
  pe->Subsystem = config->subsystem;
  pe->SizeOfImage = sizeOfImage;
  pe->SizeOfHeaders = sizeOfHeaders;
  if (!config->noEntry) {
    Defined *entry = cast<Defined>(config->entry);
    pe->AddressOfEntryPoint = entry->getRVA();
    // Pointer to thumb code must have the LSB set, so adjust it.
    if (config->machine == ARMNT)
      pe->AddressOfEntryPoint |= 1;
  }
  pe->SizeOfStackReserve = config->stackReserve;
  pe->SizeOfStackCommit = config->stackCommit;
  pe->SizeOfHeapReserve = config->heapReserve;
  pe->SizeOfHeapCommit = config->heapCommit;
  if (config->appContainer)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
  if (config->driverWdm)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
  if (config->dynamicBase)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
  if (config->highEntropyVA)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
  if (!config->allowBind)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
  if (config->nxCompat)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
  if (!config->allowIsolation)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
  if (config->guardCF != GuardCFLevel::Off)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
  if (config->integrityCheck)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
  if (setNoSEHCharacteristic || config->noSEH)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
  if (config->terminalServerAware)
    pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
  pe->NumberOfRvaAndSize = numberOfDataDirectory;
  if (textSec->getVirtualSize()) {
    pe->BaseOfCode = textSec->getRVA();
    pe->SizeOfCode = textSec->getRawSize();
  }
  pe->SizeOfInitializedData = getSizeOfInitializedData();

  // Write data directory
  auto *dir = reinterpret_cast<data_directory *>(buf);
  buf += sizeof(*dir) * numberOfDataDirectory;
  if (edataStart) {
    dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
    dir[EXPORT_TABLE].Size =
        edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
  }
  if (importTableStart) {
    dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
    dir[IMPORT_TABLE].Size = importTableSize;
  }
  if (iatStart) {
    dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
    dir[IAT].Size = iatSize;
  }
  if (rsrcSec->getVirtualSize()) {
    dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
    dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
  }
  if (firstPdata) {
    dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
    dir[EXCEPTION_TABLE].Size =
        lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
  }
  if (relocSec->getVirtualSize()) {
    dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
    dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
  }
  if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
    if (Defined *b = dyn_cast<Defined>(sym)) {
      dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
      dir[TLS_TABLE].Size = config->is64()
                                ? sizeof(object::coff_tls_directory64)
                                : sizeof(object::coff_tls_directory32);
    }
  }
  if (debugDirectory) {
    dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
    dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
  }
  if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
    if (auto *b = dyn_cast<DefinedRegular>(sym)) {
      SectionChunk *sc = b->getChunk();
      assert(b->getRVA() >= sc->getRVA());
      uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
      if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
        fatal("_load_config_used is malformed");

      ArrayRef<uint8_t> secContents = sc->getContents();
      uint32_t loadConfigSize =
          *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
      if (offsetInChunk + loadConfigSize > sc->getSize())
        fatal("_load_config_used is too large");
      dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
      dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
    }
  }
  if (!delayIdata.empty()) {
    dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
        delayIdata.getDirRVA();
    dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
  }

  // Write section table
  for (OutputSection *sec : outputSections) {
    sec->writeHeaderTo(buf);
    buf += sizeof(coff_section);
  }
  sectionTable = ArrayRef<uint8_t>(
      buf - outputSections.size() * sizeof(coff_section), buf);

  if (outputSymtab.empty() && strtab.empty())
    return;

  coff->PointerToSymbolTable = pointerToSymbolTable;
  uint32_t numberOfSymbols = outputSymtab.size();
  coff->NumberOfSymbols = numberOfSymbols;
  auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
      buffer->getBufferStart() + coff->PointerToSymbolTable);
  for (size_t i = 0; i != numberOfSymbols; ++i)
    symbolTable[i] = outputSymtab[i];
  // Create the string table, it follows immediately after the symbol table.
  // The first 4 bytes is length including itself.
  buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
  write32le(buf, strtab.size() + 4);
  if (!strtab.empty())
    memcpy(buf + 4, strtab.data(), strtab.size());
}

void Writer::openFile(StringRef path) {
  buffer = CHECK(
      FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
      "failed to open " + path);
}

void Writer::createSEHTable() {
  SymbolRVASet handlers;
  for (ObjFile *file : ObjFile::instances) {
    if (!file->hasSafeSEH())
      error("/safeseh: " + file->getName() + " is not compatible with SEH");
    markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
  }

