isl_sample.c 37.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 */

#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_sample.h"
#include <isl/vec.h>
#include <isl/mat.h>
#include <isl_seq.h>
#include "isl_equalities.h"
#include "isl_tab.h"
#include "isl_basis_reduction.h"
#include <isl_factorization.h>
#include <isl_point_private.h>
#include <isl_options_private.h>
#include <isl_vec_private.h>

#include <bset_from_bmap.c>
#include <set_to_map.c>

static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset)
{
	struct isl_vec *vec;

	vec = isl_vec_alloc(bset->ctx, 0);
	isl_basic_set_free(bset);
	return vec;
}

/* Construct a zero sample of the same dimension as bset.
 * As a special case, if bset is zero-dimensional, this
 * function creates a zero-dimensional sample point.
 */
static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset)
{
	isl_size dim;
	struct isl_vec *sample;

	dim = isl_basic_set_dim(bset, isl_dim_all);
	if (dim < 0)
		goto error;
	sample = isl_vec_alloc(bset->ctx, 1 + dim);
	if (sample) {
		isl_int_set_si(sample->el[0], 1);
		isl_seq_clr(sample->el + 1, dim);
	}
	isl_basic_set_free(bset);
	return sample;
error:
	isl_basic_set_free(bset);
	return NULL;
}

static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset)
{
	int i;
	isl_int t;
	struct isl_vec *sample;

	bset = isl_basic_set_simplify(bset);
	if (!bset)
		return NULL;
	if (isl_basic_set_plain_is_empty(bset))
		return empty_sample(bset);
	if (bset->n_eq == 0 && bset->n_ineq == 0)
		return zero_sample(bset);

	sample = isl_vec_alloc(bset->ctx, 2);
	if (!sample)
		goto error;
	if (!bset)
		return NULL;
	isl_int_set_si(sample->block.data[0], 1);

	if (bset->n_eq > 0) {
		isl_assert(bset->ctx, bset->n_eq == 1, goto error);
		isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
		if (isl_int_is_one(bset->eq[0][1]))
			isl_int_neg(sample->el[1], bset->eq[0][0]);
		else {
			isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
				   goto error);
			isl_int_set(sample->el[1], bset->eq[0][0]);
		}
		isl_basic_set_free(bset);
		return sample;
	}

	isl_int_init(t);
	if (isl_int_is_one(bset->ineq[0][1]))
		isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
	else
		isl_int_set(sample->block.data[1], bset->ineq[0][0]);
	for (i = 1; i < bset->n_ineq; ++i) {
		isl_seq_inner_product(sample->block.data,
					bset->ineq[i], 2, &t);
		if (isl_int_is_neg(t))
			break;
	}
	isl_int_clear(t);
	if (i < bset->n_ineq) {
		isl_vec_free(sample);
		return empty_sample(bset);
	}

	isl_basic_set_free(bset);
	return sample;
error:
	isl_basic_set_free(bset);
	isl_vec_free(sample);
	return NULL;
}

/* Find a sample integer point, if any, in bset, which is known
 * to have equalities.  If bset contains no integer points, then
 * return a zero-length vector.
 * We simply remove the known equalities, compute a sample
 * in the resulting bset, using the specified recurse function,
 * and then transform the sample back to the original space.
 */
static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset,
	__isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *))
{
	struct isl_mat *T;
	struct isl_vec *sample;

	if (!bset)
		return NULL;

	bset = isl_basic_set_remove_equalities(bset, &T, NULL);
	sample = recurse(bset);
	if (!sample || sample->size == 0)
		isl_mat_free(T);
	else
		sample = isl_mat_vec_product(T, sample);
	return sample;
}

/* Return a matrix containing the equalities of the tableau
 * in constraint form.  The tableau is assumed to have
 * an associated bset that has been kept up-to-date.
 */
static struct isl_mat *tab_equalities(struct isl_tab *tab)
{
	int i, j;
	int n_eq;
	struct isl_mat *eq;
	struct isl_basic_set *bset;

	if (!tab)
		return NULL;

	bset = isl_tab_peek_bset(tab);
	isl_assert(tab->mat->ctx, bset, return NULL);

	n_eq = tab->n_var - tab->n_col + tab->n_dead;
	if (tab->empty || n_eq == 0)
		return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
	if (n_eq == tab->n_var)
		return isl_mat_identity(tab->mat->ctx, tab->n_var);

	eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
	if (!eq)
		return NULL;
	for (i = 0, j = 0; i < tab->n_con; ++i) {
		if (tab->con[i].is_row)
			continue;
		if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
			continue;
		if (i < bset->n_eq)
			isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
		else
			isl_seq_cpy(eq->row[j],
				    bset->ineq[i - bset->n_eq] + 1, tab->n_var);
		++j;
	}
	isl_assert(bset->ctx, j == n_eq, goto error);
	return eq;
error:
	isl_mat_free(eq);
	return NULL;
}

