isl_flow.c 95.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
/*
 * Copyright 2005-2007 Universiteit Leiden
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 * Copyright 2012      Universiteit Leiden
 * Copyright 2014      Ecole Normale Superieure
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
 * B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France 
 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 */

#include <isl/val.h>
#include <isl/space.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/flow.h>
#include <isl/schedule_node.h>
#include <isl_sort.h>
#include <isl/stream.h>

enum isl_restriction_type {
	isl_restriction_type_empty,
	isl_restriction_type_none,
	isl_restriction_type_input,
	isl_restriction_type_output
};

struct isl_restriction {
	enum isl_restriction_type type;

	isl_set *source;
	isl_set *sink;
};

/* Create a restriction of the given type.
 */
static __isl_give isl_restriction *isl_restriction_alloc(
	__isl_take isl_map *source_map, enum isl_restriction_type type)
{
	isl_ctx *ctx;
	isl_restriction *restr;

	if (!source_map)
		return NULL;

	ctx = isl_map_get_ctx(source_map);
	restr = isl_calloc_type(ctx, struct isl_restriction);
	if (!restr)
		goto error;

	restr->type = type;

	isl_map_free(source_map);
	return restr;
error:
	isl_map_free(source_map);
	return NULL;
}

/* Create a restriction that doesn't restrict anything.
 */
__isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
{
	return isl_restriction_alloc(source_map, isl_restriction_type_none);
}

/* Create a restriction that removes everything.
 */
__isl_give isl_restriction *isl_restriction_empty(
	__isl_take isl_map *source_map)
{
	return isl_restriction_alloc(source_map, isl_restriction_type_empty);
}

/* Create a restriction on the input of the maximization problem
 * based on the given source and sink restrictions.
 */
__isl_give isl_restriction *isl_restriction_input(
	__isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
{
	isl_ctx *ctx;
	isl_restriction *restr;

	if (!source_restr || !sink_restr)
		goto error;

	ctx = isl_set_get_ctx(source_restr);
	restr = isl_calloc_type(ctx, struct isl_restriction);
	if (!restr)
		goto error;

	restr->type = isl_restriction_type_input;
	restr->source = source_restr;
	restr->sink = sink_restr;

	return restr;
error:
	isl_set_free(source_restr);
	isl_set_free(sink_restr);
	return NULL;
}

/* Create a restriction on the output of the maximization problem
 * based on the given source restriction.
 */
__isl_give isl_restriction *isl_restriction_output(
	__isl_take isl_set *source_restr)
{
	isl_ctx *ctx;
	isl_restriction *restr;

	if (!source_restr)
		return NULL;

	ctx = isl_set_get_ctx(source_restr);
	restr = isl_calloc_type(ctx, struct isl_restriction);
	if (!restr)
		goto error;

	restr->type = isl_restriction_type_output;
	restr->source = source_restr;

	return restr;
error:
	isl_set_free(source_restr);
	return NULL;
}

__isl_null isl_restriction *isl_restriction_free(
	__isl_take isl_restriction *restr)
{
	if (!restr)
		return NULL;

	isl_set_free(restr->source);
	isl_set_free(restr->sink);
	free(restr);
	return NULL;
}

isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
{
	return restr ? isl_set_get_ctx(restr->source) : NULL;
}

/* A private structure to keep track of a mapping together with
 * a user-specified identifier and a boolean indicating whether
 * the map represents a must or may access/dependence.
 */
struct isl_labeled_map {
	struct isl_map	*map;
	void		*data;
	int		must;
};

typedef isl_bool (*isl_access_coscheduled)(void *first, void *second);

/* A structure containing the input for dependence analysis:
 * - a sink
 * - n_must + n_may (<= max_source) sources
 * - a function for determining the relative order of sources and sink
 * - an optional function "coscheduled" for determining whether sources
 *   may be coscheduled.  If "coscheduled" is NULL, then the sources
 *   are assumed not to be coscheduled.
 * The must sources are placed before the may sources.
 *
 * domain_map is an auxiliary map that maps the sink access relation
 * to the domain of this access relation.
 * This field is only needed when restrict_fn is set and
 * the field itself is set by isl_access_info_compute_flow.
 *
 * restrict_fn is a callback that (if not NULL) will be called
 * right before any lexicographical maximization.
 */
struct isl_access_info {
	isl_map				*domain_map;
	struct isl_labeled_map		sink;
	isl_access_level_before		level_before;
	isl_access_coscheduled		coscheduled;

	isl_access_restrict		restrict_fn;
	void				*restrict_user;

	int		    		max_source;
	int		    		n_must;
	int		    		n_may;
	struct isl_labeled_map		source[1];
};

/* A structure containing the output of dependence analysis:
 * - n_source dependences
 * - a wrapped subset of the sink for which definitely no source could be found
 * - a wrapped subset of the sink for which possibly no source could be found
 */
struct isl_flow {
	isl_set			*must_no_source;
	isl_set			*may_no_source;
	int			n_source;
	struct isl_labeled_map	*dep;
};

/* Construct an isl_access_info structure and fill it up with
 * the given data.  The number of sources is set to 0.
 */
__isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
	void *sink_user, isl_access_level_before fn, int max_source)
{
	isl_ctx *ctx;
	struct isl_access_info *acc;

	if (!sink)
		return NULL;

	ctx = isl_map_get_ctx(sink);
	isl_assert(ctx, max_source >= 0, goto error);

	acc = isl_calloc(ctx, struct isl_access_info,
			sizeof(struct isl_access_info) +
			(max_source - 1) * sizeof(struct isl_labeled_map));
	if (!acc)
		goto error;

	acc->sink.map = sink;
	acc->sink.data = sink_user;
	acc->level_before = fn;
	acc->max_source = max_source;
	acc->n_must = 0;
	acc->n_may = 0;

	return acc;
error:
	isl_map_free(sink);
	return NULL;
}

/* Free the given isl_access_info structure.
 */
__isl_null isl_access_info *isl_access_info_free(
	__isl_take isl_access_info *acc)
{
	int i;

	if (!acc)
		return NULL;
	isl_map_free(acc->domain_map);
	isl_map_free(acc->sink.map);
	for (i = 0; i < acc->n_must + acc->n_may; ++i)
		isl_map_free(acc->source[i].map);
	free(acc);
	return NULL;
}

isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
{
	return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
}

__isl_give isl_access_info *isl_access_info_set_restrict(
	__isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
{
	if (!acc)
		return NULL;
	acc->restrict_fn = fn;
	acc->restrict_user = user;
	return acc;
}

/* Add another source to an isl_access_info structure, making
 * sure the "must" sources are placed before the "may" sources.
 * This function may be called at most max_source times on a
 * given isl_access_info structure, with max_source as specified
 * in the call to isl_access_info_alloc that constructed the structure.
 */
__isl_give isl_access_info *isl_access_info_add_source(
	__isl_take isl_access_info *acc, __isl_take isl_map *source,
	int must, void *source_user)
{
	isl_ctx *ctx;

	if (!acc)
		goto error;
	ctx = isl_map_get_ctx(acc->sink.map);
	isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
	
	if (must) {
		if (acc->n_may)
			acc->source[acc->n_must + acc->n_may] =
				acc->source[acc->n_must];
		acc->source[acc->n_must].map = source;
		acc->source[acc->n_must].data = source_user;
		acc->source[acc->n_must].must = 1;
		acc->n_must++;
	} else {
		acc->source[acc->n_must + acc->n_may].map = source;
		acc->source[acc->n_must + acc->n_may].data = source_user;
		acc->source[acc->n_must + acc->n_may].must = 0;
		acc->n_may++;
	}

	return acc;
error:
	isl_map_free(source);
	isl_access_info_free(acc);
	return NULL;
}

/* A helper struct carrying the isl_access_info and an error condition.
 */
struct access_sort_info {
	isl_access_info *access_info;
	int error;
};

/* Return -n, 0 or n (with n a positive value), depending on whether
 * the source access identified by p1 should be sorted before, together
 * or after that identified by p2.
 *
 * If p1 appears before p2, then it should be sorted first.
 * For more generic initial schedules, it is possible that neither
 * p1 nor p2 appears before the other, or at least not in any obvious way.
 * We therefore also check if p2 appears before p1, in which case p2
 * should be sorted first.
 * If not, we try to order the two statements based on the description
 * of the iteration domains.  This results in an arbitrary, but fairly
 * stable ordering.
 *
 * In case of an error, sort_info.error is set to true and all elements are
 * reported to be equal.
 */
static int access_sort_cmp(const void *p1, const void *p2, void *user)
{
	struct access_sort_info *sort_info = user;
	isl_access_info *acc = sort_info->access_info;

	if (sort_info->error)
		return 0;

	const struct isl_labeled_map *i1, *i2;
	int level1, level2;
	uint32_t h1, h2;
	i1 = (const struct isl_labeled_map *) p1;
	i2 = (const struct isl_labeled_map *) p2;

	level1 = acc->level_before(i1->data, i2->data);
	if (level1 < 0)
		goto error;
	if (level1 % 2)
		return -1;

	level2 = acc->level_before(i2->data, i1->data);
	if (level2 < 0)
		goto error;
	if (level2 % 2)
		return 1;

	h1 = isl_map_get_hash(i1->map);
	h2 = isl_map_get_hash(i2->map);
	return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
error:
	sort_info->error = 1;
	return 0;
}

/* Sort the must source accesses in their textual order.
 */
static __isl_give isl_access_info *isl_access_info_sort_sources(
	__isl_take isl_access_info *acc)
{
	struct access_sort_info sort_info;

	sort_info.access_info = acc;
	sort_info.error = 0;

	if (!acc)
		return NULL;
	if (acc->n_must <= 1)
		return acc;

	if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map),
		    access_sort_cmp, &sort_info) < 0)
		return isl_access_info_free(acc);
	if (sort_info.error)
		return isl_access_info_free(acc);

	return acc;
}

/* Align the parameters of the two spaces if needed and then call
 * isl_space_join.
 */
static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
	__isl_take isl_space *right)
{
	isl_bool equal_params;

	equal_params = isl_space_has_equal_params(left, right);
	if (equal_params < 0)
		goto error;
	if (equal_params)
		return isl_space_join(left, right);

	left = isl_space_align_params(left, isl_space_copy(right));
	right = isl_space_align_params(right, isl_space_copy(left));
	return isl_space_join(left, right);
error:
	isl_space_free(left);
	isl_space_free(right);
	return NULL;
}

/* Initialize an empty isl_flow structure corresponding to a given
 * isl_access_info structure.
 * For each must access, two dependences are created (initialized
 * to the empty relation), one for the resulting must dependences
 * and one for the resulting may dependences.  May accesses can
 * only lead to may dependences, so only one dependence is created
 * for each of them.
 * This function is private as isl_flow structures are only supposed
 * to be created by isl_access_info_compute_flow.
 */
static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
{
	int i, n;
	struct isl_ctx *ctx;
	struct isl_flow *dep;

	if (!acc)
		return NULL;

	ctx = isl_map_get_ctx(acc->sink.map);
	dep = isl_calloc_type(ctx, struct isl_flow);
	if (!dep)
		return NULL;

	n = 2 * acc->n_must + acc->n_may;
	dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n);
	if (n && !dep->dep)
		goto error;

	dep->n_source = n;
	for (i = 0; i < acc->n_must; ++i) {
		isl_space *space;
		space = space_align_and_join(
			isl_map_get_space(acc->source[i].map),
			isl_space_reverse(isl_map_get_space(acc->sink.map)));
		dep->dep[2 * i].map = isl_map_empty(space);
		dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
		dep->dep[2 * i].data = acc->source[i].data;
		dep->dep[2 * i + 1].data = acc->source[i].data;
		dep->dep[2 * i].must = 1;
		dep->dep[2 * i + 1].must = 0;
		if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
			goto error;
	}
	for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
		isl_space *space;
		space = space_align_and_join(
			isl_map_get_space(acc->source[i].map),
			isl_space_reverse(isl_map_get_space(acc->sink.map)));
		dep->dep[acc->n_must + i].map = isl_map_empty(space);
		dep->dep[acc->n_must + i].data = acc->source[i].data;
		dep->dep[acc->n_must + i].must = 0;
		if (!dep->dep[acc->n_must + i].map)
			goto error;
	}

	return dep;
error:
	isl_flow_free(dep);
	return NULL;
}

/* Iterate over all sources and for each resulting flow dependence
 * that is not empty, call the user specfied function.
 * The second argument in this function call identifies the source,
 * while the third argument correspond to the final argument of
 * the isl_flow_foreach call.
 */
isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
	isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user,
		void *user),
	void *user)
{
	int i;

	if (!deps)
		return isl_stat_error;

	for (i = 0; i < deps->n_source; ++i) {
		if (isl_map_plain_is_empty(deps->dep[i].map))
			continue;
		if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
				deps->dep[i].data, user) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Return a copy of the subset of the sink for which no source could be found.
 */
__isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
{
	if (!deps)
		return NULL;
	
	if (must)
		return isl_set_unwrap(isl_set_copy(deps->must_no_source));
	else
		return isl_set_unwrap(isl_set_copy(deps->may_no_source));
}