  // Set the "no SEH" characteristic if there really were no handlers, or if
  // there is no load config object to point to the table of handlers.
  setNoSEHCharacteristic =
      handlers.empty() || !symtab->findUnderscore("_load_config_used");

  maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
                   "__safe_se_handler_count");
}

// Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
// cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
// symbol's offset into that Chunk.
static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
  Chunk *c = s->getChunk();
  if (auto *sc = dyn_cast<SectionChunk>(c))
    c = sc->repl; // Look through ICF replacement.
  uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
  rvaSet.insert({c, off});
}

// Given a symbol, add it to the GFIDs table if it is a live, defined, function
// symbol in an executable section.
static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
                                         Symbol *s) {
  if (!s)
    return;

  switch (s->kind()) {
  case Symbol::DefinedLocalImportKind:
  case Symbol::DefinedImportDataKind:
    // Defines an __imp_ pointer, so it is data, so it is ignored.
    break;
  case Symbol::DefinedCommonKind:
    // Common is always data, so it is ignored.
    break;
  case Symbol::DefinedAbsoluteKind:
  case Symbol::DefinedSyntheticKind:
    // Absolute is never code, synthetic generally isn't and usually isn't
    // determinable.
    break;
  case Symbol::LazyArchiveKind:
  case Symbol::LazyObjectKind:
  case Symbol::UndefinedKind:
    // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
    // symbols shouldn't have relocations.
    break;

  case Symbol::DefinedImportThunkKind:
    // Thunks are always code, include them.
    addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
    break;

  case Symbol::DefinedRegularKind: {
    // This is a regular, defined, symbol from a COFF file. Mark the symbol as
    // address taken if the symbol type is function and it's in an executable
    // section.
    auto *d = cast<DefinedRegular>(s);
    if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
      SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
      if (sc && sc->live &&
          sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
        addSymbolToRVASet(addressTakenSyms, d);
    }
    break;
  }
  }
}

// Visit all relocations from all section contributions of this object file and
// mark the relocation target as address-taken.
static void markSymbolsWithRelocations(ObjFile *file,
                                       SymbolRVASet &usedSymbols) {
  for (Chunk *c : file->getChunks()) {
    // We only care about live section chunks. Common chunks and other chunks
    // don't generally contain relocations.
    SectionChunk *sc = dyn_cast<SectionChunk>(c);
    if (!sc || !sc->live)
      continue;

    for (const coff_relocation &reloc : sc->getRelocs()) {
      if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
        // Ignore relative relocations on x86. On x86_64 they can't be ignored
        // since they're also used to compute absolute addresses.
        continue;

      Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
      maybeAddAddressTakenFunction(usedSymbols, ref);
    }
  }
}

// Create the guard function id table. This is a table of RVAs of all
// address-taken functions. It is sorted and uniqued, just like the safe SEH
// table.
void Writer::createGuardCFTables() {
  SymbolRVASet addressTakenSyms;
  SymbolRVASet longJmpTargets;
  for (ObjFile *file : ObjFile::instances) {
    // If the object was compiled with /guard:cf, the address taken symbols
    // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
    // sections. If the object was not compiled with /guard:cf, we assume there
    // were no setjmp targets, and that all code symbols with relocations are
    // possibly address-taken.
    if (file->hasGuardCF()) {
      markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
      markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
    } else {
      markSymbolsWithRelocations(file, addressTakenSyms);
    }
  }

  // Mark the image entry as address-taken.
  if (config->entry)
    maybeAddAddressTakenFunction(addressTakenSyms, config->entry);