/* Compute and return an initial basis for the bounded tableau "tab".
 *
 * If the tableau is either full-dimensional or zero-dimensional,
 * the we simply return an identity matrix.
 * Otherwise, we construct a basis whose first directions correspond
 * to equalities.
 */
static struct isl_mat *initial_basis(struct isl_tab *tab)
{
	int n_eq;
	struct isl_mat *eq;
	struct isl_mat *Q;

	tab->n_unbounded = 0;
	tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
	if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
		return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);

	eq = tab_equalities(tab);
	eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
	if (!eq)
		return NULL;
	isl_mat_free(eq);

	Q = isl_mat_lin_to_aff(Q);
	return Q;
}

/* Compute the minimum of the current ("level") basis row over "tab"
 * and store the result in position "level" of "min".
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
	__isl_keep isl_vec *min, int level)
{
	return isl_tab_min(tab, tab->basis->row[1 + level],
			    ctx->one, &min->el[level], NULL, 0);
}

/* Compute the maximum of the current ("level") basis row over "tab"
 * and store the result in position "level" of "max".
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
	__isl_keep isl_vec *max, int level)
{
	enum isl_lp_result res;
	unsigned dim = tab->n_var;

	isl_seq_neg(tab->basis->row[1 + level] + 1,
		    tab->basis->row[1 + level] + 1, dim);
	res = isl_tab_min(tab, tab->basis->row[1 + level],
		    ctx->one, &max->el[level], NULL, 0);
	isl_seq_neg(tab->basis->row[1 + level] + 1,
		    tab->basis->row[1 + level] + 1, dim);
	isl_int_neg(max->el[level], max->el[level]);

	return res;
}

/* Perform a greedy search for an integer point in the set represented
 * by "tab", given that the minimal rational value (rounded up to the
 * nearest integer) at "level" is smaller than the maximal rational
 * value (rounded down to the nearest integer).
 *
 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
 * then we may have only found integer values for the bounded dimensions
 * and it is the responsibility of the caller to extend this solution
 * to the unbounded dimensions).
 * Return 0 if greedy search did not result in a solution.
 * Return -1 if some error occurred.
 *
 * We assign a value half-way between the minimum and the maximum
 * to the current dimension and check if the minimal value of the
 * next dimension is still smaller than (or equal) to the maximal value.
 * We continue this process until either
 * - the minimal value (rounded up) is greater than the maximal value
 *	(rounded down).  In this case, greedy search has failed.
 * - we have exhausted all bounded dimensions, meaning that we have
 *	found a solution.
 * - the sample value of the tableau is integral.
 * - some error has occurred.
 */
static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
	__isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
{
	struct isl_tab_undo *snap;
	enum isl_lp_result res;

	snap = isl_tab_snap(tab);

	do {
		isl_int_add(tab->basis->row[1 + level][0],
			    min->el[level], max->el[level]);
		isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
			    tab->basis->row[1 + level][0], 2);
		isl_int_neg(tab->basis->row[1 + level][0],
			    tab->basis->row[1 + level][0]);
		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
			return -1;
		isl_int_set_si(tab->basis->row[1 + level][0], 0);

		if (++level >= tab->n_var - tab->n_unbounded)
			return 1;
		if (isl_tab_sample_is_integer(tab))
			return 1;

		res = compute_min(ctx, tab, min, level);
		if (res == isl_lp_error)
			return -1;
		if (res != isl_lp_ok)
			isl_die(ctx, isl_error_internal,
				"expecting bounded rational solution",
				return -1);
		res = compute_max(ctx, tab, max, level);
		if (res == isl_lp_error)
			return -1;
		if (res != isl_lp_ok)
			isl_die(ctx, isl_error_internal,
				"expecting bounded rational solution",
				return -1);
	} while (isl_int_le(min->el[level], max->el[level]));

	if (isl_tab_rollback(tab, snap) < 0)
		return -1;

