ScopDetection.cpp 67.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
//===- ScopDetection.cpp - Detect Scops -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fulfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Function calls and intrinsics that do not have side effects (readnone)
// or memory intrinsics (memset, memcpy, memmove) are allowed.
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//

#include "polly/ScopDetection.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopDetectionDiagnostic.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/ScopLocation.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-detect"

// This option is set to a very high value, as analyzing such loops increases
// compile time on several cases. For experiments that enable this option,
// a value of around 40 has been working to avoid run-time regressions with
// Polly while still exposing interesting optimization opportunities.
static cl::opt<int> ProfitabilityMinPerLoopInstructions(
    "polly-detect-profitability-min-per-loop-insts",
    cl::desc("The minimal number of per-loop instructions before a single loop "
             "region is considered profitable"),
    cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));

bool polly::PollyProcessUnprofitable;

static cl::opt<bool, true> XPollyProcessUnprofitable(
    "polly-process-unprofitable",
    cl::desc(
        "Process scops that are unlikely to benefit from Polly optimizations."),
    cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
    cl::cat(PollyCategory));

static cl::list<std::string> OnlyFunctions(
    "polly-only-func",
    cl::desc("Only run on functions that match a regex. "
             "Multiple regexes can be comma separated. "
             "Scop detection will run on all functions that match "
             "ANY of the regexes provided."),
    cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

static cl::list<std::string> IgnoredFunctions(
    "polly-ignore-func",
    cl::desc("Ignore functions that match a regex. "
             "Multiple regexes can be comma separated. "
             "Scop detection will ignore all functions that match "
             "ANY of the regexes provided."),
    cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

bool polly::PollyAllowFullFunction;

static cl::opt<bool, true>
    XAllowFullFunction("polly-detect-full-functions",
                       cl::desc("Allow the detection of full functions"),
                       cl::location(polly::PollyAllowFullFunction),
                       cl::init(false), cl::cat(PollyCategory));

static cl::opt<std::string> OnlyRegion(
    "polly-only-region",
    cl::desc("Only run on certain regions (The provided identifier must "
             "appear in the name of the region's entry block"),
    cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
    cl::cat(PollyCategory));

static cl::opt<bool>
    IgnoreAliasing("polly-ignore-aliasing",
                   cl::desc("Ignore possible aliasing of the array bases"),
                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
                   cl::cat(PollyCategory));

bool polly::PollyAllowUnsignedOperations;

static cl::opt<bool, true> XPollyAllowUnsignedOperations(
    "polly-allow-unsigned-operations",
    cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
    cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
    cl::init(true), cl::cat(PollyCategory));

bool polly::PollyUseRuntimeAliasChecks;

static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
    "polly-use-runtime-alias-checks",
    cl::desc("Use runtime alias checks to resolve possible aliasing."),
    cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
    cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool>
    ReportLevel("polly-report",
                cl::desc("Print information about the activities of Polly"),
                cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> AllowDifferentTypes(
    "polly-allow-differing-element-types",
    cl::desc("Allow different element types for array accesses"), cl::Hidden,
    cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool>
    AllowNonAffine("polly-allow-nonaffine",
                   cl::desc("Allow non affine access functions in arrays"),
                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
                   cl::cat(PollyCategory));

static cl::opt<bool>
    AllowModrefCall("polly-allow-modref-calls",
                    cl::desc("Allow functions with known modref behavior"),
                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
                    cl::cat(PollyCategory));

static cl::opt<bool> AllowNonAffineSubRegions(
    "polly-allow-nonaffine-branches",
    cl::desc("Allow non affine conditions for branches"), cl::Hidden,
    cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool>
    AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
                           cl::desc("Allow non affine conditions for loops"),
                           cl::Hidden, cl::init(false), cl::ZeroOrMore,
                           cl::cat(PollyCategory));

static cl::opt<bool, true>
    TrackFailures("polly-detect-track-failures",
                  cl::desc("Track failure strings in detecting scop regions"),
                  cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
                  cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool> KeepGoing("polly-detect-keep-going",
                               cl::desc("Do not fail on the first error."),
                               cl::Hidden, cl::ZeroOrMore, cl::init(false),
                               cl::cat(PollyCategory));

