imrat.c 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
/*
  Name:     imrat.c
  Purpose:  Arbitrary precision rational arithmetic routines.
  Author:   M. J. Fromberger <http://spinning-yarns.org/michael/>

  Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.

  Permission is hereby granted, free of charge, to any person obtaining a copy
  of this software and associated documentation files (the "Software"), to deal
  in the Software without restriction, including without limitation the rights
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  copies of the Software, and to permit persons to whom the Software is
  furnished to do so, subject to the following conditions:

  The above copyright notice and this permission notice shall be included in
  all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  SOFTWARE.
 */

#include "imrat.h"
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>

#define TEMP(K) (temp + (K))
#define SETUP(E, C) \
do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)

/* Argument checking:
   Use CHECK() where a return value is required; NRCHECK() elsewhere */
#define CHECK(TEST)   assert(TEST)
#define NRCHECK(TEST) assert(TEST)

/* Reduce the given rational, in place, to lowest terms and canonical form.
   Zero is represented as 0/1, one as 1/1.  Signs are adjusted so that the sign
   of the numerator is definitive. */
static mp_result s_rat_reduce(mp_rat r);

/* Common code for addition and subtraction operations on rationals. */
static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
			       mp_result (*comb_f)(mp_int, mp_int, mp_int));

mp_result mp_rat_init(mp_rat r)
{
  mp_result res;

  if ((res = mp_int_init(MP_NUMER_P(r))) != MP_OK)
    return res;
  if ((res = mp_int_init(MP_DENOM_P(r))) != MP_OK) {
    mp_int_clear(MP_NUMER_P(r));
    return res;
  }

  return mp_int_set_value(MP_DENOM_P(r), 1);
}

mp_rat mp_rat_alloc(void)
{
  mp_rat out = malloc(sizeof(*out));

  if (out != NULL) {
    if (mp_rat_init(out) != MP_OK) {
      free(out);
      return NULL;
    }
  }

  return out;
}

mp_result mp_rat_reduce(mp_rat r) {
  return s_rat_reduce(r);
}

mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec)
{
  mp_result res;

  if ((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK)
    return res;
  if ((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
    mp_int_clear(MP_NUMER_P(r));
    return res;
  }
  
  return mp_int_set_value(MP_DENOM_P(r), 1);
}

mp_result mp_rat_init_copy(mp_rat r, mp_rat old)
{
  mp_result res;

  if ((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK)
    return res;
  if ((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK) 
    mp_int_clear(MP_NUMER_P(r));
  
  return res;
}

mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom)
{
  mp_result res;

  if (denom == 0)
    return MP_UNDEF;

  if ((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK)
    return res;
  if ((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK)
    return res;

  return s_rat_reduce(r);
}

mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom)
{
  mp_result res;

  if (denom == 0)
    return MP_UNDEF;

  if ((res = mp_int_set_uvalue(MP_NUMER_P(r), numer)) != MP_OK)
    return res;
  if ((res = mp_int_set_uvalue(MP_DENOM_P(r), denom)) != MP_OK)
    return res;

  return s_rat_reduce(r);
}

void      mp_rat_clear(mp_rat r)
{
  mp_int_clear(MP_NUMER_P(r));
  mp_int_clear(MP_DENOM_P(r));

}

void      mp_rat_free(mp_rat r)
{
  NRCHECK(r != NULL);
  
  if (r->num.digits != NULL)
    mp_rat_clear(r);

  free(r);
}

mp_result mp_rat_numer(mp_rat r, mp_int z)
{
  return mp_int_copy(MP_NUMER_P(r), z);
}

mp_int mp_rat_numer_ref(mp_rat r)
{
  return MP_NUMER_P(r);
}


mp_result mp_rat_denom(mp_rat r, mp_int z)
{
  return mp_int_copy(MP_DENOM_P(r), z);
}

mp_int    mp_rat_denom_ref(mp_rat r)
{
  return MP_DENOM_P(r);
}

mp_sign   mp_rat_sign(mp_rat r)
{
  return MP_SIGN(MP_NUMER_P(r));
}

mp_result mp_rat_copy(mp_rat a, mp_rat c)
{
  mp_result res;

  if ((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
    return res;
  
  res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
  return res;
}

void      mp_rat_zero(mp_rat r)
{
  mp_int_zero(MP_NUMER_P(r));
  mp_int_set_value(MP_DENOM_P(r), 1);
  