	return 0;
}

/* Given a tableau representing a set, find and return
 * an integer point in the set, if there is any.
 *
 * We perform a depth first search
 * for an integer point, by scanning all possible values in the range
 * attained by a basis vector, where an initial basis may have been set
 * by the calling function.  Otherwise an initial basis that exploits
 * the equalities in the tableau is created.
 * tab->n_zero is currently ignored and is clobbered by this function.
 *
 * The tableau is allowed to have unbounded direction, but then
 * the calling function needs to set an initial basis, with the
 * unbounded directions last and with tab->n_unbounded set
 * to the number of unbounded directions.
 * Furthermore, the calling functions needs to add shifted copies
 * of all constraints involving unbounded directions to ensure
 * that any feasible rational value in these directions can be rounded
 * up to yield a feasible integer value.
 * In particular, let B define the given basis x' = B x
 * and let T be the inverse of B, i.e., X = T x'.
 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
 * or a T x' + c >= 0 in terms of the given basis.  Assume that
 * the bounded directions have an integer value, then we can safely
 * round up the values for the unbounded directions if we make sure
 * that x' not only satisfies the original constraint, but also
 * the constraint "a T x' + c + s >= 0" with s the sum of all
 * negative values in the last n_unbounded entries of "a T".
 * The calling function therefore needs to add the constraint
 * a x + c + s >= 0.  The current function then scans the first
 * directions for an integer value and once those have been found,
 * it can compute "T ceil(B x)" to yield an integer point in the set.
 * Note that during the search, the first rows of B may be changed
 * by a basis reduction, but the last n_unbounded rows of B remain
 * unaltered and are also not mixed into the first rows.
 *
 * The search is implemented iteratively.  "level" identifies the current
 * basis vector.  "init" is true if we want the first value at the current
 * level and false if we want the next value.
 *
 * At the start of each level, we first check if we can find a solution
 * using greedy search.  If not, we continue with the exhaustive search.
 *
 * The initial basis is the identity matrix.  If the range in some direction
 * contains more than one integer value, we perform basis reduction based
 * on the value of ctx->opt->gbr
 *	- ISL_GBR_NEVER:	never perform basis reduction
 *	- ISL_GBR_ONCE:		only perform basis reduction the first
 *				time such a range is encountered
 *	- ISL_GBR_ALWAYS:	always perform basis reduction when
 *				such a range is encountered
 *
 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
 * reduction computation to return early.  That is, as soon as it
 * finds a reasonable first direction.
 */ 
__isl_give isl_vec *isl_tab_sample(struct isl_tab *tab)
{
	unsigned dim;
	unsigned gbr;
	struct isl_ctx *ctx;
	struct isl_vec *sample;
	struct isl_vec *min;
	struct isl_vec *max;
	enum isl_lp_result res;
	int level;
	int init;
	int reduced;
	struct isl_tab_undo **snap;

	if (!tab)
		return NULL;
	if (tab->empty)
		return isl_vec_alloc(tab->mat->ctx, 0);

	if (!tab->basis)
		tab->basis = initial_basis(tab);
	if (!tab->basis)
		return NULL;
	isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
		    return NULL);
	isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
		    return NULL);

	ctx = tab->mat->ctx;
	dim = tab->n_var;
	gbr = ctx->opt->gbr;

	if (tab->n_unbounded == tab->n_var) {
		sample = isl_tab_get_sample_value(tab);
		sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
		sample = isl_vec_ceil(sample);
		sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
							sample);
		return sample;
	}

	if (isl_tab_extend_cons(tab, dim + 1) < 0)
		return NULL;

	min = isl_vec_alloc(ctx, dim);
	max = isl_vec_alloc(ctx, dim);
	snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);

	if (!min || !max || !snap)
		goto error;

	level = 0;
	init = 1;
	reduced = 0;

	while (level >= 0) {
		if (init) {
			int choice;

			res = compute_min(ctx, tab, min, level);
			if (res == isl_lp_error)
				goto error;
			if (res != isl_lp_ok)
				isl_die(ctx, isl_error_internal,
					"expecting bounded rational solution",
					goto error);
			if (isl_tab_sample_is_integer(tab))
				break;
			res = compute_max(ctx, tab, max, level);
			if (res == isl_lp_error)
				goto error;
			if (res != isl_lp_ok)
				isl_die(ctx, isl_error_internal,
					"expecting bounded rational solution",
					goto error);
			if (isl_tab_sample_is_integer(tab))
				break;
			choice = isl_int_lt(min->el[level], max->el[level]);
			if (choice) {
				int g;
				g = greedy_search(ctx, tab, min, max, level);
				if (g < 0)
					goto error;
				if (g)
					break;
			}
			if (!reduced && choice &&
			    ctx->opt->gbr != ISL_GBR_NEVER) {
				unsigned gbr_only_first;
				if (ctx->opt->gbr == ISL_GBR_ONCE)
					ctx->opt->gbr = ISL_GBR_NEVER;
				tab->n_zero = level;
				gbr_only_first = ctx->opt->gbr_only_first;
				ctx->opt->gbr_only_first =
					ctx->opt->gbr == ISL_GBR_ALWAYS;
				tab = isl_tab_compute_reduced_basis(tab);
				ctx->opt->gbr_only_first = gbr_only_first;
				if (!tab || !tab->basis)
					goto error;
				reduced = 1;
				continue;
			}
			reduced = 0;
			snap[level] = isl_tab_snap(tab);
		} else
			isl_int_add_ui(min->el[level], min->el[level], 1);