__isl_null isl_flow *isl_flow_free(__isl_take isl_flow *deps)
{
	int i;

	if (!deps)
		return NULL;
	isl_set_free(deps->must_no_source);
	isl_set_free(deps->may_no_source);
	if (deps->dep) {
		for (i = 0; i < deps->n_source; ++i)
			isl_map_free(deps->dep[i].map);
		free(deps->dep);
	}
	free(deps);

	return NULL;
}

isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
{
	return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
}

/* Return a map that enforces that the domain iteration occurs after
 * the range iteration at the given level.
 * If level is odd, then the domain iteration should occur after
 * the target iteration in their shared level/2 outermost loops.
 * In this case we simply need to enforce that these outermost
 * loop iterations are the same.
 * If level is even, then the loop iterator of the domain should
 * be greater than the loop iterator of the range at the last
 * of the level/2 shared loops, i.e., loop level/2 - 1.
 */
static __isl_give isl_map *after_at_level(__isl_take isl_space *space,
	int level)
{
	struct isl_basic_map *bmap;

	if (level % 2)
		bmap = isl_basic_map_equal(space, level/2);
	else
		bmap = isl_basic_map_more_at(space, level/2 - 1);

	return isl_map_from_basic_map(bmap);
}

/* Compute the partial lexicographic maximum of "dep" on domain "sink",
 * but first check if the user has set acc->restrict_fn and if so
 * update either the input or the output of the maximization problem
 * with respect to the resulting restriction.
 *
 * Since the user expects a mapping from sink iterations to source iterations,
 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
 * to accessed array elements, we first need to project out the accessed
 * sink array elements by applying acc->domain_map.
 * Similarly, the sink restriction specified by the user needs to be
 * converted back to the wrapped map.
 */
static __isl_give isl_map *restricted_partial_lexmax(
	__isl_keep isl_access_info *acc, __isl_take isl_map *dep,
	int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
{
	isl_map *source_map;
	isl_restriction *restr;
	isl_set *sink_domain;
	isl_set *sink_restr;
	isl_map *res;

	if (!acc->restrict_fn)
		return isl_map_partial_lexmax(dep, sink, empty);

	source_map = isl_map_copy(dep);
	source_map = isl_map_apply_domain(source_map,
					    isl_map_copy(acc->domain_map));
	sink_domain = isl_set_copy(sink);
	sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map));
	restr = acc->restrict_fn(source_map, sink_domain,
				acc->source[source].data, acc->restrict_user);
	isl_set_free(sink_domain);
	isl_map_free(source_map);

	if (!restr)
		goto error;
	if (restr->type == isl_restriction_type_input) {
		dep = isl_map_intersect_range(dep, isl_set_copy(restr->source));
		sink_restr = isl_set_copy(restr->sink);
		sink_restr = isl_set_apply(sink_restr,
				isl_map_reverse(isl_map_copy(acc->domain_map)));
		sink = isl_set_intersect(sink, sink_restr);
	} else if (restr->type == isl_restriction_type_empty) {
		isl_space *space = isl_map_get_space(dep);
		isl_map_free(dep);
		dep = isl_map_empty(space);
	}

	res = isl_map_partial_lexmax(dep, sink, empty);

	if (restr->type == isl_restriction_type_output)
		res = isl_map_intersect_range(res, isl_set_copy(restr->source));

	isl_restriction_free(restr);
	return res;
error:
	isl_map_free(dep);
	isl_set_free(sink);
	*empty = NULL;
	return NULL;
}

/* Compute the last iteration of must source j that precedes the sink
 * at the given level for sink iterations in set_C.
 * The subset of set_C for which no such iteration can be found is returned
 * in *empty.
 */
static struct isl_map *last_source(struct isl_access_info *acc, 
				    struct isl_set *set_C,
				    int j, int level, struct isl_set **empty)
{
	struct isl_map *read_map;
	struct isl_map *write_map;
	struct isl_map *dep_map;
	struct isl_map *after;
	struct isl_map *result;

	read_map = isl_map_copy(acc->sink.map);
	write_map = isl_map_copy(acc->source[j].map);
	write_map = isl_map_reverse(write_map);
	dep_map = isl_map_apply_range(read_map, write_map);
	after = after_at_level(isl_map_get_space(dep_map), level);
	dep_map = isl_map_intersect(dep_map, after);
	result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty);
	result = isl_map_reverse(result);

	return result;
}

/* For a given mapping between iterations of must source j and iterations
 * of the sink, compute the last iteration of must source k preceding
 * the sink at level before_level for any of the sink iterations,
 * but following the corresponding iteration of must source j at level
 * after_level.
 */
static struct isl_map *last_later_source(struct isl_access_info *acc,
					 struct isl_map *old_map,
					 int j, int before_level,
					 int k, int after_level,
					 struct isl_set **empty)
{
	isl_space *space;
	struct isl_set *set_C;
	struct isl_map *read_map;
	struct isl_map *write_map;
	struct isl_map *dep_map;
	struct isl_map *after_write;
	struct isl_map *before_read;
	struct isl_map *result;

	set_C = isl_map_range(isl_map_copy(old_map));
	read_map = isl_map_copy(acc->sink.map);
	write_map = isl_map_copy(acc->source[k].map);

	write_map = isl_map_reverse(write_map);
	dep_map = isl_map_apply_range(read_map, write_map);
	space = space_align_and_join(isl_map_get_space(acc->source[k].map),
		    isl_space_reverse(isl_map_get_space(acc->source[j].map)));
	after_write = after_at_level(space, after_level);
	after_write = isl_map_apply_range(after_write, old_map);
	after_write = isl_map_reverse(after_write);
	dep_map = isl_map_intersect(dep_map, after_write);
	before_read = after_at_level(isl_map_get_space(dep_map), before_level);
	dep_map = isl_map_intersect(dep_map, before_read);
	result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty);
	result = isl_map_reverse(result);

	return result;
}

/* Given a shared_level between two accesses, return 1 if the
 * the first can precede the second at the requested target_level.
 * If the target level is odd, i.e., refers to a statement level
 * dimension, then first needs to precede second at the requested
 * level, i.e., shared_level must be equal to target_level.
 * If the target level is odd, then the two loops should share
 * at least the requested number of outer loops.
 */
static int can_precede_at_level(int shared_level, int target_level)
{
	if (shared_level < target_level)
		return 0;
	if ((target_level % 2) && shared_level > target_level)
		return 0;
	return 1;
}

/* Given a possible flow dependence temp_rel[j] between source j and the sink
 * at level sink_level, remove those elements for which
 * there is an iteration of another source k < j that is closer to the sink.
 * The flow dependences temp_rel[k] are updated with the improved sources.
 * Any improved source needs to precede the sink at the same level
 * and needs to follow source j at the same or a deeper level.
 * The lower this level, the later the execution date of source k.
 * We therefore consider lower levels first.
 *
 * If temp_rel[j] is empty, then there can be no improvement and
 * we return immediately.
 *
 * This function returns isl_stat_ok in case it was executed successfully and
 * isl_stat_error in case of errors during the execution of this function.
 */
static isl_stat intermediate_sources(__isl_keep isl_access_info *acc,
	struct isl_map **temp_rel, int j, int sink_level)
{
	int k, level;
	isl_size n_in = isl_map_dim(acc->source[j].map, isl_dim_in);
	int depth = 2 * n_in + 1;

	if (n_in < 0)
		return isl_stat_error;
	if (isl_map_plain_is_empty(temp_rel[j]))
		return isl_stat_ok;

	for (k = j - 1; k >= 0; --k) {
		int plevel, plevel2;
		plevel = acc->level_before(acc->source[k].data, acc->sink.data);
		if (plevel < 0)
			return isl_stat_error;
		if (!can_precede_at_level(plevel, sink_level))
			continue;

		plevel2 = acc->level_before(acc->source[j].data,
						acc->source[k].data);
		if (plevel2 < 0)
			return isl_stat_error;

		for (level = sink_level; level <= depth; ++level) {
			struct isl_map *T;
			struct isl_set *trest;
			struct isl_map *copy;

			if (!can_precede_at_level(plevel2, level))
				continue;

			copy = isl_map_copy(temp_rel[j]);
			T = last_later_source(acc, copy, j, sink_level, k,
					      level, &trest);
			if (isl_map_plain_is_empty(T)) {
				isl_set_free(trest);
				isl_map_free(T);
				continue;
			}
			temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
			temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
		}
	}

	return isl_stat_ok;
}

/* Compute all iterations of may source j that precedes the sink at the given
 * level for sink iterations in set_C.
 */
static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
				    __isl_take isl_set *set_C, int j, int level)
{
	isl_map *read_map;
	isl_map *write_map;
	isl_map *dep_map;
	isl_map *after;

	read_map = isl_map_copy(acc->sink.map);
	read_map = isl_map_intersect_domain(read_map, set_C);
	write_map = isl_map_copy(acc->source[acc->n_must + j].map);
	write_map = isl_map_reverse(write_map);
	dep_map = isl_map_apply_range(read_map, write_map);
	after = after_at_level(isl_map_get_space(dep_map), level);
	dep_map = isl_map_intersect(dep_map, after);

	return isl_map_reverse(dep_map);
}

/* For a given mapping between iterations of must source k and iterations
 * of the sink, compute all iterations of may source j preceding
 * the sink at level before_level for any of the sink iterations,
 * but following the corresponding iteration of must source k at level
 * after_level.
 */
static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
	__isl_take isl_map *old_map,
	int j, int before_level, int k, int after_level)
{
	isl_space *space;
	isl_set *set_C;
	isl_map *read_map;
	isl_map *write_map;
	isl_map *dep_map;
	isl_map *after_write;
	isl_map *before_read;

	set_C = isl_map_range(isl_map_copy(old_map));
	read_map = isl_map_copy(acc->sink.map);
	read_map = isl_map_intersect_domain(read_map, set_C);
	write_map = isl_map_copy(acc->source[acc->n_must + j].map);

	write_map = isl_map_reverse(write_map);
	dep_map = isl_map_apply_range(read_map, write_map);
	space = isl_space_join(isl_map_get_space(
		    acc->source[acc->n_must + j].map),
		    isl_space_reverse(isl_map_get_space(acc->source[k].map)));
	after_write = after_at_level(space, after_level);
	after_write = isl_map_apply_range(after_write, old_map);
	after_write = isl_map_reverse(after_write);
	dep_map = isl_map_intersect(dep_map, after_write);
	before_read = after_at_level(isl_map_get_space(dep_map), before_level);
	dep_map = isl_map_intersect(dep_map, before_read);
	return isl_map_reverse(dep_map);
}