}

mp_result mp_rat_abs(mp_rat a, mp_rat c)
{
  mp_result res;

  if ((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
    return res;
  
  res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c));
  return res;
}

mp_result mp_rat_neg(mp_rat a, mp_rat c)
{
  mp_result res;

  if ((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
    return res;

  res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
  return res;
}

mp_result mp_rat_recip(mp_rat a, mp_rat c)
{
  mp_result res;

  if (mp_rat_compare_zero(a) == 0)
    return MP_UNDEF;

  if ((res = mp_rat_copy(a, c)) != MP_OK)
    return res;

  mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c));

  /* Restore the signs of the swapped elements */
  {
    mp_sign tmp = MP_SIGN(MP_NUMER_P(c));

    MP_SIGN(MP_NUMER_P(c)) = MP_SIGN(MP_DENOM_P(c));
    MP_SIGN(MP_DENOM_P(c)) = tmp;
  }

  return MP_OK;
}

mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c)
{
  return s_rat_combine(a, b, c, mp_int_add);

}

mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c)
{
  return s_rat_combine(a, b, c, mp_int_sub);

}

mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c)
{
  mp_result res;

  if ((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
    return res;

  if (mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
    if ((res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c))) != MP_OK)
      return res;
  }

  return s_rat_reduce(c);
}

mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c)
{
  mp_result res = MP_OK;

  if (mp_rat_compare_zero(b) == 0)
    return MP_UNDEF;

  if (c == a || c == b) {
    mpz_t tmp;

    if ((res = mp_int_init(&tmp)) != MP_OK) return res;
    if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK) 
      goto CLEANUP;
    if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
      goto CLEANUP;
    res = mp_int_copy(&tmp, MP_NUMER_P(c));

  CLEANUP:
    mp_int_clear(&tmp);
  }
  else {
    if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) != MP_OK)
      return res;
    if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
      return res;
  }

  if (res != MP_OK)
    return res;
  else
    return s_rat_reduce(c);
}

mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c)
{
  mpz_t tmp;
  mp_result res;

  if ((res = mp_int_init_copy(&tmp, b)) != MP_OK)
    return res;

  if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
    goto CLEANUP;

  if ((res = mp_rat_copy(a, c)) != MP_OK)
    goto CLEANUP;

  if ((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
    goto CLEANUP;

  res = s_rat_reduce(c);

 CLEANUP:
  mp_int_clear(&tmp);
  return res;
}

mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c)
{
  mpz_t tmp;
  mp_result res;

  if ((res = mp_int_init_copy(&tmp, b)) != MP_OK)
    return res;

  if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
    goto CLEANUP;

  if ((res = mp_rat_copy(a, c)) != MP_OK)
    goto CLEANUP;

  if ((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
    goto CLEANUP;

  res = s_rat_reduce(c);

 CLEANUP:
  mp_int_clear(&tmp);
  return res;
}

mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c)
{
  mp_result res;

  if ((res = mp_rat_copy(a, c)) != MP_OK)
    return res;

  if ((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK)
    return res;

  return s_rat_reduce(c);
}

mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c)
{
  mp_result res;

  if (mp_int_compare_zero(b) == 0)
    return MP_UNDEF;

  if ((res = mp_rat_copy(a, c)) != MP_OK)
    return res;

  if ((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK)
    return res;

  return s_rat_reduce(c);
}

mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c)
{
  mp_result  res;

  /* Special cases for easy powers. */
  if (b == 0)
    return mp_rat_set_value(c, 1, 1);
  else if(b == 1)
    return mp_rat_copy(a, c);

  /* Since rationals are always stored in lowest terms, it is not necessary to
     reduce again when raising to an integer power. */
  if ((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK)
    return res;

  return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
}

int       mp_rat_compare(mp_rat a, mp_rat b)
{
  /* Quick check for opposite signs.  Works because the sign of the numerator
     is always definitive. */
  if (MP_SIGN(MP_NUMER_P(a)) != MP_SIGN(MP_NUMER_P(b))) {
    if (MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
      return 1;
    else
      return -1;
  }
  else {
    /* Compare absolute magnitudes; if both are positive, the answer stands,
       otherwise it needs to be reflected about zero. */
    int cmp = mp_rat_compare_unsigned(a, b);

    if (MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
      return cmp;
    else
      return -cmp;
  }
}

int       mp_rat_compare_unsigned(mp_rat a, mp_rat b)
{
  /* If the denominators are equal, we can quickly compare numerators without
     multiplying.  Otherwise, we actually have to do some work. */
  if (mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0)
    return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b));

  else {
    mpz_t  temp[2];
    mp_result res;
    int  cmp = INT_MAX, last = 0;