  // Mark exported symbols in executable sections as address-taken.
  for (Export &e : config->exports)
    maybeAddAddressTakenFunction(addressTakenSyms, e.sym);

  // Ensure sections referenced in the gfid table are 16-byte aligned.
  for (const ChunkAndOffset &c : addressTakenSyms)
    if (c.inputChunk->getAlignment() < 16)
      c.inputChunk->setAlignment(16);

  maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
                   "__guard_fids_count");

  // Add the longjmp target table unless the user told us not to.
  if (config->guardCF == GuardCFLevel::Full)
    maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
                     "__guard_longjmp_count");

  // Set __guard_flags, which will be used in the load config to indicate that
  // /guard:cf was enabled.
  uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
                        uint32_t(coff_guard_flags::HasFidTable);
  if (config->guardCF == GuardCFLevel::Full)
    guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
  Symbol *flagSym = symtab->findUnderscore("__guard_flags");
  cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
}

// Take a list of input sections containing symbol table indices and add those
// symbols to an RVA table. The challenge is that symbol RVAs are not known and
// depend on the table size, so we can't directly build a set of integers.
void Writer::markSymbolsForRVATable(ObjFile *file,
                                    ArrayRef<SectionChunk *> symIdxChunks,
                                    SymbolRVASet &tableSymbols) {
  for (SectionChunk *c : symIdxChunks) {
    // Skip sections discarded by linker GC. This comes up when a .gfids section
    // is associated with something like a vtable and the vtable is discarded.
    // In this case, the associated gfids section is discarded, and we don't
    // mark the virtual member functions as address-taken by the vtable.
    if (!c->live)
      continue;

    // Validate that the contents look like symbol table indices.
    ArrayRef<uint8_t> data = c->getContents();
    if (data.size() % 4 != 0) {
      warn("ignoring " + c->getSectionName() +
           " symbol table index section in object " + toString(file));
      continue;
    }

    // Read each symbol table index and check if that symbol was included in the
    // final link. If so, add it to the table symbol set.
    ArrayRef<ulittle32_t> symIndices(
        reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
    ArrayRef<Symbol *> objSymbols = file->getSymbols();
    for (uint32_t symIndex : symIndices) {
      if (symIndex >= objSymbols.size()) {
        warn("ignoring invalid symbol table index in section " +
             c->getSectionName() + " in object " + toString(file));
        continue;
      }
      if (Symbol *s = objSymbols[symIndex]) {
        if (s->isLive())
          addSymbolToRVASet(tableSymbols, cast<Defined>(s));
      }
    }
  }
}

// Replace the absolute table symbol with a synthetic symbol pointing to
// tableChunk so that we can emit base relocations for it and resolve section
// relative relocations.
void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
                              StringRef countSym) {
  if (tableSymbols.empty())
    return;

  RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols));
  rdataSec->addChunk(tableChunk);

  Symbol *t = symtab->findUnderscore(tableSym);
  Symbol *c = symtab->findUnderscore(countSym);
  replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
  cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4);
}

// MinGW specific. Gather all relocations that are imported from a DLL even
// though the code didn't expect it to, produce the table that the runtime
// uses for fixing them up, and provide the synthetic symbols that the
// runtime uses for finding the table.
void Writer::createRuntimePseudoRelocs() {
  std::vector<RuntimePseudoReloc> rels;

  for (Chunk *c : symtab->getChunks()) {
    auto *sc = dyn_cast<SectionChunk>(c);
    if (!sc || !sc->live)
      continue;
    sc->getRuntimePseudoRelocs(rels);
  }

  if (!config->pseudoRelocs) {
    // Not writing any pseudo relocs; if some were needed, error out and
    // indicate what required them.
    for (const RuntimePseudoReloc &rpr : rels)
      error("automatic dllimport of " + rpr.sym->getName() + " in " +
            toString(rpr.target->file) + " requires pseudo relocations");
    return;
  }

  if (!rels.empty())
    log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
  PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
  rdataSec->addChunk(table);
  EmptyChunk *endOfList = make<EmptyChunk>();
  rdataSec->addChunk(endOfList);

  Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
  Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
  replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
  replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
}

// MinGW specific.
// The MinGW .ctors and .dtors lists have sentinels at each end;
// a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
// There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
// and __DTOR_LIST__ respectively.
void Writer::insertCtorDtorSymbols() {
  AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
  AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
  AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
  AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
  ctorsSec->insertChunkAtStart(ctorListHead);
  ctorsSec->addChunk(ctorListEnd);
  dtorsSec->insertChunkAtStart(dtorListHead);
  dtorsSec->addChunk(dtorListEnd);

  Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
  Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
  replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
                                  ctorListHead);
  replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
                                  dtorListHead);
}

// Handles /section options to allow users to overwrite
// section attributes.
void Writer::setSectionPermissions() {
  for (auto &p : config->section) {
    StringRef name = p.first;
    uint32_t perm = p.second;
    for (OutputSection *sec : outputSections)
      if (sec->name == name)
        sec->setPermissions(perm);
  }
}

// Write section contents to a mmap'ed file.
void Writer::writeSections() {
  // Record the number of sections to apply section index relocations
  // against absolute symbols. See applySecIdx in Chunks.cpp..
  DefinedAbsolute::numOutputSections = outputSections.size();

  uint8_t *buf = buffer->getBufferStart();
  for (OutputSection *sec : outputSections) {
    uint8_t *secBuf = buf + sec->getFileOff();
    // Fill gaps between functions in .text with INT3 instructions
    // instead of leaving as NUL bytes (which can be interpreted as
    // ADD instructions).
    if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
      memset(secBuf, 0xCC, sec->getRawSize());
    parallelForEach(sec->chunks, [&](Chunk *c) {
      c->writeTo(secBuf + c->getRVA() - sec->getRVA());
    });
  }
}

void Writer::writeBuildId() {
  // There are two important parts to the build ID.
  // 1) If building with debug info, the COFF debug directory contains a
  //    timestamp as well as a Guid and Age of the PDB.
  // 2) In all cases, the PE COFF file header also contains a timestamp.
  // For reproducibility, instead of a timestamp we want to use a hash of the
  // PE contents.
  if (config->debug) {
    assert(buildId && "BuildId is not set!");
    // BuildId->BuildId was filled in when the PDB was written.
  }

  // At this point the only fields in the COFF file which remain unset are the
  // "timestamp" in the COFF file header, and the ones in the coff debug
  // directory.  Now we can hash the file and write that hash to the various
  // timestamp fields in the file.
  StringRef outputFileData(
      reinterpret_cast<const char *>(buffer->getBufferStart()),
      buffer->getBufferSize());

  uint32_t timestamp = config->timestamp;
  uint64_t hash = 0;
  bool generateSyntheticBuildId =
      config->mingw && config->debug && config->pdbPath.empty();

  if (config->repro || generateSyntheticBuildId)
    hash = xxHash64(outputFileData);

  if (config->repro)
    timestamp = static_cast<uint32_t>(hash);

  if (generateSyntheticBuildId) {
    // For MinGW builds without a PDB file, we still generate a build id
    // to allow associating a crash dump to the executable.
    buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
    buildId->buildId->PDB70.Age = 1;
    memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
    // xxhash only gives us 8 bytes, so put some fixed data in the other half.
    memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
  }

  if (debugDirectory)
    debugDirectory->setTimeDateStamp(timestamp);

  uint8_t *buf = buffer->getBufferStart();
  buf += dosStubSize + sizeof(PEMagic);
  object::coff_file_header *coffHeader =
      reinterpret_cast<coff_file_header *>(buf);
  coffHeader->TimeDateStamp = timestamp;
}