/* Given the must and may dependence relations for the must accesses
 * for level sink_level, check if there are any accesses of may access j
 * that occur in between and return their union.
 * If some of these accesses are intermediate with respect to
 * (previously thought to be) must dependences, then these
 * must dependences are turned into may dependences.
 */
static __isl_give isl_map *all_intermediate_sources(
	__isl_keep isl_access_info *acc, __isl_take isl_map *map,
	struct isl_map **must_rel, struct isl_map **may_rel,
	int j, int sink_level)
{
	int k, level;
	isl_size n_in = isl_map_dim(acc->source[acc->n_must + j].map,
				    isl_dim_in);
	int depth = 2 * n_in + 1;

	if (n_in < 0)
		return isl_map_free(map);
	for (k = 0; k < acc->n_must; ++k) {
		int plevel;

		if (isl_map_plain_is_empty(may_rel[k]) &&
		    isl_map_plain_is_empty(must_rel[k]))
			continue;

		plevel = acc->level_before(acc->source[k].data,
					acc->source[acc->n_must + j].data);
		if (plevel < 0)
			return isl_map_free(map);

		for (level = sink_level; level <= depth; ++level) {
			isl_map *T;
			isl_map *copy;
			isl_set *ran;

			if (!can_precede_at_level(plevel, level))
				continue;

			copy = isl_map_copy(may_rel[k]);
			T = all_later_sources(acc, copy, j, sink_level, k, level);
			map = isl_map_union(map, T);

			copy = isl_map_copy(must_rel[k]);
			T = all_later_sources(acc, copy, j, sink_level, k, level);
			ran = isl_map_range(isl_map_copy(T));
			map = isl_map_union(map, T);
			may_rel[k] = isl_map_union_disjoint(may_rel[k],
			    isl_map_intersect_range(isl_map_copy(must_rel[k]),
						    isl_set_copy(ran)));
			T = isl_map_from_domain_and_range(
			    isl_set_universe(
				isl_space_domain(isl_map_get_space(must_rel[k]))),
			    ran);
			must_rel[k] = isl_map_subtract(must_rel[k], T);
		}
	}

	return map;
}

/* Given a dependence relation "old_map" between a must-source and the sink,
 * return a subset of the dependences, augmented with instances
 * of the source at position "pos" in "acc" that are coscheduled
 * with the must-source and that access the same element.
 * That is, if the input lives in a space T -> K, then the output
 * lives in the space [T -> S] -> K, with S the space of source "pos", and
 * the domain factor of the domain product is a subset of the input.
 * The sources are considered to be coscheduled if they have the same values
 * for the initial "depth" coordinates.
 *
 * First construct a dependence relation S -> K and a mapping
 * between coscheduled sources T -> S.
 * The second is combined with the original dependence relation T -> K
 * to form a relation in T -> [S -> K], which is subsequently
 * uncurried to [T -> S] -> K.
 * This result is then intersected with the dependence relation S -> K
 * to form the output.
 *
 * In case a negative depth is given, NULL is returned to indicate an error.
 */
static __isl_give isl_map *coscheduled_source(__isl_keep isl_access_info *acc,
	__isl_keep isl_map *old_map, int pos, int depth)
{
	isl_space *space;
	isl_set *set_C;
	isl_map *read_map;
	isl_map *write_map;
	isl_map *dep_map;
	isl_map *equal;
	isl_map *map;

	if (depth < 0)
		return NULL;

	set_C = isl_map_range(isl_map_copy(old_map));
	read_map = isl_map_copy(acc->sink.map);
	read_map = isl_map_intersect_domain(read_map, set_C);
	write_map = isl_map_copy(acc->source[pos].map);
	dep_map = isl_map_domain_product(write_map, read_map);
	dep_map = isl_set_unwrap(isl_map_domain(dep_map));
	space = isl_space_join(isl_map_get_space(old_map),
				isl_space_reverse(isl_map_get_space(dep_map)));
	equal = isl_map_from_basic_map(isl_basic_map_equal(space, depth));
	map = isl_map_range_product(equal, isl_map_copy(old_map));
	map = isl_map_uncurry(map);
	map = isl_map_intersect_domain_factor_range(map, dep_map);

	return map;
}

/* After the dependences derived from a must-source have been computed
 * at a certain level, check if any of the sources of the must-dependences
 * may be coscheduled with other sources.
 * If they are any such sources, then there is no way of determining
 * which of the sources actually comes last and the must-dependences
 * need to be turned into may-dependences, while dependences from
 * the other sources need to be added to the may-dependences as well.
 * "acc" describes the sources and a callback for checking whether
 * two sources may be coscheduled.  If acc->coscheduled is NULL then
 * the sources are assumed not to be coscheduled.
 * "must_rel" and "may_rel" describe the must and may-dependence relations
 * computed at the current level for the must-sources.  Some of the dependences
 * may be moved from "must_rel" to "may_rel".
 * "flow" contains all dependences computed so far (apart from those
 * in "must_rel" and "may_rel") and may be updated with additional
 * dependences derived from may-sources.
 *
 * In particular, consider all the must-sources with a non-empty
 * dependence relation in "must_rel".  They are considered in reverse
 * order because that is the order in which they are considered in the caller.
 * If any of the must-sources are coscheduled, then the last one
 * is the one that will have a corresponding dependence relation.
 * For each must-source i, consider both all the previous must-sources
 * and all the may-sources.  If any of those may be coscheduled with
 * must-source i, then compute the coscheduled instances that access
 * the same memory elements.  The result is a relation [T -> S] -> K.
 * The projection onto T -> K is a subset of the must-dependence relation
 * that needs to be turned into may-dependences.
 * The projection onto S -> K needs to be added to the may-dependences
 * of source S.
 * Since a given must-source instance may be coscheduled with several
 * other source instances, the dependences that need to be turned
 * into may-dependences are first collected and only actually removed
 * from the must-dependences after all other sources have been considered.
 */
static __isl_give isl_flow *handle_coscheduled(__isl_keep isl_access_info *acc,
	__isl_keep isl_map **must_rel, __isl_keep isl_map **may_rel,
	__isl_take isl_flow *flow)
{
	int i, j;

	if (!acc->coscheduled)
		return flow;
	for (i = acc->n_must - 1; i >= 0; --i) {
		isl_map *move;

		if (isl_map_plain_is_empty(must_rel[i]))
			continue;
		move = isl_map_empty(isl_map_get_space(must_rel[i]));
		for (j = i - 1; j >= 0; --j) {
			int depth;
			isl_bool coscheduled;
			isl_map *map, *factor;

			coscheduled = acc->coscheduled(acc->source[i].data,
							acc->source[j].data);
			if (coscheduled < 0) {
				isl_map_free(move);
				return isl_flow_free(flow);
			}
			if (!coscheduled)
				continue;
			depth = acc->level_before(acc->source[i].data,
						acc->source[j].data) / 2;
			map = coscheduled_source(acc, must_rel[i], j, depth);
			factor = isl_map_domain_factor_range(isl_map_copy(map));
			may_rel[j] = isl_map_union(may_rel[j], factor);
			map = isl_map_domain_factor_domain(map);
			move = isl_map_union(move, map);
		}
		for (j = 0; j < acc->n_may; ++j) {
			int depth, pos;
			isl_bool coscheduled;
			isl_map *map, *factor;

			pos = acc->n_must + j;
			coscheduled = acc->coscheduled(acc->source[i].data,
							acc->source[pos].data);
			if (coscheduled < 0) {
				isl_map_free(move);
				return isl_flow_free(flow);
			}
			if (!coscheduled)
				continue;
			depth = acc->level_before(acc->source[i].data,
						acc->source[pos].data) / 2;
			map = coscheduled_source(acc, must_rel[i], pos, depth);
			factor = isl_map_domain_factor_range(isl_map_copy(map));
			pos = 2 * acc->n_must + j;
			flow->dep[pos].map = isl_map_union(flow->dep[pos].map,
							    factor);
			map = isl_map_domain_factor_domain(map);
			move = isl_map_union(move, map);
		}
		must_rel[i] = isl_map_subtract(must_rel[i], isl_map_copy(move));
		may_rel[i] = isl_map_union(may_rel[i], move);
	}

	return flow;
}

/* Compute dependences for the case where all accesses are "may"
 * accesses, which boils down to computing memory based dependences.
 * The generic algorithm would also work in this case, but it would
 * be overkill to use it.
 */
static __isl_give isl_flow *compute_mem_based_dependences(
	__isl_keep isl_access_info *acc)
{
	int i;
	isl_set *mustdo;
	isl_set *maydo;
	isl_flow *res;

	res = isl_flow_alloc(acc);
	if (!res)
		return NULL;

	mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
	maydo = isl_set_copy(mustdo);

	for (i = 0; i < acc->n_may; ++i) {
		int plevel;
		int is_before;
		isl_space *space;
		isl_map *before;
		isl_map *dep;

		plevel = acc->level_before(acc->source[i].data, acc->sink.data);
		if (plevel < 0)
			goto error;

		is_before = plevel & 1;
		plevel >>= 1;

		space = isl_map_get_space(res->dep[i].map);
		if (is_before)
			before = isl_map_lex_le_first(space, plevel);
		else
			before = isl_map_lex_lt_first(space, plevel);
		dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
			isl_map_reverse(isl_map_copy(acc->sink.map)));
		dep = isl_map_intersect(dep, before);
		mustdo = isl_set_subtract(mustdo,
					    isl_map_range(isl_map_copy(dep)));
		res->dep[i].map = isl_map_union(res->dep[i].map, dep);
	}

	res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
	res->must_no_source = mustdo;

	return res;
error:
	isl_set_free(mustdo);
	isl_set_free(maydo);
	isl_flow_free(res);
	return NULL;
}

/* Compute dependences for the case where there is at least one
 * "must" access.
 *
 * The core algorithm considers all levels in which a source may precede
 * the sink, where a level may either be a statement level or a loop level.
 * The outermost statement level is 1, the first loop level is 2, etc...
 * The algorithm basically does the following:
 * for all levels l of the read access from innermost to outermost
 *	for all sources w that may precede the sink access at that level
 *	    compute the last iteration of the source that precedes the sink access
 *					    at that level
 *	    add result to possible last accesses at level l of source w
 *	    for all sources w2 that we haven't considered yet at this level that may
 *					    also precede the sink access
 *		for all levels l2 of w from l to innermost
 *		    for all possible last accesses dep of w at l
 *			compute last iteration of w2 between the source and sink
 *								of dep
 *			add result to possible last accesses at level l of write w2
 *			and replace possible last accesses dep by the remainder
 *
 *
 * The above algorithm is applied to the must access.  During the course
 * of the algorithm, we keep track of sink iterations that still
 * need to be considered.  These iterations are split into those that
 * haven't been matched to any source access (mustdo) and those that have only
 * been matched to may accesses (maydo).
 * At the end of each level, must-sources and may-sources that are coscheduled
 * with the sources of the must-dependences at that level are considered.
 * If any coscheduled instances are found, then corresponding may-dependences
 * are added and the original must-dependences are turned into may-dependences.
 * Afterwards, the may accesses that occur after must-dependence sources
 * are considered.
 * In particular, we consider may accesses that precede the remaining
 * sink iterations, moving elements from mustdo to maydo when appropriate,
 * and may accesses that occur between a must source and a sink of any 
 * dependences found at the current level, turning must dependences into
 * may dependences when appropriate.
 * 
 */
static __isl_give isl_flow *compute_val_based_dependences(
	__isl_keep isl_access_info *acc)
{
	isl_ctx *ctx;
	isl_flow *res;
	isl_set *mustdo = NULL;
	isl_set *maydo = NULL;
	int level, j;
	isl_size n_in;
	int depth;
	isl_map **must_rel = NULL;
	isl_map **may_rel = NULL;

	if (!acc)
		return NULL;

	res = isl_flow_alloc(acc);
	if (!res)
		goto error;
	ctx = isl_map_get_ctx(acc->sink.map);

	n_in = isl_map_dim(acc->sink.map, isl_dim_in);
	if (n_in < 0)
		goto error;
	depth = 2 * n_in + 1;
	mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
	maydo = isl_set_empty(isl_set_get_space(mustdo));
	if (!mustdo || !maydo)
		goto error;
	if (isl_set_plain_is_empty(mustdo))
		goto done;

	must_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
	may_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
	if (!must_rel || !may_rel)
		goto error;

	for (level = depth; level >= 1; --level) {
		for (j = acc->n_must-1; j >=0; --j) {
			isl_space *space;
			space = isl_map_get_space(res->dep[2 * j].map);
			must_rel[j] = isl_map_empty(space);
			may_rel[j] = isl_map_copy(must_rel[j]);
		}

		for (j = acc->n_must - 1; j >= 0; --j) {
			struct isl_map *T;
			struct isl_set *rest;
			int plevel;

			plevel = acc->level_before(acc->source[j].data,
						     acc->sink.data);
			if (plevel < 0)
				goto error;
			if (!can_precede_at_level(plevel, level))
				continue;