    /* t0 = num(a) * den(b), t1 = num(b) * den(a) */
    SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
    SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);

    if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
	(res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
      goto CLEANUP;
    
    cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1));
    
  CLEANUP:
    while (--last >= 0)
      mp_int_clear(TEMP(last));

    return cmp;
  }
}

int       mp_rat_compare_zero(mp_rat r)
{
  return mp_int_compare_zero(MP_NUMER_P(r));
}

int       mp_rat_compare_value(mp_rat r, mp_small n, mp_small d)
{
  mpq_t tmp;
  mp_result res;
  int  out = INT_MAX;

  if ((res = mp_rat_init(&tmp)) != MP_OK)
    return out;
  if ((res = mp_rat_set_value(&tmp, n, d)) != MP_OK)
    goto CLEANUP;
  
  out = mp_rat_compare(r, &tmp);
  
 CLEANUP:
  mp_rat_clear(&tmp);
  return out;
}

int       mp_rat_is_integer(mp_rat r)
{
  return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
}

mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den)
{
  mp_result res;

  if ((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK)
    return res;

  res = mp_int_to_int(MP_DENOM_P(r), den);
  return res;
}

mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit)
{
  char *start;
  int   len;
  mp_result res;

  /* Write the numerator.  The sign of the rational number is written by the
     underlying integer implementation. */
  if ((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK)
    return res;

  /* If the value is zero, don't bother writing any denominator */
  if (mp_int_compare_zero(MP_NUMER_P(r)) == 0)
    return MP_OK;
  
  /* Locate the end of the numerator, and make sure we are not going to exceed
     the limit by writing a slash. */
  len = strlen(str);
  start = str + len;
  limit -= len;
  if(limit == 0)
    return MP_TRUNC;

  *start++ = '/';
  limit -= 1;
  
  res = mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
  return res;
}

mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec,
                            mp_round_mode round, char *str, int limit)
{
  mpz_t temp[3];
  mp_result res;
  char *start = str;
  int len, lead_0, left = limit, last = 0;
    
  SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
  SETUP(mp_int_init(TEMP(last)), last);
  SETUP(mp_int_init(TEMP(last)), last);

  /* Get the unsigned integer part by dividing denominator into the absolute
     value of the numerator. */
  mp_int_abs(TEMP(0), TEMP(0));
  if ((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK)
    goto CLEANUP;

  /* Now:  T0 = integer portion, unsigned;
           T1 = remainder, from which fractional part is computed. */

  /* Count up leading zeroes after the radix point. */
  for (lead_0 = 0; lead_0 < prec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0; 
      ++lead_0) {
    if ((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK)
      goto CLEANUP;
  }

  /* Multiply remainder by a power of the radix sufficient to get the right
     number of significant figures. */
  if (prec > lead_0) {
    if ((res = mp_int_expt_value(radix, prec - lead_0, TEMP(2))) != MP_OK)
      goto CLEANUP;
    if ((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK)
      goto CLEANUP;
  }
  if ((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK)
    goto CLEANUP;

  /* Now:  T1 = significant digits of fractional part;
           T2 = leftovers, to use for rounding. 

     At this point, what we do depends on the rounding mode.  The default is
     MP_ROUND_DOWN, for which everything is as it should be already.
  */
  switch (round) {
    int cmp;

  case MP_ROUND_UP:
    if (mp_int_compare_zero(TEMP(2)) != 0) {
      if (prec == 0)
	res = mp_int_add_value(TEMP(0), 1, TEMP(0));
      else
	res = mp_int_add_value(TEMP(1), 1, TEMP(1));
    }
    break;

  case MP_ROUND_HALF_UP:
  case MP_ROUND_HALF_DOWN:
    if ((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK)
      goto CLEANUP;

    cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r));    

    if (round == MP_ROUND_HALF_UP)
      cmp += 1;

    if (cmp > 0) {
      if (prec == 0)
	res = mp_int_add_value(TEMP(0), 1, TEMP(0));
      else
	res = mp_int_add_value(TEMP(1), 1, TEMP(1));
    }
    break;
    