static cl::opt<bool, true>
    PollyDelinearizeX("polly-delinearize",
                      cl::desc("Delinearize array access functions"),
                      cl::location(PollyDelinearize), cl::Hidden,
                      cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool>
    VerifyScops("polly-detect-verify",
                cl::desc("Verify the detected SCoPs after each transformation"),
                cl::Hidden, cl::init(false), cl::ZeroOrMore,
                cl::cat(PollyCategory));

bool polly::PollyInvariantLoadHoisting;

static cl::opt<bool, true> XPollyInvariantLoadHoisting(
    "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
    cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
    cl::init(false), cl::cat(PollyCategory));

/// The minimal trip count under which loops are considered unprofitable.
static const unsigned MIN_LOOP_TRIP_COUNT = 8;

bool polly::PollyTrackFailures = false;
bool polly::PollyDelinearize = false;
StringRef polly::PollySkipFnAttr = "polly.skip.fn";

//===----------------------------------------------------------------------===//
// Statistics.

STATISTIC(NumScopRegions, "Number of scops");
STATISTIC(NumLoopsInScop, "Number of loops in scops");
STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
STATISTIC(NumScopsDepthLarger,
          "Number of scops with maximal loop depth 6 and larger");
STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
STATISTIC(NumLoopsInProfScop,
          "Number of loops in scops (profitable scops only)");
STATISTIC(NumLoopsOverall, "Number of total loops");
STATISTIC(NumProfScopsDepthZero,
          "Number of scops with maximal loop depth 0 (profitable scops only)");
STATISTIC(NumProfScopsDepthOne,
          "Number of scops with maximal loop depth 1 (profitable scops only)");
STATISTIC(NumProfScopsDepthTwo,
          "Number of scops with maximal loop depth 2 (profitable scops only)");
STATISTIC(NumProfScopsDepthThree,
          "Number of scops with maximal loop depth 3 (profitable scops only)");
STATISTIC(NumProfScopsDepthFour,
          "Number of scops with maximal loop depth 4 (profitable scops only)");
STATISTIC(NumProfScopsDepthFive,
          "Number of scops with maximal loop depth 5 (profitable scops only)");
STATISTIC(NumProfScopsDepthLarger,
          "Number of scops with maximal loop depth 6 and larger "
          "(profitable scops only)");
STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
STATISTIC(MaxNumLoopsInProfScop,
          "Maximal number of loops in scops (profitable scops only)");

static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
                                     bool OnlyProfitable);

namespace {

class DiagnosticScopFound : public DiagnosticInfo {
private:
  static int PluginDiagnosticKind;

  Function &F;
  std::string FileName;
  unsigned EntryLine, ExitLine;

public:
  DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
                      unsigned ExitLine)
      : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
        EntryLine(EntryLine), ExitLine(ExitLine) {}

  void print(DiagnosticPrinter &DP) const override;

  static bool classof(const DiagnosticInfo *DI) {
    return DI->getKind() == PluginDiagnosticKind;
  }
};
} // namespace

int DiagnosticScopFound::PluginDiagnosticKind =
    getNextAvailablePluginDiagnosticKind();

void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
  DP << "Polly detected an optimizable loop region (scop) in function '" << F
     << "'\n";

  if (FileName.empty()) {
    DP << "Scop location is unknown. Compile with debug info "
          "(-g) to get more precise information. ";
    return;
  }

  DP << FileName << ":" << EntryLine << ": Start of scop\n";
  DP << FileName << ":" << ExitLine << ": End of scop";
}

/// Check if a string matches any regex in a list of regexes.
/// @param Str the input string to match against.
/// @param RegexList a list of strings that are regular expressions.
static bool doesStringMatchAnyRegex(StringRef Str,
                                    const cl::list<std::string> &RegexList) {
  for (auto RegexStr : RegexList) {
    Regex R(RegexStr);

    std::string Err;
    if (!R.isValid(Err))
      report_fatal_error("invalid regex given as input to polly: " + Err, true);

    if (R.match(Str))
      return true;
  }
  return false;
}
//===----------------------------------------------------------------------===//
// ScopDetection.