			T = last_source(acc, mustdo, j, level, &rest);
			must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
			mustdo = rest;

			if (intermediate_sources(acc, must_rel, j, level) < 0)
				goto error;

			T = last_source(acc, maydo, j, level, &rest);
			may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
			maydo = rest;

			if (intermediate_sources(acc, may_rel, j, level) < 0)
				goto error;

			if (isl_set_plain_is_empty(mustdo) &&
			    isl_set_plain_is_empty(maydo))
				break;
		}
		for (j = j - 1; j >= 0; --j) {
			int plevel;

			plevel = acc->level_before(acc->source[j].data,
						     acc->sink.data);
			if (plevel < 0)
				goto error;
			if (!can_precede_at_level(plevel, level))
				continue;

			if (intermediate_sources(acc, must_rel, j, level) < 0)
				goto error;
			if (intermediate_sources(acc, may_rel, j, level) < 0)
				goto error;
		}

		res = handle_coscheduled(acc, must_rel, may_rel, res);
		if (!res)
			goto error;

		for (j = 0; j < acc->n_may; ++j) {
			int plevel;
			isl_map *T;
			isl_set *ran;

			plevel = acc->level_before(acc->source[acc->n_must + j].data,
						     acc->sink.data);
			if (plevel < 0)
				goto error;
			if (!can_precede_at_level(plevel, level))
				continue;

			T = all_sources(acc, isl_set_copy(maydo), j, level);
			res->dep[2 * acc->n_must + j].map =
			    isl_map_union(res->dep[2 * acc->n_must + j].map, T);
			T = all_sources(acc, isl_set_copy(mustdo), j, level);
			ran = isl_map_range(isl_map_copy(T));
			res->dep[2 * acc->n_must + j].map =
			    isl_map_union(res->dep[2 * acc->n_must + j].map, T);
			mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
			maydo = isl_set_union_disjoint(maydo, ran);

			T = res->dep[2 * acc->n_must + j].map;
			T = all_intermediate_sources(acc, T, must_rel, may_rel,
							j, level);
			res->dep[2 * acc->n_must + j].map = T;
		}

		for (j = acc->n_must - 1; j >= 0; --j) {
			res->dep[2 * j].map =
				isl_map_union_disjoint(res->dep[2 * j].map,
							     must_rel[j]);
			res->dep[2 * j + 1].map =
				isl_map_union_disjoint(res->dep[2 * j + 1].map,
							     may_rel[j]);
		}

		if (isl_set_plain_is_empty(mustdo) &&
		    isl_set_plain_is_empty(maydo))
			break;
	}

	free(must_rel);
	free(may_rel);
done:
	res->must_no_source = mustdo;
	res->may_no_source = maydo;
	return res;
error:
	if (must_rel)
		for (j = 0; j < acc->n_must; ++j)
			isl_map_free(must_rel[j]);
	if (may_rel)
		for (j = 0; j < acc->n_must; ++j)
			isl_map_free(may_rel[j]);
	isl_flow_free(res);
	isl_set_free(mustdo);
	isl_set_free(maydo);
	free(must_rel);
	free(may_rel);
	return NULL;
}

/* Given a "sink" access, a list of n "source" accesses,
 * compute for each iteration of the sink access
 * and for each element accessed by that iteration,
 * the source access in the list that last accessed the
 * element accessed by the sink access before this sink access.
 * Each access is given as a map from the loop iterators
 * to the array indices.
 * The result is a list of n relations between source and sink
 * iterations and a subset of the domain of the sink access,
 * corresponding to those iterations that access an element
 * not previously accessed.
 *
 * To deal with multi-valued sink access relations, the sink iteration
 * domain is first extended with dimensions that correspond to the data
 * space.  However, these extra dimensions are not projected out again.
 * It is up to the caller to decide whether these dimensions should be kept.
 */
static __isl_give isl_flow *access_info_compute_flow_core(
	__isl_take isl_access_info *acc)
{
	struct isl_flow *res = NULL;

	if (!acc)
		return NULL;

	acc->sink.map = isl_map_range_map(acc->sink.map);
	if (!acc->sink.map)
		goto error;

	if (acc->n_must == 0)
		res = compute_mem_based_dependences(acc);
	else {
		acc = isl_access_info_sort_sources(acc);
		res = compute_val_based_dependences(acc);
	}
	acc = isl_access_info_free(acc);
	if (!res)
		return NULL;
	if (!res->must_no_source || !res->may_no_source)
		goto error;
	return res;
error:
	isl_access_info_free(acc);
	isl_flow_free(res);
	return NULL;
}

/* Given a "sink" access, a list of n "source" accesses,
 * compute for each iteration of the sink access
 * and for each element accessed by that iteration,
 * the source access in the list that last accessed the
 * element accessed by the sink access before this sink access.
 * Each access is given as a map from the loop iterators
 * to the array indices.
 * The result is a list of n relations between source and sink
 * iterations and a subset of the domain of the sink access,
 * corresponding to those iterations that access an element
 * not previously accessed.
 *
 * To deal with multi-valued sink access relations,
 * access_info_compute_flow_core extends the sink iteration domain
 * with dimensions that correspond to the data space.  These extra dimensions
 * are projected out from the result of access_info_compute_flow_core.
 */
__isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
{
	int j;
	struct isl_flow *res;

	if (!acc)
		return NULL;

	acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
	res = access_info_compute_flow_core(acc);
	if (!res)
		return NULL;

	for (j = 0; j < res->n_source; ++j) {
		res->dep[j].map = isl_map_range_factor_domain(res->dep[j].map);
		if (!res->dep[j].map)
			goto error;
	}

	return res;
error:
	isl_flow_free(res);
	return NULL;
}


/* Keep track of some information about a schedule for a given
 * access.  In particular, keep track of which dimensions
 * have a constant value and of the actual constant values.
 */
struct isl_sched_info {
	int *is_cst;
	isl_vec *cst;
};

static void sched_info_free(__isl_take struct isl_sched_info *info)
{
	if (!info)
		return;
	isl_vec_free(info->cst);
	free(info->is_cst);
	free(info);
}

/* Extract information on the constant dimensions of the schedule
 * for a given access.  The "map" is of the form
 *
 *	[S -> D] -> A
 *
 * with S the schedule domain, D the iteration domain and A the data domain.
 */
static __isl_give struct isl_sched_info *sched_info_alloc(
	__isl_keep isl_map *map)
{
	isl_ctx *ctx;
	isl_space *space;
	struct isl_sched_info *info;
	int i;
	isl_size n;

	if (!map)
		return NULL;

	space = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
	if (!space)
		return NULL;
	n = isl_space_dim(space, isl_dim_in);
	isl_space_free(space);
	if (n < 0)
		return NULL;

	ctx = isl_map_get_ctx(map);
	info = isl_alloc_type(ctx, struct isl_sched_info);
	if (!info)
		return NULL;
	info->is_cst = isl_alloc_array(ctx, int, n);
	info->cst = isl_vec_alloc(ctx, n);
	if (n && (!info->is_cst || !info->cst))
		goto error;

	for (i = 0; i < n; ++i) {
		isl_val *v;

		v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i);
		if (!v)
			goto error;
		info->is_cst[i] = !isl_val_is_nan(v);
		if (info->is_cst[i])
			info->cst = isl_vec_set_element_val(info->cst, i, v);
		else
			isl_val_free(v);
	}

	return info;
error:
	sched_info_free(info);
	return NULL;
}

/* The different types of access relations that isl_union_access_info
 * keeps track of.

 * "isl_access_sink" represents the sink accesses.
 * "isl_access_must_source" represents the definite source accesses.
 * "isl_access_may_source" represents the possible source accesses.
 * "isl_access_kill" represents the kills.
 *
 * isl_access_sink is sometimes treated differently and
 * should therefore appear first.
 */
enum isl_access_type {
	isl_access_sink,
	isl_access_must_source,
	isl_access_may_source,
	isl_access_kill,
	isl_access_end
};

/* This structure represents the input for a dependence analysis computation.
 *
 * "access" contains the access relations.
 *
 * "schedule" or "schedule_map" represents the execution order.
 * Exactly one of these fields should be NULL.  The other field
 * determines the execution order.
 *
 * The domains of these four maps refer to the same iteration spaces(s).
 * The ranges of the first three maps also refer to the same data space(s).
 *
 * After a call to isl_union_access_info_introduce_schedule,
 * the "schedule_map" field no longer contains useful information.
 */
struct isl_union_access_info {
	isl_union_map *access[isl_access_end];

	isl_schedule *schedule;
	isl_union_map *schedule_map;
};

/* Free "access" and return NULL.
 */
__isl_null isl_union_access_info *isl_union_access_info_free(
	__isl_take isl_union_access_info *access)
{
	enum isl_access_type i;

	if (!access)
		return NULL;

	for (i = isl_access_sink; i < isl_access_end; ++i)
		isl_union_map_free(access->access[i]);
	isl_schedule_free(access->schedule);
	isl_union_map_free(access->schedule_map);
	free(access);

	return NULL;
}

/* Return the isl_ctx to which "access" belongs.
 */
isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access)
{
	if (!access)
		return NULL;
	return isl_union_map_get_ctx(access->access[isl_access_sink]);
}

/* Construct an empty (invalid) isl_union_access_info object.
 * The caller is responsible for setting the sink access relation and
 * initializing all the other fields, e.g., by calling
 * isl_union_access_info_init.
 */
static __isl_give isl_union_access_info *isl_union_access_info_alloc(
	isl_ctx *ctx)
{
	return isl_calloc_type(ctx, isl_union_access_info);
}

/* Initialize all the fields of "info", except the sink access relation,
 * which is assumed to have been set by the caller.
 *
 * By default, we use the schedule field of the isl_union_access_info,
 * but this may be overridden by a call
 * to isl_union_access_info_set_schedule_map.
 */
static __isl_give isl_union_access_info *isl_union_access_info_init(
	__isl_take isl_union_access_info *info)
{
	isl_space *space;
	isl_union_map *empty;
	enum isl_access_type i;

	if (!info)
		return NULL;
	if (!info->access[isl_access_sink])
		return isl_union_access_info_free(info);

	space = isl_union_map_get_space(info->access[isl_access_sink]);
	empty = isl_union_map_empty(isl_space_copy(space));
	for (i = isl_access_sink + 1; i < isl_access_end; ++i)
		if (!info->access[i])
			info->access[i] = isl_union_map_copy(empty);
	isl_union_map_free(empty);
	if (!info->schedule && !info->schedule_map)
		info->schedule = isl_schedule_empty(isl_space_copy(space));
	isl_space_free(space);

	for (i = isl_access_sink + 1; i < isl_access_end; ++i)
		if (!info->access[i])
			return isl_union_access_info_free(info);
	if (!info->schedule && !info->schedule_map)
		return isl_union_access_info_free(info);

	return info;
}

/* Create a new isl_union_access_info with the given sink accesses and
 * and no other accesses or schedule information.
 */
__isl_give isl_union_access_info *isl_union_access_info_from_sink(
	__isl_take isl_union_map *sink)
{
	isl_ctx *ctx;
	isl_union_access_info *access;

	if (!sink)
		return NULL;
	ctx = isl_union_map_get_ctx(sink);
	access = isl_union_access_info_alloc(ctx);
	if (!access)
		goto error;
	access->access[isl_access_sink] = sink;
	return isl_union_access_info_init(access);
error:
	isl_union_map_free(sink);
	return NULL;
}

/* Replace the access relation of type "type" of "info" by "access".
 */
static __isl_give isl_union_access_info *isl_union_access_info_set(
	__isl_take isl_union_access_info *info,
	enum isl_access_type type, __isl_take isl_union_map *access)
{
	if (!info || !access)
		goto error;

	isl_union_map_free(info->access[type]);
	info->access[type] = access;

	return info;
error:
	isl_union_access_info_free(info);
	isl_union_map_free(access);
	return NULL;
}

/* Replace the definite source accesses of "access" by "must_source".
 */
__isl_give isl_union_access_info *isl_union_access_info_set_must_source(
	__isl_take isl_union_access_info *access,
	__isl_take isl_union_map *must_source)
{
	return isl_union_access_info_set(access, isl_access_must_source,
					must_source);
}