		if (isl_int_gt(min->el[level], max->el[level])) {
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
			goto error;
		isl_int_set_si(tab->basis->row[1 + level][0], 0);
		if (level + tab->n_unbounded < dim - 1) {
			++level;
			init = 1;
			continue;
		}
		break;
	}

	if (level >= 0) {
		sample = isl_tab_get_sample_value(tab);
		if (!sample)
			goto error;
		if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
			sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
						     sample);
			sample = isl_vec_ceil(sample);
			sample = isl_mat_vec_inverse_product(
					isl_mat_copy(tab->basis), sample);
		}
	} else
		sample = isl_vec_alloc(ctx, 0);

	ctx->opt->gbr = gbr;
	isl_vec_free(min);
	isl_vec_free(max);
	free(snap);
	return sample;
error:
	ctx->opt->gbr = gbr;
	isl_vec_free(min);
	isl_vec_free(max);
	free(snap);
	return NULL;
}

static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset);

/* Internal data for factored_sample.
 * "sample" collects the sample and may get reset to a zero-length vector
 * signaling the absence of a sample vector.
 * "pos" is the position of the contribution of the next factor.
 */
struct isl_factored_sample_data {
	isl_vec *sample;
	int pos;
};

/* isl_factorizer_every_factor_basic_set callback that extends
 * the sample in data->sample with the contribution
 * of the factor "bset".
 * If "bset" turns out to be empty, then the product is empty too and
 * no further factors need to be considered.
 */
static isl_bool factor_sample(__isl_keep isl_basic_set *bset, void *user)
{
	struct isl_factored_sample_data *data = user;
	isl_vec *sample;
	isl_size n;

	n = isl_basic_set_dim(bset, isl_dim_set);
	if (n < 0)
		return isl_bool_error;

	sample = sample_bounded(isl_basic_set_copy(bset));
	if (!sample)
		return isl_bool_error;
	if (sample->size == 0) {
		isl_vec_free(data->sample);
		data->sample = sample;
		return isl_bool_false;
	}
	isl_seq_cpy(data->sample->el + data->pos, sample->el + 1, n);
	isl_vec_free(sample);
	data->pos += n;

	return isl_bool_true;
}

/* Compute a sample point of the given basic set, based on the given,
 * non-trivial factorization.
 */
static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
	__isl_take isl_factorizer *f)
{
	struct isl_factored_sample_data data = { NULL };
	isl_ctx *ctx;
	isl_size total;
	isl_bool every;

	ctx = isl_basic_set_get_ctx(bset);
	total = isl_basic_set_dim(bset, isl_dim_all);
	if (!ctx || total < 0)
		goto error;

	data.sample = isl_vec_alloc(ctx, 1 + total);
	if (!data.sample)
		goto error;
	isl_int_set_si(data.sample->el[0], 1);
	data.pos = 1;

	every = isl_factorizer_every_factor_basic_set(f, &factor_sample, &data);
	if (every < 0) {
		data.sample = isl_vec_free(data.sample);
	} else if (every) {
		isl_morph *morph;

		morph = isl_morph_inverse(isl_morph_copy(f->morph));
		data.sample = isl_morph_vec(morph, data.sample);
	}

	isl_basic_set_free(bset);
	isl_factorizer_free(f);
	return data.sample;
error:
	isl_basic_set_free(bset);
	isl_factorizer_free(f);
	isl_vec_free(data.sample);
	return NULL;
}

/* Given a basic set that is known to be bounded, find and return
 * an integer point in the basic set, if there is any.
 *
 * After handling some trivial cases, we construct a tableau
 * and then use isl_tab_sample to find a sample, passing it
 * the identity matrix as initial basis.
 */ 
static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset)
{
	isl_size dim;
	struct isl_vec *sample;
	struct isl_tab *tab = NULL;
	isl_factorizer *f;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return empty_sample(bset);

	dim = isl_basic_set_dim(bset, isl_dim_all);
	if (dim < 0)
		bset = isl_basic_set_free(bset);
	if (dim == 0)
		return zero_sample(bset);
	if (dim == 1)
		return interval_sample(bset);
	if (bset->n_eq > 0)
		return sample_eq(bset, sample_bounded);

	f = isl_basic_set_factorizer(bset);
	if (!f)
		goto error;
	if (f->n_group != 0)
		return factored_sample(bset, f);
	isl_factorizer_free(f);

	tab = isl_tab_from_basic_set(bset, 1);
	if (tab && tab->empty) {
		isl_tab_free(tab);
		ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
		sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
		isl_basic_set_free(bset);
		return sample;
	}

	if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
		if (isl_tab_detect_implicit_equalities(tab) < 0)
			goto error;

	sample = isl_tab_sample(tab);
	if (!sample)
		goto error;

	if (sample->size > 0) {
		isl_vec_free(bset->sample);
		bset->sample = isl_vec_copy(sample);
	}

	isl_basic_set_free(bset);
	isl_tab_free(tab);
	return sample;
error:
	isl_basic_set_free(bset);
	isl_tab_free(tab);
	return NULL;
}