  case MP_ROUND_DOWN:
    break;  /* No action required */

  default: 
    return MP_BADARG; /* Invalid rounding specifier */
  }

  /* The sign of the output should be the sign of the numerator, but if all the
     displayed digits will be zero due to the precision, a negative shouldn't
     be shown. */
  if (MP_SIGN(MP_NUMER_P(r)) == MP_NEG &&
      (mp_int_compare_zero(TEMP(0)) != 0 ||
       mp_int_compare_zero(TEMP(1)) != 0)) {
    *start++ = '-';
    left -= 1;
  }

  if ((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK)
    goto CLEANUP;
  
  len = strlen(start);
  start += len;
  left -= len;
  
  if (prec == 0) 
    goto CLEANUP;
  
  *start++ = '.';
  left -= 1;
  
  if (left < prec + 1) {
    res = MP_TRUNC;
    goto CLEANUP;
  }

  memset(start, '0', lead_0 - 1);
  left -= lead_0;
  start += lead_0 - 1;

  res = mp_int_to_string(TEMP(1), radix, start, left);

 CLEANUP:
  while (--last >= 0)
    mp_int_clear(TEMP(last));
  
  return res;
}

mp_result mp_rat_string_len(mp_rat r, mp_size radix)
{
  mp_result n_len, d_len = 0;

  n_len = mp_int_string_len(MP_NUMER_P(r), radix);

  if (mp_int_compare_zero(MP_NUMER_P(r)) != 0)
    d_len = mp_int_string_len(MP_DENOM_P(r), radix);

  /* Though simplistic, this formula is correct.  Space for the sign flag is
     included in n_len, and the space for the NUL that is counted in n_len
     counts for the separator here.  The space for the NUL counted in d_len
     counts for the final terminator here. */

  return n_len + d_len;

}

mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec)
{
  int  z_len, f_len;

  z_len = mp_int_string_len(MP_NUMER_P(r), radix);
  
  if (prec == 0)
    f_len = 1; /* terminator only */
  else
    f_len = 1 + prec + 1; /* decimal point, digits, terminator */
  
  return z_len + f_len;
}

mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str)
{
  return mp_rat_read_cstring(r, radix, str, NULL);
}

mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str, 
			      char **end)
{
  mp_result res;
  char *endp;

  if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
      (res != MP_TRUNC))
    return res;

  /* Skip whitespace between numerator and (possible) separator */
  while (isspace((unsigned char) *endp))
    ++endp;
  
  /* If there is no separator, we will stop reading at this point. */
  if (*endp != '/') {
    mp_int_set_value(MP_DENOM_P(r), 1);
    if (end != NULL)
      *end = endp;
    return res;
  }
  
  ++endp; /* skip separator */
  if ((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK)
    return res;
  
  /* Make sure the value is well-defined */
  if (mp_int_compare_zero(MP_DENOM_P(r)) == 0)
    return MP_UNDEF;

  /* Reduce to lowest terms */
  return s_rat_reduce(r);
}

/* Read a string and figure out what format it's in.  The radix may be supplied
   as zero to use "default" behaviour.

   This function will accept either a/b notation or decimal notation.
 */
mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str, 
			      char **end)
{
  char      *endp;
  mp_result  res;

  if (radix == 0)
    radix = 10;  /* default to decimal input */

  if ((res = mp_rat_read_cstring(r, radix, str, &endp)) != MP_OK) {
    if (res == MP_TRUNC) {
      if (*endp == '.')
	res = mp_rat_read_cdecimal(r, radix, str, &endp);
    }
    else
      return res;
  }

  if (end != NULL)
    *end = endp;

  return res;
}

mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str)
{
  return mp_rat_read_cdecimal(r, radix, str, NULL);
}

mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str, 
			       char **end)
{
  mp_result res;
  mp_sign   osign;
  char *endp;

  while (isspace((unsigned char) *str))
    ++str;
  
  switch (*str) {
  case '-':
    osign = MP_NEG;
    break;
  default:
    osign = MP_ZPOS;
  }
  
  if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
     (res != MP_TRUNC))
    return res;

  /* This needs to be here. */
  (void) mp_int_set_value(MP_DENOM_P(r), 1);

  if (*endp != '.') {
    if (end != NULL)
      *end = endp;
    return res;
  }

  /* If the character following the decimal point is whitespace or a sign flag,
     we will consider this a truncated value.  This special case is because
     mp_int_read_string() will consider whitespace or sign flags to be valid
     starting characters for a value, and we do not want them following the
     decimal point.