/* Replace the possible source accesses of "access" by "may_source".
 */
__isl_give isl_union_access_info *isl_union_access_info_set_may_source(
	__isl_take isl_union_access_info *access,
	__isl_take isl_union_map *may_source)
{
	return isl_union_access_info_set(access, isl_access_may_source,
					may_source);
}

/* Replace the kills of "info" by "kill".
 */
__isl_give isl_union_access_info *isl_union_access_info_set_kill(
	__isl_take isl_union_access_info *info, __isl_take isl_union_map *kill)
{
	return isl_union_access_info_set(info, isl_access_kill, kill);
}

/* Return the access relation of type "type" of "info".
 */
static __isl_give isl_union_map *isl_union_access_info_get(
	__isl_keep isl_union_access_info *info, enum isl_access_type type)
{
	if (!info)
		return NULL;
	return isl_union_map_copy(info->access[type]);
}

/* Return the definite source accesses of "info".
 */
__isl_give isl_union_map *isl_union_access_info_get_must_source(
	__isl_keep isl_union_access_info *info)
{
	return isl_union_access_info_get(info, isl_access_must_source);
}

/* Return the possible source accesses of "info".
 */
__isl_give isl_union_map *isl_union_access_info_get_may_source(
	__isl_keep isl_union_access_info *info)
{
	return isl_union_access_info_get(info, isl_access_may_source);
}

/* Return the kills of "info".
 */
__isl_give isl_union_map *isl_union_access_info_get_kill(
	__isl_keep isl_union_access_info *info)
{
	return isl_union_access_info_get(info, isl_access_kill);
}

/* Does "info" specify any kills?
 */
static isl_bool isl_union_access_has_kill(
	__isl_keep isl_union_access_info *info)
{
	isl_bool empty;

	if (!info)
		return isl_bool_error;
	empty = isl_union_map_is_empty(info->access[isl_access_kill]);
	return isl_bool_not(empty);
}

/* Replace the schedule of "access" by "schedule".
 * Also free the schedule_map in case it was set last.
 */
__isl_give isl_union_access_info *isl_union_access_info_set_schedule(
	__isl_take isl_union_access_info *access,
	__isl_take isl_schedule *schedule)
{
	if (!access || !schedule)
		goto error;

	access->schedule_map = isl_union_map_free(access->schedule_map);
	isl_schedule_free(access->schedule);
	access->schedule = schedule;

	return access;
error:
	isl_union_access_info_free(access);
	isl_schedule_free(schedule);
	return NULL;
}

/* Replace the schedule map of "access" by "schedule_map".
 * Also free the schedule in case it was set last.
 */
__isl_give isl_union_access_info *isl_union_access_info_set_schedule_map(
	__isl_take isl_union_access_info *access,
	__isl_take isl_union_map *schedule_map)
{
	if (!access || !schedule_map)
		goto error;

	isl_union_map_free(access->schedule_map);
	access->schedule = isl_schedule_free(access->schedule);
	access->schedule_map = schedule_map;

	return access;
error:
	isl_union_access_info_free(access);
	isl_union_map_free(schedule_map);
	return NULL;
}

__isl_give isl_union_access_info *isl_union_access_info_copy(
	__isl_keep isl_union_access_info *access)
{
	isl_union_access_info *copy;
	enum isl_access_type i;

	if (!access)
		return NULL;
	copy = isl_union_access_info_from_sink(
		    isl_union_map_copy(access->access[isl_access_sink]));
	for (i = isl_access_sink + 1; i < isl_access_end; ++i)
		copy = isl_union_access_info_set(copy, i,
					isl_union_map_copy(access->access[i]));
	if (access->schedule)
		copy = isl_union_access_info_set_schedule(copy,
				isl_schedule_copy(access->schedule));
	else
		copy = isl_union_access_info_set_schedule_map(copy,
				isl_union_map_copy(access->schedule_map));

	return copy;
}

#undef BASE
#define BASE union_map
#include "print_yaml_field_templ.c"

/* An enumeration of the various keys that may appear in a YAML mapping
 * of an isl_union_access_info object.
 * The keys for the access relation types are assumed to have the same values
 * as the access relation types in isl_access_type.
 */
enum isl_ai_key {
	isl_ai_key_error = -1,
	isl_ai_key_sink = isl_access_sink,
	isl_ai_key_must_source = isl_access_must_source,
	isl_ai_key_may_source = isl_access_may_source,
	isl_ai_key_kill = isl_access_kill,
	isl_ai_key_schedule_map,
	isl_ai_key_schedule,
	isl_ai_key_end
};

/* Textual representations of the YAML keys for an isl_union_access_info
 * object.
 */
static char *key_str[] = {
	[isl_ai_key_sink] = "sink",
	[isl_ai_key_must_source] = "must_source",
	[isl_ai_key_may_source] = "may_source",
	[isl_ai_key_kill] = "kill",
	[isl_ai_key_schedule_map] = "schedule_map",
	[isl_ai_key_schedule] = "schedule",
};

/* Print a key-value pair corresponding to the access relation of type "type"
 * of a YAML mapping of "info" to "p".
 *
 * The sink access relation is always printed, but any other access relation
 * is only printed if it is non-empty.
 */
static __isl_give isl_printer *print_access_field(__isl_take isl_printer *p,
	__isl_keep isl_union_access_info *info, enum isl_access_type type)
{
	if (type != isl_access_sink) {
		isl_bool empty;

		empty = isl_union_map_is_empty(info->access[type]);
		if (empty < 0)
			return isl_printer_free(p);
		if (empty)
			return p;
	}
	return print_yaml_field_union_map(p, key_str[type], info->access[type]);
}

/* Print the information contained in "access" to "p".
 * The information is printed as a YAML document.
 */
__isl_give isl_printer *isl_printer_print_union_access_info(
	__isl_take isl_printer *p, __isl_keep isl_union_access_info *access)
{
	enum isl_access_type i;

	if (!access)
		return isl_printer_free(p);

	p = isl_printer_yaml_start_mapping(p);
	for (i = isl_access_sink; i < isl_access_end; ++i)
		p = print_access_field(p, access, i);
	if (access->schedule) {
		p = isl_printer_print_str(p, key_str[isl_ai_key_schedule]);
		p = isl_printer_yaml_next(p);
		p = isl_printer_print_schedule(p, access->schedule);
		p = isl_printer_yaml_next(p);
	} else {
		p = print_yaml_field_union_map(p,
			key_str[isl_ai_key_schedule_map], access->schedule_map);
	}
	p = isl_printer_yaml_end_mapping(p);

	return p;
}

/* Return a string representation of the information in "access".
 * The information is printed in flow format.
 */
__isl_give char *isl_union_access_info_to_str(
	__isl_keep isl_union_access_info *access)
{
	isl_printer *p;
	char *s;

	if (!access)
		return NULL;

	p = isl_printer_to_str(isl_union_access_info_get_ctx(access));
	p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
	p = isl_printer_print_union_access_info(p, access);
	s = isl_printer_get_str(p);
	isl_printer_free(p);

	return s;
}

#undef KEY
#define KEY enum isl_ai_key
#undef KEY_ERROR
#define KEY_ERROR isl_ai_key_error
#undef KEY_END
#define KEY_END isl_ai_key_end
#include "extract_key.c"

#undef BASE
#define BASE union_map
#include "read_in_string_templ.c"

/* Read an isl_union_access_info object from "s".
 *
 * Start off with an empty (invalid) isl_union_access_info object and
 * then fill up the fields based on the input.
 * The input needs to contain at least a description of the sink
 * access relation as well as some form of schedule.
 * The other access relations are set to empty relations
 * by isl_union_access_info_init if they are not specified in the input.
 */
__isl_give isl_union_access_info *isl_stream_read_union_access_info(
	isl_stream *s)
{
	isl_ctx *ctx;
	isl_union_access_info *info;
	int more;
	int sink_set = 0;
	int schedule_set = 0;

	if (isl_stream_yaml_read_start_mapping(s))
		return NULL;

	ctx = isl_stream_get_ctx(s);
	info = isl_union_access_info_alloc(ctx);
	while ((more = isl_stream_yaml_next(s)) > 0) {
		enum isl_ai_key key;
		isl_union_map *access, *schedule_map;
		isl_schedule *schedule;

		key = get_key(s);
		if (isl_stream_yaml_next(s) < 0)
			return isl_union_access_info_free(info);
		switch (key) {
		case isl_ai_key_end:
		case isl_ai_key_error:
			return isl_union_access_info_free(info);
		case isl_ai_key_sink:
			sink_set = 1;
		case isl_ai_key_must_source:
		case isl_ai_key_may_source:
		case isl_ai_key_kill:
			access = read_union_map(s);
			info = isl_union_access_info_set(info, key, access);
			if (!info)
				return NULL;
			break;
		case isl_ai_key_schedule_map:
			schedule_set = 1;
			schedule_map = read_union_map(s);
			info = isl_union_access_info_set_schedule_map(info,
								schedule_map);
			if (!info)
				return NULL;
			break;
		case isl_ai_key_schedule:
			schedule_set = 1;
			schedule = isl_stream_read_schedule(s);
			info = isl_union_access_info_set_schedule(info,
								schedule);
			if (!info)
				return NULL;
			break;
		}
	}
	if (more < 0)
		return isl_union_access_info_free(info);

	if (isl_stream_yaml_read_end_mapping(s) < 0) {
		isl_stream_error(s, NULL, "unexpected extra elements");
		return isl_union_access_info_free(info);
	}

	if (!sink_set) {
		isl_stream_error(s, NULL, "no sink specified");
		return isl_union_access_info_free(info);
	}

	if (!schedule_set) {
		isl_stream_error(s, NULL, "no schedule specified");
		return isl_union_access_info_free(info);
	}

	return isl_union_access_info_init(info);
}

/* Read an isl_union_access_info object from the file "input".
 */
__isl_give isl_union_access_info *isl_union_access_info_read_from_file(
	isl_ctx *ctx, FILE *input)
{
	isl_stream *s;
	isl_union_access_info *access;

	s = isl_stream_new_file(ctx, input);
	if (!s)
		return NULL;
	access = isl_stream_read_union_access_info(s);
	isl_stream_free(s);

	return access;
}

/* Update the fields of "access" such that they all have the same parameters,
 * keeping in mind that the schedule_map field may be NULL and ignoring
 * the schedule field.
 */
static __isl_give isl_union_access_info *isl_union_access_info_align_params(
	__isl_take isl_union_access_info *access)
{
	isl_space *space;
	enum isl_access_type i;

	if (!access)
		return NULL;

	space = isl_union_map_get_space(access->access[isl_access_sink]);
	for (i = isl_access_sink + 1; i < isl_access_end; ++i)
		space = isl_space_align_params(space,
				isl_union_map_get_space(access->access[i]));
	if (access->schedule_map)
		space = isl_space_align_params(space,
				isl_union_map_get_space(access->schedule_map));
	for (i = isl_access_sink; i < isl_access_end; ++i)
		access->access[i] =
			isl_union_map_align_params(access->access[i],
							isl_space_copy(space));
	if (!access->schedule_map) {
		isl_space_free(space);
	} else {
		access->schedule_map =
		    isl_union_map_align_params(access->schedule_map, space);
		if (!access->schedule_map)
			return isl_union_access_info_free(access);
	}

	for (i = isl_access_sink; i < isl_access_end; ++i)
		if (!access->access[i])
			return isl_union_access_info_free(access);

	return access;
}

/* Prepend the schedule dimensions to the iteration domains.
 *
 * That is, if the schedule is of the form
 *
 *	D -> S
 *
 * while the access relations are of the form
 *
 *	D -> A
 *
 * then the updated access relations are of the form
 *
 *	[S -> D] -> A
 *
 * The schedule map is also replaced by the map
 *
 *	[S -> D] -> D
 *
 * that is used during the internal computation.
 * Neither the original schedule map nor this updated schedule map
 * are used after the call to this function.
 */
static __isl_give isl_union_access_info *
isl_union_access_info_introduce_schedule(
	__isl_take isl_union_access_info *access)
{
	isl_union_map *sm;
	enum isl_access_type i;

	if (!access)
		return NULL;

	sm = isl_union_map_reverse(access->schedule_map);
	sm = isl_union_map_range_map(sm);
	for (i = isl_access_sink; i < isl_access_end; ++i)
		access->access[i] =
			isl_union_map_apply_range(isl_union_map_copy(sm),
						access->access[i]);
	access->schedule_map = sm;

	for (i = isl_access_sink; i < isl_access_end; ++i)
		if (!access->access[i])
			return isl_union_access_info_free(access);
	if (!access->schedule_map)
		return isl_union_access_info_free(access);

	return access;
}

/* This structure represents the result of a dependence analysis computation.
 *
 * "must_dep" represents the full definite dependences
 * "may_dep" represents the full non-definite dependences.
 * Both are of the form
 *
 *	[Source] -> [[Sink -> Data]]
 *
 * (after the schedule dimensions have been projected out).
 * "must_no_source" represents the subset of the sink accesses for which
 * definitely no source was found.
 * "may_no_source" represents the subset of the sink accesses for which
 * possibly, but not definitely, no source was found.
 */
struct isl_union_flow {
	isl_union_map *must_dep;
	isl_union_map *may_dep;
	isl_union_map *must_no_source;
	isl_union_map *may_no_source;
};