/* Given a basic set "bset" and a value "sample" for the first coordinates
 * of bset, plug in these values and drop the corresponding coordinates.
 *
 * We do this by computing the preimage of the transformation
 *
 *	     [ 1 0 ]
 *	x =  [ s 0 ] x'
 *	     [ 0 I ]
 *
 * where [1 s] is the sample value and I is the identity matrix of the
 * appropriate dimension.
 */
static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset,
	__isl_take isl_vec *sample)
{
	int i;
	isl_size total;
	struct isl_mat *T;

	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0 || !sample)
		goto error;

	T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
	if (!T)
		goto error;

	for (i = 0; i < sample->size; ++i) {
		isl_int_set(T->row[i][0], sample->el[i]);
		isl_seq_clr(T->row[i] + 1, T->n_col - 1);
	}
	for (i = 0; i < T->n_col - 1; ++i) {
		isl_seq_clr(T->row[sample->size + i], T->n_col);
		isl_int_set_si(T->row[sample->size + i][1 + i], 1);
	}
	isl_vec_free(sample);

	bset = isl_basic_set_preimage(bset, T);
	return bset;
error:
	isl_basic_set_free(bset);
	isl_vec_free(sample);
	return NULL;
}

/* Given a basic set "bset", return any (possibly non-integer) point
 * in the basic set.
 */
static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset)
{
	struct isl_tab *tab;
	struct isl_vec *sample;

	if (!bset)
		return NULL;

	tab = isl_tab_from_basic_set(bset, 0);
	sample = isl_tab_get_sample_value(tab);
	isl_tab_free(tab);

	isl_basic_set_free(bset);

	return sample;
}

/* Given a linear cone "cone" and a rational point "vec",
 * construct a polyhedron with shifted copies of the constraints in "cone",
 * i.e., a polyhedron with "cone" as its recession cone, such that each
 * point x in this polyhedron is such that the unit box positioned at x
 * lies entirely inside the affine cone 'vec + cone'.
 * Any rational point in this polyhedron may therefore be rounded up
 * to yield an integer point that lies inside said affine cone.
 *
 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
 * point "vec" by v/d.
 * Let b_i = <a_i, v>.  Then the affine cone 'vec + cone' is given
 * by <a_i, x> - b/d >= 0.
 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
 * We prefer this polyhedron over the actual affine cone because it doesn't
 * require a scaling of the constraints.
 * If each of the vertices of the unit cube positioned at x lies inside
 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
 * We therefore impose that x' = x + \sum e_i, for any selection of unit
 * vectors lies inside the polyhedron, i.e.,
 *
 *	<a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
 *
 * The most stringent of these constraints is the one that selects
 * all negative a_i, so the polyhedron we are looking for has constraints
 *
 *	<a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
 *
 * Note that if cone were known to have only non-negative rays
 * (which can be accomplished by a unimodular transformation),
 * then we would only have to check the points x' = x + e_i
 * and we only have to add the smallest negative a_i (if any)
 * instead of the sum of all negative a_i.
 */
static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone,
	__isl_take isl_vec *vec)
{
	int i, j, k;
	isl_size total;

	struct isl_basic_set *shift = NULL;

	total = isl_basic_set_dim(cone, isl_dim_all);
	if (total < 0 || !vec)
		goto error;

	isl_assert(cone->ctx, cone->n_eq == 0, goto error);

	shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
					0, 0, cone->n_ineq);

	for (i = 0; i < cone->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(shift);
		if (k < 0)
			goto error;
		isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
		isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
				      &shift->ineq[k][0]);
		isl_int_cdiv_q(shift->ineq[k][0],
			       shift->ineq[k][0], vec->el[0]);
		isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
		for (j = 0; j < total; ++j) {
			if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
				continue;
			isl_int_add(shift->ineq[k][0],
				    shift->ineq[k][0], shift->ineq[k][1 + j]);
		}
	}

	isl_basic_set_free(cone);
	isl_vec_free(vec);

	return isl_basic_set_finalize(shift);
error:
	isl_basic_set_free(shift);
	isl_basic_set_free(cone);
	isl_vec_free(vec);
	return NULL;
}