// Sort .pdata section contents according to PE/COFF spec 5.5.
void Writer::sortExceptionTable() {
  if (!firstPdata)
    return;
  // We assume .pdata contains function table entries only.
  auto bufAddr = [&](Chunk *c) {
    OutputSection *os = c->getOutputSection();
    return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
           os->getRVA();
  };
  uint8_t *begin = bufAddr(firstPdata);
  uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
  if (config->machine == AMD64) {
    struct Entry { ulittle32_t begin, end, unwind; };
    if ((end - begin) % sizeof(Entry) != 0) {
      fatal("unexpected .pdata size: " + Twine(end - begin) +
            " is not a multiple of " + Twine(sizeof(Entry)));
    }
    parallelSort(
        MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
        [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
    return;
  }
  if (config->machine == ARMNT || config->machine == ARM64) {
    struct Entry { ulittle32_t begin, unwind; };
    if ((end - begin) % sizeof(Entry) != 0) {
      fatal("unexpected .pdata size: " + Twine(end - begin) +
            " is not a multiple of " + Twine(sizeof(Entry)));
    }
    parallelSort(
        MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
        [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
    return;
  }
  lld::errs() << "warning: don't know how to handle .pdata.\n";
}

// The CRT section contains, among other things, the array of function
// pointers that initialize every global variable that is not trivially
// constructed. The CRT calls them one after the other prior to invoking
// main().
//
// As per C++ spec, 3.6.2/2.3,
// "Variables with ordered initialization defined within a single
// translation unit shall be initialized in the order of their definitions
// in the translation unit"
//
// It is therefore critical to sort the chunks containing the function
// pointers in the order that they are listed in the object file (top to
// bottom), otherwise global objects might not be initialized in the
// correct order.
void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
  auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
    auto sa = dyn_cast<SectionChunk>(a);
    auto sb = dyn_cast<SectionChunk>(b);
    assert(sa && sb && "Non-section chunks in CRT section!");

    StringRef sAObj = sa->file->mb.getBufferIdentifier();
    StringRef sBObj = sb->file->mb.getBufferIdentifier();

    return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
  };
  llvm::stable_sort(chunks, sectionChunkOrder);

  if (config->verbose) {
    for (auto &c : chunks) {
      auto sc = dyn_cast<SectionChunk>(c);
      log("  " + sc->file->mb.getBufferIdentifier().str() +
          ", SectionID: " + Twine(sc->getSectionNumber()));
    }
  }
}

OutputSection *Writer::findSection(StringRef name) {
  for (OutputSection *sec : outputSections)
    if (sec->name == name)
      return sec;
  return nullptr;
}

uint32_t Writer::getSizeOfInitializedData() {
  uint32_t res = 0;
  for (OutputSection *s : outputSections)
    if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
      res += s->getRawSize();
  return res;
}

// Add base relocations to .reloc section.
void Writer::addBaserels() {
  if (!config->relocatable)
    return;
  relocSec->chunks.clear();
  std::vector<Baserel> v;
  for (OutputSection *sec : outputSections) {
    if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
      continue;
    // Collect all locations for base relocations.
    for (Chunk *c : sec->chunks)
      c->getBaserels(&v);
    // Add the addresses to .reloc section.
    if (!v.empty())
      addBaserelBlocks(v);
    v.clear();
  }
}

// Add addresses to .reloc section. Note that addresses are grouped by page.
void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
  const uint32_t mask = ~uint32_t(pageSize - 1);
  uint32_t page = v[0].rva & mask;
  size_t i = 0, j = 1;
  for (size_t e = v.size(); j < e; ++j) {
    uint32_t p = v[j].rva & mask;
    if (p == page)
      continue;
    relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
    i = j;
    page = p;
  }
  if (i == j)
    return;
  relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
}

PartialSection *Writer::createPartialSection(StringRef name,
                                             uint32_t outChars) {
  PartialSection *&pSec = partialSections[{name, outChars}];
  if (pSec)
    return pSec;
  pSec = make<PartialSection>(name, outChars);
  return pSec;
}

PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
  auto it = partialSections.find({name, outChars});
  if (it != partialSections.end())
    return it->second;
  return nullptr;
}