/* Return the isl_ctx to which "flow" belongs.
 */
isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow)
{
	return flow ? isl_union_map_get_ctx(flow->must_dep) : NULL;
}

/* Free "flow" and return NULL.
 */
__isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	isl_union_map_free(flow->must_dep);
	isl_union_map_free(flow->may_dep);
	isl_union_map_free(flow->must_no_source);
	isl_union_map_free(flow->may_no_source);
	free(flow);
	return NULL;
}

void isl_union_flow_dump(__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return;

	fprintf(stderr, "must dependences: ");
	isl_union_map_dump(flow->must_dep);
	fprintf(stderr, "may dependences: ");
	isl_union_map_dump(flow->may_dep);
	fprintf(stderr, "must no source: ");
	isl_union_map_dump(flow->must_no_source);
	fprintf(stderr, "may no source: ");
	isl_union_map_dump(flow->may_no_source);
}

/* Return the full definite dependences in "flow", with accessed elements.
 */
__isl_give isl_union_map *isl_union_flow_get_full_must_dependence(
	__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	return isl_union_map_copy(flow->must_dep);
}

/* Return the full possible dependences in "flow", including the definite
 * dependences, with accessed elements.
 */
__isl_give isl_union_map *isl_union_flow_get_full_may_dependence(
	__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	return isl_union_map_union(isl_union_map_copy(flow->must_dep),
				    isl_union_map_copy(flow->may_dep));
}

/* Return the definite dependences in "flow", without the accessed elements.
 */
__isl_give isl_union_map *isl_union_flow_get_must_dependence(
	__isl_keep isl_union_flow *flow)
{
	isl_union_map *dep;

	if (!flow)
		return NULL;
	dep = isl_union_map_copy(flow->must_dep);
	return isl_union_map_range_factor_domain(dep);
}

/* Return the possible dependences in "flow", including the definite
 * dependences, without the accessed elements.
 */
__isl_give isl_union_map *isl_union_flow_get_may_dependence(
	__isl_keep isl_union_flow *flow)
{
	isl_union_map *dep;

	if (!flow)
		return NULL;
	dep = isl_union_map_union(isl_union_map_copy(flow->must_dep),
				    isl_union_map_copy(flow->may_dep));
	return isl_union_map_range_factor_domain(dep);
}

/* Return the non-definite dependences in "flow".
 */
static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence(
	__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	return isl_union_map_copy(flow->may_dep);
}

/* Return the subset of the sink accesses for which definitely
 * no source was found.
 */
__isl_give isl_union_map *isl_union_flow_get_must_no_source(
	__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	return isl_union_map_copy(flow->must_no_source);
}

/* Return the subset of the sink accesses for which possibly
 * no source was found, including those for which definitely
 * no source was found.
 */
__isl_give isl_union_map *isl_union_flow_get_may_no_source(
	__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	return isl_union_map_union(isl_union_map_copy(flow->must_no_source),
				    isl_union_map_copy(flow->may_no_source));
}

/* Return the subset of the sink accesses for which possibly, but not
 * definitely, no source was found.
 */
static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source(
	__isl_keep isl_union_flow *flow)
{
	if (!flow)
		return NULL;
	return isl_union_map_copy(flow->may_no_source);
}

/* Create a new isl_union_flow object, initialized with empty
 * dependence relations and sink subsets.
 */
static __isl_give isl_union_flow *isl_union_flow_alloc(
	__isl_take isl_space *space)
{
	isl_ctx *ctx;
	isl_union_map *empty;
	isl_union_flow *flow;

	if (!space)
		return NULL;
	ctx = isl_space_get_ctx(space);
	flow = isl_alloc_type(ctx, isl_union_flow);
	if (!flow)
		goto error;

	empty = isl_union_map_empty(space);
	flow->must_dep = isl_union_map_copy(empty);
	flow->may_dep = isl_union_map_copy(empty);
	flow->must_no_source = isl_union_map_copy(empty);
	flow->may_no_source = empty;

	if (!flow->must_dep || !flow->may_dep ||
	    !flow->must_no_source || !flow->may_no_source)
		return isl_union_flow_free(flow);

	return flow;
error:
	isl_space_free(space);
	return NULL;
}

/* Copy this isl_union_flow object.
 */
__isl_give isl_union_flow *isl_union_flow_copy(__isl_keep isl_union_flow *flow)
{
	isl_union_flow *copy;

	if (!flow)
		return NULL;

	copy = isl_union_flow_alloc(isl_union_map_get_space(flow->must_dep));

	if (!copy)
		return NULL;

	copy->must_dep = isl_union_map_union(copy->must_dep,
		isl_union_map_copy(flow->must_dep));
	copy->may_dep = isl_union_map_union(copy->may_dep,
		isl_union_map_copy(flow->may_dep));
	copy->must_no_source = isl_union_map_union(copy->must_no_source,
		isl_union_map_copy(flow->must_no_source));
	copy->may_no_source = isl_union_map_union(copy->may_no_source,
		isl_union_map_copy(flow->may_no_source));

	if (!copy->must_dep || !copy->may_dep ||
	    !copy->must_no_source || !copy->may_no_source)
		return isl_union_flow_free(copy);

	return copy;
}

/* Drop the schedule dimensions from the iteration domains in "flow".
 * In particular, the schedule dimensions have been prepended
 * to the iteration domains prior to the dependence analysis by
 * replacing the iteration domain D, by the wrapped map [S -> D].
 * Replace these wrapped maps by the original D.
 *
 * In particular, the dependences computed by access_info_compute_flow_core
 * are of the form
 *
 *	[S -> D] -> [[S' -> D'] -> A]
 *
 * The schedule dimensions are projected out by first currying the range,
 * resulting in
 *
 *	[S -> D] -> [S' -> [D' -> A]]
 *
 * and then computing the factor range
 *
 *	D -> [D' -> A]
 */
static __isl_give isl_union_flow *isl_union_flow_drop_schedule(
	__isl_take isl_union_flow *flow)
{
	if (!flow)
		return NULL;

	flow->must_dep = isl_union_map_range_curry(flow->must_dep);
	flow->must_dep = isl_union_map_factor_range(flow->must_dep);
	flow->may_dep = isl_union_map_range_curry(flow->may_dep);
	flow->may_dep = isl_union_map_factor_range(flow->may_dep);
	flow->must_no_source =
		isl_union_map_domain_factor_range(flow->must_no_source);
	flow->may_no_source =
		isl_union_map_domain_factor_range(flow->may_no_source);

	if (!flow->must_dep || !flow->may_dep ||
	    !flow->must_no_source || !flow->may_no_source)
		return isl_union_flow_free(flow);

	return flow;
}

struct isl_compute_flow_data {
	isl_union_map *must_source;
	isl_union_map *may_source;
	isl_union_flow *flow;

	int count;
	int must;
	isl_space *dim;
	struct isl_sched_info *sink_info;
	struct isl_sched_info **source_info;
	isl_access_info *accesses;
};

static isl_stat count_matching_array(__isl_take isl_map *map, void *user)
{
	int eq;
	isl_space *space;
	struct isl_compute_flow_data *data;

	data = (struct isl_compute_flow_data *)user;

	space = isl_space_range(isl_map_get_space(map));

	eq = isl_space_is_equal(space, data->dim);

	isl_space_free(space);
	isl_map_free(map);

	if (eq < 0)
		return isl_stat_error;
	if (eq)
		data->count++;

	return isl_stat_ok;
}

static isl_stat collect_matching_array(__isl_take isl_map *map, void *user)
{
	int eq;
	isl_space *space;
	struct isl_sched_info *info;
	struct isl_compute_flow_data *data;

	data = (struct isl_compute_flow_data *)user;

	space = isl_space_range(isl_map_get_space(map));

	eq = isl_space_is_equal(space, data->dim);

	isl_space_free(space);

	if (eq < 0)
		goto error;
	if (!eq) {
		isl_map_free(map);
		return isl_stat_ok;
	}

	info = sched_info_alloc(map);
	data->source_info[data->count] = info;

	data->accesses = isl_access_info_add_source(data->accesses,
						    map, data->must, info);

	data->count++;

	return isl_stat_ok;
error:
	isl_map_free(map);
	return isl_stat_error;
}

/* Determine the shared nesting level and the "textual order" of
 * the given accesses.
 *
 * We first determine the minimal schedule dimension for both accesses.
 *
 * If among those dimensions, we can find one where both have a fixed
 * value and if moreover those values are different, then the previous
 * dimension is the last shared nesting level and the textual order
 * is determined based on the order of the fixed values.
 * If no such fixed values can be found, then we set the shared
 * nesting level to the minimal schedule dimension, with no textual ordering.
 */
static int before(void *first, void *second)
{
	struct isl_sched_info *info1 = first;
	struct isl_sched_info *info2 = second;
	isl_size n1, n2;
	int i;

	n1 = isl_vec_size(info1->cst);
	n2 = isl_vec_size(info2->cst);
	if (n1 < 0 || n2 < 0)
		return -1;

	if (n2 < n1)
		n1 = n2;

	for (i = 0; i < n1; ++i) {
		int r;
		int cmp;

		if (!info1->is_cst[i])
			continue;
		if (!info2->is_cst[i])
			continue;
		cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
		if (cmp == 0)
			continue;

		r = 2 * i + (cmp < 0);

		return r;
	}

	return 2 * n1;
}

/* Check if the given two accesses may be coscheduled.
 * If so, return isl_bool_true.  Otherwise return isl_bool_false.
 *
 * Two accesses may only be coscheduled if the fixed schedule
 * coordinates have the same values.
 */
static isl_bool coscheduled(void *first, void *second)
{
	struct isl_sched_info *info1 = first;
	struct isl_sched_info *info2 = second;
	isl_size n1, n2;
	int i;

	n1 = isl_vec_size(info1->cst);
	n2 = isl_vec_size(info2->cst);
	if (n1 < 0 || n2 < 0)
		return isl_bool_error;

	if (n2 < n1)
		n1 = n2;

	for (i = 0; i < n1; ++i) {
		int cmp;

		if (!info1->is_cst[i])
			continue;
		if (!info2->is_cst[i])
			continue;
		cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
		if (cmp != 0)
			return isl_bool_false;
	}

	return isl_bool_true;
}

/* Given a sink access, look for all the source accesses that access
 * the same array and perform dataflow analysis on them using
 * isl_access_info_compute_flow_core.
 */
static isl_stat compute_flow(__isl_take isl_map *map, void *user)
{
	int i;
	isl_ctx *ctx;
	struct isl_compute_flow_data *data;
	isl_flow *flow;
	isl_union_flow *df;

	data = (struct isl_compute_flow_data *)user;
	df = data->flow;

	ctx = isl_map_get_ctx(map);

	data->accesses = NULL;
	data->sink_info = NULL;
	data->source_info = NULL;
	data->count = 0;
	data->dim = isl_space_range(isl_map_get_space(map));

	if (isl_union_map_foreach_map(data->must_source,
					&count_matching_array, data) < 0)
		goto error;
	if (isl_union_map_foreach_map(data->may_source,
					&count_matching_array, data) < 0)
		goto error;

	data->sink_info = sched_info_alloc(map);
	data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
					     data->count);