/* Given a rational point vec in a (transformed) basic set,
 * such that cone is the recession cone of the original basic set,
 * "round up" the rational point to an integer point.
 *
 * We first check if the rational point just happens to be integer.
 * If not, we transform the cone in the same way as the basic set,
 * pick a point x in this cone shifted to the rational point such that
 * the whole unit cube at x is also inside this affine cone.
 * Then we simply round up the coordinates of x and return the
 * resulting integer point.
 */
static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec,
	__isl_take isl_basic_set *cone, __isl_take isl_mat *U)
{
	isl_size total;

	if (!vec || !cone || !U)
		goto error;

	isl_assert(vec->ctx, vec->size != 0, goto error);
	if (isl_int_is_one(vec->el[0])) {
		isl_mat_free(U);
		isl_basic_set_free(cone);
		return vec;
	}

	total = isl_basic_set_dim(cone, isl_dim_all);
	if (total < 0)
		goto error;
	cone = isl_basic_set_preimage(cone, U);
	cone = isl_basic_set_remove_dims(cone, isl_dim_set,
					 0, total - (vec->size - 1));

	cone = shift_cone(cone, vec);

	vec = rational_sample(cone);
	vec = isl_vec_ceil(vec);
	return vec;
error:
	isl_mat_free(U);
	isl_vec_free(vec);
	isl_basic_set_free(cone);
	return NULL;
}

/* Concatenate two integer vectors, i.e., two vectors with denominator
 * (stored in element 0) equal to 1.
 */
static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1,
	__isl_take isl_vec *vec2)
{
	struct isl_vec *vec;

	if (!vec1 || !vec2)
		goto error;
	isl_assert(vec1->ctx, vec1->size > 0, goto error);
	isl_assert(vec2->ctx, vec2->size > 0, goto error);
	isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
	isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);

	vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
	if (!vec)
		goto error;

	isl_seq_cpy(vec->el, vec1->el, vec1->size);
	isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);

	isl_vec_free(vec1);
	isl_vec_free(vec2);

	return vec;
error:
	isl_vec_free(vec1);
	isl_vec_free(vec2);
	return NULL;
}

/* Give a basic set "bset" with recession cone "cone", compute and
 * return an integer point in bset, if any.
 *
 * If the recession cone is full-dimensional, then we know that
 * bset contains an infinite number of integer points and it is
 * fairly easy to pick one of them.
 * If the recession cone is not full-dimensional, then we first
 * transform bset such that the bounded directions appear as
 * the first dimensions of the transformed basic set.
 * We do this by using a unimodular transformation that transforms
 * the equalities in the recession cone to equalities on the first
 * dimensions.
 *
 * The transformed set is then projected onto its bounded dimensions.
 * Note that to compute this projection, we can simply drop all constraints
 * involving any of the unbounded dimensions since these constraints
 * cannot be combined to produce a constraint on the bounded dimensions.
 * To see this, assume that there is such a combination of constraints
 * that produces a constraint on the bounded dimensions.  This means
 * that some combination of the unbounded dimensions has both an upper
 * bound and a lower bound in terms of the bounded dimensions, but then
 * this combination would be a bounded direction too and would have been
 * transformed into a bounded dimensions.
 *
 * We then compute a sample value in the bounded dimensions.
 * If no such value can be found, then the original set did not contain
 * any integer points and we are done.
 * Otherwise, we plug in the value we found in the bounded dimensions,
 * project out these bounded dimensions and end up with a set with
 * a full-dimensional recession cone.
 * A sample point in this set is computed by "rounding up" any
 * rational point in the set.
 *
 * The sample points in the bounded and unbounded dimensions are
 * then combined into a single sample point and transformed back
 * to the original space.
 */
__isl_give isl_vec *isl_basic_set_sample_with_cone(
	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
{
	isl_size total;
	unsigned cone_dim;
	struct isl_mat *M, *U;
	struct isl_vec *sample;
	struct isl_vec *cone_sample;
	struct isl_ctx *ctx;
	struct isl_basic_set *bounded;

	total = isl_basic_set_dim(cone, isl_dim_all);
	if (!bset || total < 0)
		goto error;

	ctx = isl_basic_set_get_ctx(bset);
	cone_dim = total - cone->n_eq;

	M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
	M = isl_mat_left_hermite(M, 0, &U, NULL);
	if (!M)
		goto error;
	isl_mat_free(M);