     Once we have done this check, it is safe to read in the value of the
     fractional piece as a regular old integer.
  */
  ++endp;
  if (*endp == '\0') {
    if (end != NULL)
      *end = endp;
    return MP_OK;
  }
  else if(isspace((unsigned char) *endp) || *endp == '-' || *endp == '+') {
    return MP_TRUNC;
  }
  else {
    mpz_t  frac;
    mp_result save_res;
    char  *save = endp;
    int    num_lz = 0;

    /* Make a temporary to hold the part after the decimal point. */
    if ((res = mp_int_init(&frac)) != MP_OK)
      return res;
    
    if ((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
       (res != MP_TRUNC))
      goto CLEANUP;

    /* Save this response for later. */
    save_res = res;

    if (mp_int_compare_zero(&frac) == 0)
      goto FINISHED;

    /* Discard trailing zeroes (somewhat inefficiently) */
    while (mp_int_divisible_value(&frac, radix))
      if ((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK)
	goto CLEANUP;
    
    /* Count leading zeros after the decimal point */
    while (save[num_lz] == '0')
      ++num_lz;

    /* Find the least power of the radix that is at least as large as the
       significant value of the fractional part, ignoring leading zeroes.  */
    (void) mp_int_set_value(MP_DENOM_P(r), radix); 
    
    while (mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
      if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
	goto CLEANUP;
    }
    
    /* Also shift by enough to account for leading zeroes */
    while (num_lz > 0) {
      if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
	goto CLEANUP;

      --num_lz;
    }

    /* Having found this power, shift the numerator leftward that many, digits,
       and add the nonzero significant digits of the fractional part to get the
       result. */
    if ((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) != MP_OK)
      goto CLEANUP;
    
    { /* This addition needs to be unsigned. */
      MP_SIGN(MP_NUMER_P(r)) = MP_ZPOS;
      if ((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK)
	goto CLEANUP;

      MP_SIGN(MP_NUMER_P(r)) = osign;
    }
    if ((res = s_rat_reduce(r)) != MP_OK)
      goto CLEANUP;

    /* At this point, what we return depends on whether reading the fractional
       part was truncated or not.  That information is saved from when we
       called mp_int_read_string() above. */
  FINISHED:
    res = save_res;
    if (end != NULL)
      *end = endp;

  CLEANUP:
    mp_int_clear(&frac);

    return res;
  }
}

/* Private functions for internal use.  Make unchecked assumptions about format
   and validity of inputs. */

static mp_result s_rat_reduce(mp_rat r)
{
  mpz_t gcd;
  mp_result res = MP_OK;

  if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
    mp_int_set_value(MP_DENOM_P(r), 1);
    return MP_OK;
  }

  /* If the greatest common divisor of the numerator and denominator is greater
     than 1, divide it out. */
  if ((res = mp_int_init(&gcd)) != MP_OK)
    return res;

  if ((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK)
    goto CLEANUP;

  if (mp_int_compare_value(&gcd, 1) != 0) {
    if ((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK)
      goto CLEANUP;
    if ((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK)
      goto CLEANUP;
  }

  /* Fix up the signs of numerator and denominator */
  if (MP_SIGN(MP_NUMER_P(r)) == MP_SIGN(MP_DENOM_P(r)))
    MP_SIGN(MP_NUMER_P(r)) = MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
  else {
    MP_SIGN(MP_NUMER_P(r)) = MP_NEG;
    MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
  }

 CLEANUP:
  mp_int_clear(&gcd);

  return res;
}

static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, 
			       mp_result (*comb_f)(mp_int, mp_int, mp_int))
{
  mp_result res;

  /* Shortcut when denominators are already common */
  if (mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
    if ((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
      return res;
    if ((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK)
      return res;
    
    return s_rat_reduce(c);
  }
  else {
    mpz_t  temp[2];
    int    last = 0;

    SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
    SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
    
    if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK)
      goto CLEANUP;
    if ((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
      goto CLEANUP;
    if ((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK)
      goto CLEANUP;

    res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));

  CLEANUP:
    while (--last >= 0) 
      mp_int_clear(TEMP(last));

    if (res == MP_OK)
      return s_rat_reduce(c);
    else
      return res;
  }
}

/* Here there be dragons */