	data->accesses = isl_access_info_alloc(isl_map_copy(map),
				data->sink_info, &before, data->count);
	if (!data->sink_info || (data->count && !data->source_info) ||
	    !data->accesses)
		goto error;
	data->accesses->coscheduled = &coscheduled;
	data->count = 0;
	data->must = 1;
	if (isl_union_map_foreach_map(data->must_source,
					&collect_matching_array, data) < 0)
		goto error;
	data->must = 0;
	if (isl_union_map_foreach_map(data->may_source,
					&collect_matching_array, data) < 0)
		goto error;

	flow = access_info_compute_flow_core(data->accesses);
	data->accesses = NULL;

	if (!flow)
		goto error;

	df->must_no_source = isl_union_map_union(df->must_no_source,
		    isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
	df->may_no_source = isl_union_map_union(df->may_no_source,
		    isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));

	for (i = 0; i < flow->n_source; ++i) {
		isl_union_map *dep;
		dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
		if (flow->dep[i].must)
			df->must_dep = isl_union_map_union(df->must_dep, dep);
		else
			df->may_dep = isl_union_map_union(df->may_dep, dep);
	}

	isl_flow_free(flow);

	sched_info_free(data->sink_info);
	if (data->source_info) {
		for (i = 0; i < data->count; ++i)
			sched_info_free(data->source_info[i]);
		free(data->source_info);
	}
	isl_space_free(data->dim);
	isl_map_free(map);

	return isl_stat_ok;
error:
	isl_access_info_free(data->accesses);
	sched_info_free(data->sink_info);
	if (data->source_info) {
		for (i = 0; i < data->count; ++i)
			sched_info_free(data->source_info[i]);
		free(data->source_info);
	}
	isl_space_free(data->dim);
	isl_map_free(map);

	return isl_stat_error;
}

/* Add the kills of "info" to the must-sources.
 */
static __isl_give isl_union_access_info *
isl_union_access_info_add_kill_to_must_source(
	__isl_take isl_union_access_info *info)
{
	isl_union_map *must, *kill;

	must = isl_union_access_info_get_must_source(info);
	kill = isl_union_access_info_get_kill(info);
	must = isl_union_map_union(must, kill);
	return isl_union_access_info_set_must_source(info, must);
}

/* Drop dependences from "flow" that purely originate from kills.
 * That is, only keep those dependences that originate from
 * the original must-sources "must" and/or the original may-sources "may".
 * In particular, "must" contains the must-sources from before
 * the kills were added and "may" contains the may-source from before
 * the kills were removed.
 *
 * The dependences are of the form
 *
 *	Source -> [Sink -> Data]
 *
 * Only those dependences are kept where the Source -> Data part
 * is a subset of the original may-sources or must-sources.
 * Of those, only the must-dependences that intersect with the must-sources
 * remain must-dependences.
 * If there is some overlap between the may-sources and the must-sources,
 * then the may-dependences and must-dependences may also overlap.
 * This should be fine since the may-dependences are only kept
 * disjoint from the must-dependences for the isl_union_map_compute_flow
 * interface.  This interface does not support kills, so it will
 * not end up calling this function.
 */
static __isl_give isl_union_flow *isl_union_flow_drop_kill_source(
	__isl_take isl_union_flow *flow, __isl_take isl_union_map *must,
	__isl_take isl_union_map *may)
{
	isl_union_map *move;

	if (!flow)
		goto error;
	move = isl_union_map_copy(flow->must_dep);
	move = isl_union_map_intersect_range_factor_range(move,
				isl_union_map_copy(may));
	may = isl_union_map_union(may, isl_union_map_copy(must));
	flow->may_dep = isl_union_map_intersect_range_factor_range(
				flow->may_dep, may);
	flow->must_dep = isl_union_map_intersect_range_factor_range(
				flow->must_dep, must);
	flow->may_dep = isl_union_map_union(flow->may_dep, move);
	if (!flow->must_dep || !flow->may_dep)
		return isl_union_flow_free(flow);

	return flow;
error:
	isl_union_map_free(must);
	isl_union_map_free(may);
	return NULL;
}

/* Remove the must accesses from the may accesses.
 *
 * A must access always trumps a may access, so there is no need
 * for a must access to also be considered as a may access.  Doing so
 * would only cost extra computations only to find out that
 * the duplicated may access does not make any difference.
 */
static __isl_give isl_union_access_info *isl_union_access_info_normalize(
	__isl_take isl_union_access_info *access)
{
	if (!access)
		return NULL;
	access->access[isl_access_may_source] =
		isl_union_map_subtract(access->access[isl_access_may_source],
		    isl_union_map_copy(access->access[isl_access_must_source]));
	if (!access->access[isl_access_may_source])
		return isl_union_access_info_free(access);

	return access;
}

/* Given a description of the "sink" accesses, the "source" accesses and
 * a schedule, compute for each instance of a sink access
 * and for each element accessed by that instance,
 * the possible or definite source accesses that last accessed the
 * element accessed by the sink access before this sink access
 * in the sense that there is no intermediate definite source access.
 *
 * The must_no_source and may_no_source elements of the result
 * are subsets of access->sink.  The elements must_dep and may_dep
 * map domain elements of access->{may,must)_source to
 * domain elements of access->sink.
 *
 * This function is used when only the schedule map representation
 * is available.
 *
 * We first prepend the schedule dimensions to the domain
 * of the accesses so that we can easily compare their relative order.
 * Then we consider each sink access individually in compute_flow.
 */
static __isl_give isl_union_flow *compute_flow_union_map(
	__isl_take isl_union_access_info *access)
{
	struct isl_compute_flow_data data;
	isl_union_map *sink;

	access = isl_union_access_info_align_params(access);
	access = isl_union_access_info_introduce_schedule(access);
	if (!access)
		return NULL;

	data.must_source = access->access[isl_access_must_source];
	data.may_source = access->access[isl_access_may_source];

	sink = access->access[isl_access_sink];
	data.flow = isl_union_flow_alloc(isl_union_map_get_space(sink));

	if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
		goto error;

	data.flow = isl_union_flow_drop_schedule(data.flow);

	isl_union_access_info_free(access);
	return data.flow;
error:
	isl_union_access_info_free(access);
	isl_union_flow_free(data.flow);
	return NULL;
}

/* A schedule access relation.
 *
 * The access relation "access" is of the form [S -> D] -> A,
 * where S corresponds to the prefix schedule at "node".
 * "must" is only relevant for source accesses and indicates
 * whether the access is a must source or a may source.
 */
struct isl_scheduled_access {
	isl_map *access;
	int must;
	isl_schedule_node *node;
};

/* Data structure for keeping track of individual scheduled sink and source
 * accesses when computing dependence analysis based on a schedule tree.
 *
 * "n_sink" is the number of used entries in "sink"
 * "n_source" is the number of used entries in "source"
 *
 * "set_sink", "must" and "node" are only used inside collect_sink_source,
 * to keep track of the current node and
 * of what extract_sink_source needs to do.
 */
struct isl_compute_flow_schedule_data {
	isl_union_access_info *access;

	int n_sink;
	int n_source;

	struct isl_scheduled_access *sink;
	struct isl_scheduled_access *source;

	int set_sink;
	int must;
	isl_schedule_node *node;
};

/* Align the parameters of all sinks with all sources.
 *
 * If there are no sinks or no sources, then no alignment is needed.
 */
static void isl_compute_flow_schedule_data_align_params(
	struct isl_compute_flow_schedule_data *data)
{
	int i;
	isl_space *space;

	if (data->n_sink == 0 || data->n_source == 0)
		return;

	space = isl_map_get_space(data->sink[0].access);

	for (i = 1; i < data->n_sink; ++i)
		space = isl_space_align_params(space,
				isl_map_get_space(data->sink[i].access));
	for (i = 0; i < data->n_source; ++i)
		space = isl_space_align_params(space,
				isl_map_get_space(data->source[i].access));

	for (i = 0; i < data->n_sink; ++i)
		data->sink[i].access =
			isl_map_align_params(data->sink[i].access,
							isl_space_copy(space));
	for (i = 0; i < data->n_source; ++i)
		data->source[i].access =
			isl_map_align_params(data->source[i].access,
							isl_space_copy(space));

	isl_space_free(space);
}

/* Free all the memory referenced from "data".
 * Do not free "data" itself as it may be allocated on the stack.
 */
static void isl_compute_flow_schedule_data_clear(
	struct isl_compute_flow_schedule_data *data)
{
	int i;

	if (!data->sink)
		return;

	for (i = 0; i < data->n_sink; ++i) {
		isl_map_free(data->sink[i].access);
		isl_schedule_node_free(data->sink[i].node);
	}

	for (i = 0; i < data->n_source; ++i) {
		isl_map_free(data->source[i].access);
		isl_schedule_node_free(data->source[i].node);
	}

	free(data->sink);
}

/* isl_schedule_foreach_schedule_node_top_down callback for counting
 * (an upper bound on) the number of sinks and sources.
 *
 * Sinks and sources are only extracted at leaves of the tree,
 * so we skip the node if it is not a leaf.
 * Otherwise we increment data->n_sink and data->n_source with
 * the number of spaces in the sink and source access domains
 * that reach this node.
 */
static isl_bool count_sink_source(__isl_keep isl_schedule_node *node,
	void *user)
{
	struct isl_compute_flow_schedule_data *data = user;
	isl_union_set *domain;
	isl_union_map *umap;
	isl_bool r = isl_bool_false;
	isl_size n;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
		return isl_bool_true;

	domain = isl_schedule_node_get_universe_domain(node);

	umap = isl_union_map_copy(data->access->access[isl_access_sink]);
	umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
	data->n_sink += n = isl_union_map_n_map(umap);
	isl_union_map_free(umap);
	if (n < 0)
		r = isl_bool_error;

	umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
	umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
	data->n_source += n = isl_union_map_n_map(umap);
	isl_union_map_free(umap);
	if (n < 0)
		r = isl_bool_error;

	umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
	umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
	data->n_source += n = isl_union_map_n_map(umap);
	isl_union_map_free(umap);
	if (n < 0)
		r = isl_bool_error;

	isl_union_set_free(domain);

	return r;
}

/* Add a single scheduled sink or source (depending on data->set_sink)
 * with scheduled access relation "map", must property data->must and
 * schedule node data->node to the list of sinks or sources.
 */
static isl_stat extract_sink_source(__isl_take isl_map *map, void *user)
{
	struct isl_compute_flow_schedule_data *data = user;
	struct isl_scheduled_access *access;

	if (data->set_sink)
		access = data->sink + data->n_sink++;
	else
		access = data->source + data->n_source++;

	access->access = map;
	access->must = data->must;
	access->node = isl_schedule_node_copy(data->node);

	return isl_stat_ok;
}

/* isl_schedule_foreach_schedule_node_top_down callback for collecting
 * individual scheduled source and sink accesses (taking into account
 * the domain of the schedule).
 *
 * We only collect accesses at the leaves of the schedule tree.
 * We prepend the schedule dimensions at the leaf to the iteration
 * domains of the source and sink accesses and then extract
 * the individual accesses (per space).
 *
 * In particular, if the prefix schedule at the node is of the form
 *
 *	D -> S
 *
 * while the access relations are of the form
 *
 *	D -> A
 *
 * then the updated access relations are of the form
 *
 *	[S -> D] -> A
 *
 * Note that S consists of a single space such that introducing S
 * in the access relations does not increase the number of spaces.
 */
static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node,
	void *user)
{
	struct isl_compute_flow_schedule_data *data = user;
	isl_union_map *prefix;
	isl_union_map *umap;
	isl_bool r = isl_bool_false;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
		return isl_bool_true;

	data->node = node;

	prefix = isl_schedule_node_get_prefix_schedule_relation(node);
	prefix = isl_union_map_reverse(prefix);
	prefix = isl_union_map_range_map(prefix);

	data->set_sink = 1;
	umap = isl_union_map_copy(data->access->access[isl_access_sink]);
	umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
	if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
		r = isl_bool_error;
	isl_union_map_free(umap);

	data->set_sink = 0;
	data->must = 1;
	umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
	umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
	if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
		r = isl_bool_error;
	isl_union_map_free(umap);

	data->set_sink = 0;
	data->must = 0;
	umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
	umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
	if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
		r = isl_bool_error;
	isl_union_map_free(umap);

	isl_union_map_free(prefix);