	U = isl_mat_lin_to_aff(U);
	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));

	bounded = isl_basic_set_copy(bset);
	bounded = isl_basic_set_drop_constraints_involving(bounded,
						   total - cone_dim, cone_dim);
	bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
	sample = sample_bounded(bounded);
	if (!sample || sample->size == 0) {
		isl_basic_set_free(bset);
		isl_basic_set_free(cone);
		isl_mat_free(U);
		return sample;
	}
	bset = plug_in(bset, isl_vec_copy(sample));
	cone_sample = rational_sample(bset);
	cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
	sample = vec_concat(sample, cone_sample);
	sample = isl_mat_vec_product(U, sample);
	return sample;
error:
	isl_basic_set_free(cone);
	isl_basic_set_free(bset);
	return NULL;
}

static void vec_sum_of_neg(__isl_keep isl_vec *v, isl_int *s)
{
	int i;

	isl_int_set_si(*s, 0);

	for (i = 0; i < v->size; ++i)
		if (isl_int_is_neg(v->el[i]))
			isl_int_add(*s, *s, v->el[i]);
}

/* Given a tableau "tab", a tableau "tab_cone" that corresponds
 * to the recession cone and the inverse of a new basis U = inv(B),
 * with the unbounded directions in B last,
 * add constraints to "tab" that ensure any rational value
 * in the unbounded directions can be rounded up to an integer value.
 *
 * The new basis is given by x' = B x, i.e., x = U x'.
 * For any rational value of the last tab->n_unbounded coordinates
 * in the update tableau, the value that is obtained by rounding
 * up this value should be contained in the original tableau.
 * For any constraint "a x + c >= 0", we therefore need to add
 * a constraint "a x + c + s >= 0", with s the sum of all negative
 * entries in the last elements of "a U".
 *
 * Since we are not interested in the first entries of any of the "a U",
 * we first drop the columns of U that correpond to bounded directions.
 */
static int tab_shift_cone(struct isl_tab *tab,
	struct isl_tab *tab_cone, struct isl_mat *U)
{
	int i;
	isl_int v;
	struct isl_basic_set *bset = NULL;

	if (tab && tab->n_unbounded == 0) {
		isl_mat_free(U);
		return 0;
	}
	isl_int_init(v);
	if (!tab || !tab_cone || !U)
		goto error;
	bset = isl_tab_peek_bset(tab_cone);
	U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
	for (i = 0; i < bset->n_ineq; ++i) {
		int ok;
		struct isl_vec *row = NULL;
		if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
			continue;
		row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
		if (!row)
			goto error;
		isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
		row = isl_vec_mat_product(row, isl_mat_copy(U));
		if (!row)
			goto error;
		vec_sum_of_neg(row, &v);
		isl_vec_free(row);
		if (isl_int_is_zero(v))
			continue;
		if (isl_tab_extend_cons(tab, 1) < 0)
			goto error;
		isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
		ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
		if (!ok)
			goto error;
	}

	isl_mat_free(U);
	isl_int_clear(v);
	return 0;
error:
	isl_mat_free(U);
	isl_int_clear(v);
	return -1;
}

/* Compute and return an initial basis for the possibly
 * unbounded tableau "tab".  "tab_cone" is a tableau
 * for the corresponding recession cone.
 * Additionally, add constraints to "tab" that ensure
 * that any rational value for the unbounded directions
 * can be rounded up to an integer value.
 *
 * If the tableau is bounded, i.e., if the recession cone
 * is zero-dimensional, then we just use inital_basis.
 * Otherwise, we construct a basis whose first directions
 * correspond to equalities, followed by bounded directions,
 * i.e., equalities in the recession cone.
 * The remaining directions are then unbounded.
 */
int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
	struct isl_tab *tab_cone)
{
	struct isl_mat *eq;
	struct isl_mat *cone_eq;
	struct isl_mat *U, *Q;

	if (!tab || !tab_cone)
		return -1;

	if (tab_cone->n_col == tab_cone->n_dead) {
		tab->basis = initial_basis(tab);
		return tab->basis ? 0 : -1;
	}

	eq = tab_equalities(tab);
	if (!eq)
		return -1;
	tab->n_zero = eq->n_row;
	cone_eq = tab_equalities(tab_cone);
	eq = isl_mat_concat(eq, cone_eq);
	if (!eq)
		return -1;
	tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
	eq = isl_mat_left_hermite(eq, 0, &U, &Q);
	if (!eq)
		return -1;
	isl_mat_free(eq);
	tab->basis = isl_mat_lin_to_aff(Q);
	if (tab_shift_cone(tab, tab_cone, U) < 0)
		return -1;
	if (!tab->basis)
		return -1;
	return 0;
}