	return r;
}

/* isl_access_info_compute_flow callback for determining whether
 * the shared nesting level and the ordering within that level
 * for two scheduled accesses for use in compute_single_flow.
 *
 * The tokens passed to this function refer to the leaves
 * in the schedule tree where the accesses take place.
 *
 * If n is the shared number of loops, then we need to return
 * "2 * n + 1" if "first" precedes "second" inside the innermost
 * shared loop and "2 * n" otherwise.
 *
 * The innermost shared ancestor may be the leaves themselves
 * if the accesses take place in the same leaf.  Otherwise,
 * it is either a set node or a sequence node.  Only in the case
 * of a sequence node do we consider one access to precede the other.
 */
static int before_node(void *first, void *second)
{
	isl_schedule_node *node1 = first;
	isl_schedule_node *node2 = second;
	isl_schedule_node *shared;
	isl_size depth;
	int before = 0;

	shared = isl_schedule_node_get_shared_ancestor(node1, node2);
	depth = isl_schedule_node_get_schedule_depth(shared);
	if (depth < 0) {
		isl_schedule_node_free(shared);
		return -1;
	}

	if (isl_schedule_node_get_type(shared) == isl_schedule_node_sequence) {
		isl_size pos1, pos2;

		pos1 = isl_schedule_node_get_ancestor_child_position(node1,
								    shared);
		pos2 = isl_schedule_node_get_ancestor_child_position(node2,
								    shared);
		if (pos1 < 0 || pos2 < 0) {
			isl_schedule_node_free(shared);
			return -1;
		}
		before = pos1 < pos2;
	}

	isl_schedule_node_free(shared);

	return 2 * depth + before;
}

/* Check if the given two accesses may be coscheduled.
 * If so, return isl_bool_true.  Otherwise return isl_bool_false.
 *
 * Two accesses may only be coscheduled if they appear in the same leaf.
 */
static isl_bool coscheduled_node(void *first, void *second)
{
	isl_schedule_node *node1 = first;
	isl_schedule_node *node2 = second;

	return isl_bool_ok(node1 == node2);
}

/* Add the scheduled sources from "data" that access
 * the same data space as "sink" to "access".
 */
static __isl_give isl_access_info *add_matching_sources(
	__isl_take isl_access_info *access, struct isl_scheduled_access *sink,
	struct isl_compute_flow_schedule_data *data)
{
	int i;
	isl_space *space;

	space = isl_space_range(isl_map_get_space(sink->access));
	for (i = 0; i < data->n_source; ++i) {
		struct isl_scheduled_access *source;
		isl_space *source_space;
		int eq;

		source = &data->source[i];
		source_space = isl_map_get_space(source->access);
		source_space = isl_space_range(source_space);
		eq = isl_space_is_equal(space, source_space);
		isl_space_free(source_space);

		if (!eq)
			continue;
		if (eq < 0)
			goto error;

		access = isl_access_info_add_source(access,
		    isl_map_copy(source->access), source->must, source->node);
	}

	isl_space_free(space);
	return access;
error:
	isl_space_free(space);
	isl_access_info_free(access);
	return NULL;
}

/* Given a scheduled sink access relation "sink", compute the corresponding
 * dependences on the sources in "data" and add the computed dependences
 * to "uf".
 *
 * The dependences computed by access_info_compute_flow_core are of the form
 *
 *	[S -> I] -> [[S' -> I'] -> A]
 *
 * The schedule dimensions are projected out by first currying the range,
 * resulting in
 *
 *	[S -> I] -> [S' -> [I' -> A]]
 *
 * and then computing the factor range
 *
 *	I -> [I' -> A]
 */
static __isl_give isl_union_flow *compute_single_flow(
	__isl_take isl_union_flow *uf, struct isl_scheduled_access *sink,
	struct isl_compute_flow_schedule_data *data)
{
	int i;
	isl_access_info *access;
	isl_flow *flow;
	isl_map *map;

	if (!uf)
		return NULL;

	access = isl_access_info_alloc(isl_map_copy(sink->access), sink->node,
					&before_node, data->n_source);
	if (access)
		access->coscheduled = &coscheduled_node;
	access = add_matching_sources(access, sink, data);

	flow = access_info_compute_flow_core(access);
	if (!flow)
		return isl_union_flow_free(uf);

	map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 1));
	uf->must_no_source = isl_union_map_union(uf->must_no_source,
						isl_union_map_from_map(map));
	map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 0));
	uf->may_no_source = isl_union_map_union(uf->may_no_source,
						isl_union_map_from_map(map));

	for (i = 0; i < flow->n_source; ++i) {
		isl_union_map *dep;

		map = isl_map_range_curry(isl_map_copy(flow->dep[i].map));
		map = isl_map_factor_range(map);
		dep = isl_union_map_from_map(map);
		if (flow->dep[i].must)
			uf->must_dep = isl_union_map_union(uf->must_dep, dep);
		else
			uf->may_dep = isl_union_map_union(uf->may_dep, dep);
	}

	isl_flow_free(flow);

	return uf;
}

/* Given a description of the "sink" accesses, the "source" accesses and
 * a schedule, compute for each instance of a sink access
 * and for each element accessed by that instance,
 * the possible or definite source accesses that last accessed the
 * element accessed by the sink access before this sink access
 * in the sense that there is no intermediate definite source access.
 * Only consider dependences between statement instances that belong
 * to the domain of the schedule.
 *
 * The must_no_source and may_no_source elements of the result
 * are subsets of access->sink.  The elements must_dep and may_dep
 * map domain elements of access->{may,must)_source to
 * domain elements of access->sink.
 *
 * This function is used when a schedule tree representation
 * is available.
 *
 * We extract the individual scheduled source and sink access relations
 * (taking into account the domain of the schedule) and
 * then compute dependences for each scheduled sink individually.
 */
static __isl_give isl_union_flow *compute_flow_schedule(
	__isl_take isl_union_access_info *access)
{
	struct isl_compute_flow_schedule_data data = { access };
	int i, n;
	isl_ctx *ctx;
	isl_space *space;
	isl_union_flow *flow;

	ctx = isl_union_access_info_get_ctx(access);

	data.n_sink = 0;
	data.n_source = 0;
	if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
						&count_sink_source, &data) < 0)
		goto error;

	n = data.n_sink + data.n_source;
	data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n);
	if (n && !data.sink)
		goto error;
	data.source = data.sink + data.n_sink;

	data.n_sink = 0;
	data.n_source = 0;
	if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
					    &collect_sink_source, &data) < 0)
		goto error;

	space = isl_union_map_get_space(access->access[isl_access_sink]);
	flow = isl_union_flow_alloc(space);

	isl_compute_flow_schedule_data_align_params(&data);

	for (i = 0; i < data.n_sink; ++i)
		flow = compute_single_flow(flow, &data.sink[i], &data);

	isl_compute_flow_schedule_data_clear(&data);

	isl_union_access_info_free(access);
	return flow;
error:
	isl_union_access_info_free(access);
	isl_compute_flow_schedule_data_clear(&data);
	return NULL;
}

/* Given a description of the "sink" accesses, the "source" accesses and
 * a schedule, compute for each instance of a sink access
 * and for each element accessed by that instance,
 * the possible or definite source accesses that last accessed the
 * element accessed by the sink access before this sink access
 * in the sense that there is no intermediate definite source access.
 *
 * The must_no_source and may_no_source elements of the result
 * are subsets of access->sink.  The elements must_dep and may_dep
 * map domain elements of access->{may,must)_source to
 * domain elements of access->sink.
 *
 * If any kills have been specified, then they are treated as
 * must-sources internally.  Any dependence that purely derives
 * from an original kill is removed from the output.
 *
 * We check whether the schedule is available as a schedule tree
 * or a schedule map and call the corresponding function to perform
 * the analysis.
 */
__isl_give isl_union_flow *isl_union_access_info_compute_flow(
	__isl_take isl_union_access_info *access)
{
	isl_bool has_kill;
	isl_union_map *must = NULL, *may = NULL;
	isl_union_flow *flow;

	has_kill = isl_union_access_has_kill(access);
	if (has_kill < 0)
		goto error;
	if (has_kill) {
		must = isl_union_access_info_get_must_source(access);
		may = isl_union_access_info_get_may_source(access);
	}
	access = isl_union_access_info_add_kill_to_must_source(access);
	access = isl_union_access_info_normalize(access);
	if (!access)
		goto error;
	if (access->schedule)
		flow = compute_flow_schedule(access);
	else
		flow = compute_flow_union_map(access);
	if (has_kill)
		flow = isl_union_flow_drop_kill_source(flow, must, may);
	return flow;
error:
	isl_union_access_info_free(access);
	isl_union_map_free(must);
	isl_union_map_free(may);
	return NULL;
}

/* Print the information contained in "flow" to "p".
 * The information is printed as a YAML document.
 */
__isl_give isl_printer *isl_printer_print_union_flow(
	__isl_take isl_printer *p, __isl_keep isl_union_flow *flow)
{
	isl_union_map *umap;

	if (!flow)
		return isl_printer_free(p);

	p = isl_printer_yaml_start_mapping(p);
	umap = isl_union_flow_get_full_must_dependence(flow);
	p = print_yaml_field_union_map(p, "must_dependence", umap);
	isl_union_map_free(umap);
	umap = isl_union_flow_get_full_may_dependence(flow);
	p = print_yaml_field_union_map(p, "may_dependence", umap);
	isl_union_map_free(umap);
	p = print_yaml_field_union_map(p, "must_no_source",
					flow->must_no_source);
	umap = isl_union_flow_get_may_no_source(flow);
	p = print_yaml_field_union_map(p, "may_no_source", umap);
	isl_union_map_free(umap);
	p = isl_printer_yaml_end_mapping(p);

	return p;
}

/* Return a string representation of the information in "flow".
 * The information is printed in flow format.
 */
__isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow)
{
	isl_printer *p;
	char *s;

	if (!flow)
		return NULL;

	p = isl_printer_to_str(isl_union_flow_get_ctx(flow));
	p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
	p = isl_printer_print_union_flow(p, flow);
	s = isl_printer_get_str(p);
	isl_printer_free(p);

	return s;
}

/* Given a collection of "sink" and "source" accesses,
 * compute for each iteration of a sink access
 * and for each element accessed by that iteration,
 * the source access in the list that last accessed the
 * element accessed by the sink access before this sink access.
 * Each access is given as a map from the loop iterators
 * to the array indices.
 * The result is a relations between source and sink
 * iterations and a subset of the domain of the sink accesses,
 * corresponding to those iterations that access an element
 * not previously accessed.
 *
 * We collect the inputs in an isl_union_access_info object,
 * call isl_union_access_info_compute_flow and extract
 * the outputs from the result.
 */
int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
	__isl_take isl_union_map *must_source,
	__isl_take isl_union_map *may_source,
	__isl_take isl_union_map *schedule,
	__isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
	__isl_give isl_union_map **must_no_source,
	__isl_give isl_union_map **may_no_source)
{
	isl_union_access_info *access;
	isl_union_flow *flow;

	access = isl_union_access_info_from_sink(sink);
	access = isl_union_access_info_set_must_source(access, must_source);
	access = isl_union_access_info_set_may_source(access, may_source);
	access = isl_union_access_info_set_schedule_map(access, schedule);
	flow = isl_union_access_info_compute_flow(access);

	if (must_dep)
		*must_dep = isl_union_flow_get_must_dependence(flow);
	if (may_dep)
		*may_dep = isl_union_flow_get_non_must_dependence(flow);
	if (must_no_source)
		*must_no_source = isl_union_flow_get_must_no_source(flow);
	if (may_no_source)
		*may_no_source = isl_union_flow_get_non_must_no_source(flow);

	isl_union_flow_free(flow);

	if ((must_dep && !*must_dep) || (may_dep && !*may_dep) ||
	    (must_no_source && !*must_no_source) ||
	    (may_no_source && !*may_no_source))
		goto error;

	return 0;
error:
	if (must_dep)
		*must_dep = isl_union_map_free(*must_dep);
	if (may_dep)
		*may_dep = isl_union_map_free(*may_dep);
	if (must_no_source)
		*must_no_source = isl_union_map_free(*must_no_source);
	if (may_no_source)
		*may_no_source = isl_union_map_free(*may_no_source);
	return -1;
}