/* Compute and return a sample point in bset using generalized basis
 * reduction.  We first check if the input set has a non-trivial
 * recession cone.  If so, we perform some extra preprocessing in
 * sample_with_cone.  Otherwise, we directly perform generalized basis
 * reduction.
 */
static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset)
{
	isl_size dim;
	struct isl_basic_set *cone;

	dim = isl_basic_set_dim(bset, isl_dim_all);
	if (dim < 0)
		goto error;

	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
	if (!cone)
		goto error;

	if (cone->n_eq < dim)
		return isl_basic_set_sample_with_cone(bset, cone);

	isl_basic_set_free(cone);
	return sample_bounded(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}

static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset,
	int bounded)
{
	struct isl_ctx *ctx;
	isl_size dim;
	if (!bset)
		return NULL;

	ctx = bset->ctx;
	if (isl_basic_set_plain_is_empty(bset))
		return empty_sample(bset);

	dim = isl_basic_set_dim(bset, isl_dim_set);
	if (dim < 0 ||
	    isl_basic_set_check_no_params(bset) < 0 ||
	    isl_basic_set_check_no_locals(bset) < 0)
		goto error;

	if (bset->sample && bset->sample->size == 1 + dim) {
		int contains = isl_basic_set_contains(bset, bset->sample);
		if (contains < 0)
			goto error;
		if (contains) {
			struct isl_vec *sample = isl_vec_copy(bset->sample);
			isl_basic_set_free(bset);
			return sample;
		}
	}
	isl_vec_free(bset->sample);
	bset->sample = NULL;

	if (bset->n_eq > 0)
		return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
					       : isl_basic_set_sample_vec);
	if (dim == 0)
		return zero_sample(bset);
	if (dim == 1)
		return interval_sample(bset);

	return bounded ? sample_bounded(bset) : gbr_sample(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}

__isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
{
	return basic_set_sample(bset, 0);
}

/* Compute an integer sample in "bset", where the caller guarantees
 * that "bset" is bounded.
 */
__isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset)
{
	return basic_set_sample(bset, 1);
}

__isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
{
	int i;
	int k;
	struct isl_basic_set *bset = NULL;
	struct isl_ctx *ctx;
	isl_size dim;

	if (!vec)
		return NULL;
	ctx = vec->ctx;
	isl_assert(ctx, vec->size != 0, goto error);

	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
	dim = isl_basic_set_dim(bset, isl_dim_set);
	if (dim < 0)
		goto error;
	for (i = dim - 1; i >= 0; --i) {
		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			goto error;
		isl_seq_clr(bset->eq[k], 1 + dim);
		isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
		isl_int_set(bset->eq[k][1 + i], vec->el[0]);
	}
	bset->sample = vec;

	return bset;
error:
	isl_basic_set_free(bset);
	isl_vec_free(vec);
	return NULL;
}

__isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
{
	struct isl_basic_set *bset;
	struct isl_vec *sample_vec;

	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
	sample_vec = isl_basic_set_sample_vec(bset);
	if (!sample_vec)
		goto error;
	if (sample_vec->size == 0) {
		isl_vec_free(sample_vec);
		return isl_basic_map_set_to_empty(bmap);
	}
	isl_vec_free(bmap->sample);
	bmap->sample = isl_vec_copy(sample_vec);
	bset = isl_basic_set_from_vec(sample_vec);
	return isl_basic_map_overlying_set(bset, bmap);
error:
	isl_basic_map_free(bmap);
	return NULL;
}

__isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
{
	return isl_basic_map_sample(bset);
}

__isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
{
	int i;
	isl_basic_map *sample = NULL;

	if (!map)
		goto error;

	for (i = 0; i < map->n; ++i) {
		sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
		if (!sample)
			goto error;
		if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
			break;
		isl_basic_map_free(sample);
	}
	if (i == map->n)
		sample = isl_basic_map_empty(isl_map_get_space(map));
	isl_map_free(map);
	return sample;
error:
	isl_map_free(map);
	return NULL;
}

__isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
{
	return bset_from_bmap(isl_map_sample(set_to_map(set)));
}

__isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
{
	isl_vec *vec;
	isl_space *space;

	space = isl_basic_set_get_space(bset);
	bset = isl_basic_set_underlying_set(bset);
	vec = isl_basic_set_sample_vec(bset);

	return isl_point_alloc(space, vec);
}

__isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
{
	int i;
	isl_point *pnt;

	if (!set)
		return NULL;

	for (i = 0; i < set->n; ++i) {
		pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
		if (!pnt)
			goto error;
		if (!isl_point_is_void(pnt))
			break;
		isl_point_free(pnt);
	}
	if (i == set->n)
		pnt = isl_point_void(isl_set_get_space(set));

	isl_set_free(set);
	return pnt;
error:
	isl_set_free(set);
	return NULL;
}