ScopDetection::ScopDetection(Function &F, const DominatorTree &DT,
                             ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI,
                             AliasAnalysis &AA, OptimizationRemarkEmitter &ORE)
    : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {
  if (!PollyProcessUnprofitable && LI.empty())
    return;

  Region *TopRegion = RI.getTopLevelRegion();

  if (!OnlyFunctions.empty() &&
      !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
    return;

  if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
    return;

  if (!isValidFunction(F))
    return;

  findScops(*TopRegion);

  NumScopRegions += ValidRegions.size();

  // Prune non-profitable regions.
  for (auto &DIt : DetectionContextMap) {
    auto &DC = DIt.getSecond();
    if (DC.Log.hasErrors())
      continue;
    if (!ValidRegions.count(&DC.CurRegion))
      continue;
    LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
    updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
    if (isProfitableRegion(DC)) {
      updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
      continue;
    }

    ValidRegions.remove(&DC.CurRegion);
  }

  NumProfScopRegions += ValidRegions.size();
  NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;

  // Only makes sense when we tracked errors.
  if (PollyTrackFailures)
    emitMissedRemarks(F);

  if (ReportLevel)
    printLocations(F);

  assert(ValidRegions.size() <= DetectionContextMap.size() &&
         "Cached more results than valid regions");
}

template <class RR, typename... Args>
inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
                                   Args &&...Arguments) const {
  if (!Context.Verifying) {
    RejectLog &Log = Context.Log;
    std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);

    if (PollyTrackFailures)
      Log.report(RejectReason);

    LLVM_DEBUG(dbgs() << RejectReason->getMessage());
    LLVM_DEBUG(dbgs() << "\n");
  } else {
    assert(!Assert && "Verification of detected scop failed");
  }

  return false;
}

bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
  if (!ValidRegions.count(&R))
    return false;

  if (Verify) {
    DetectionContextMap.erase(getBBPairForRegion(&R));
    const auto &It = DetectionContextMap.insert(std::make_pair(
        getBBPairForRegion(&R),
        DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/)));
    DetectionContext &Context = It.first->second;
    return isValidRegion(Context);
  }

  return true;
}

std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
  // Get the first error we found. Even in keep-going mode, this is the first
  // reason that caused the candidate to be rejected.
  auto *Log = lookupRejectionLog(R);

  // This can happen when we marked a region invalid, but didn't track
  // an error for it.
  if (!Log || !Log->hasErrors())
    return "";

  RejectReasonPtr RR = *Log->begin();
  return RR->getMessage();
}

bool ScopDetection::addOverApproximatedRegion(Region *AR,
                                              DetectionContext &Context) const {
  // If we already know about Ar we can exit.
  if (!Context.NonAffineSubRegionSet.insert(AR))
    return true;

  // All loops in the region have to be overapproximated too if there
  // are accesses that depend on the iteration count.

  for (BasicBlock *BB : AR->blocks()) {
    Loop *L = LI.getLoopFor(BB);
    if (AR->contains(L))
      Context.BoxedLoopsSet.insert(L);
  }

  return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
}

bool ScopDetection::onlyValidRequiredInvariantLoads(
    InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;
  const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();

  if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
    return false;

  for (LoadInst *Load : RequiredILS) {
    // If we already know a load has been accepted as required invariant, we
    // already run the validation below once and consequently don't need to
    // run it again. Hence, we return early. For certain test cases (e.g.,
    // COSMO this avoids us spending 50% of scop-detection time in this
    // very function (and its children).
    if (Context.RequiredILS.count(Load))
      continue;
    if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
      return false;

    for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
      if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
                                      Load->getType(), Load->getAlign(), DL))
        continue;

      if (NonAffineRegion->contains(Load) &&
          Load->getParent() != NonAffineRegion->getEntry())
        return false;
    }
  }

  Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());

  return true;
}

bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
                                         Loop *Scope) const {
  SetVector<Value *> Values;
  findValues(S0, SE, Values);
  if (S1)
    findValues(S1, SE, Values);

  SmallPtrSet<Value *, 8> PtrVals;
  for (auto *V : Values) {
    if (auto *P2I = dyn_cast<PtrToIntInst>(V))
      V = P2I->getOperand(0);

    if (!V->getType()->isPointerTy())
      continue;

    auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
    if (isa<SCEVConstant>(PtrSCEV))
      continue;

    auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
    if (!BasePtr)
      return true;

    auto *BasePtrVal = BasePtr->getValue();
    if (PtrVals.insert(BasePtrVal).second) {
      for (auto *PtrVal : PtrVals)
        if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
          return true;
    }
  }

  return false;
}

bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
                             DetectionContext &Context) const {
  InvariantLoadsSetTy AccessILS;
  if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
    return false;

  if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
    return false;

  return true;
}

bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
                                  Value *Condition, bool IsLoopBranch,
                                  DetectionContext &Context) const {
  Loop *L = LI.getLoopFor(&BB);
  const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);

  if (IsLoopBranch && L->isLoopLatch(&BB))
    return false;

  // Check for invalid usage of different pointers in one expression.
  if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
    return false;

  if (isAffine(ConditionSCEV, L, Context))
    return true;

  if (AllowNonAffineSubRegions &&
      addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
    return true;

  return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
                                     ConditionSCEV, ConditionSCEV, SI);
}

bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
                                  Value *Condition, bool IsLoopBranch,
                                  DetectionContext &Context) const {
  // Constant integer conditions are always affine.
  if (isa<ConstantInt>(Condition))
    return true;

  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
    auto Opcode = BinOp->getOpcode();
    if (Opcode == Instruction::And || Opcode == Instruction::Or) {
      Value *Op0 = BinOp->getOperand(0);
      Value *Op1 = BinOp->getOperand(1);
      return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
             isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
    }
  }

  if (auto PHI = dyn_cast<PHINode>(Condition)) {
    auto *Unique = dyn_cast_or_null<ConstantInt>(
        getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT));
    if (Unique && (Unique->isZero() || Unique->isOne()))
      return true;
  }

  if (auto Load = dyn_cast<LoadInst>(Condition))
    if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
      Context.RequiredILS.insert(Load);
      return true;
    }

  // Non constant conditions of branches need to be ICmpInst.
  if (!isa<ICmpInst>(Condition)) {
    if (!IsLoopBranch && AllowNonAffineSubRegions &&
        addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
      return true;
    return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
  }

  ICmpInst *ICmp = cast<ICmpInst>(Condition);

  // Are both operands of the ICmp affine?
  if (isa<UndefValue>(ICmp->getOperand(0)) ||
      isa<UndefValue>(ICmp->getOperand(1)))
    return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);

  Loop *L = LI.getLoopFor(&BB);
  const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
  const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);

  LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT);
  RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT);

  // If unsigned operations are not allowed try to approximate the region.
  if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
    return !IsLoopBranch && AllowNonAffineSubRegions &&
           addOverApproximatedRegion(RI.getRegionFor(&BB), Context);

  // Check for invalid usage of different pointers in one expression.
  if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
      involvesMultiplePtrs(RHS, nullptr, L))
    return false;

  // Check for invalid usage of different pointers in a relational comparison.
  if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
    return false;

  if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
    return true;

  if (!IsLoopBranch && AllowNonAffineSubRegions &&
      addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
    return true;

  if (IsLoopBranch)
    return false;

  return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
                                     ICmp);
}

bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
                               bool AllowUnreachable,
                               DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;

  Instruction *TI = BB.getTerminator();

  if (AllowUnreachable && isa<UnreachableInst>(TI))
    return true;

  // Return instructions are only valid if the region is the top level region.
  if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
    return true;

  Value *Condition = getConditionFromTerminator(TI);

  if (!Condition)
    return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);

  // UndefValue is not allowed as condition.
  if (isa<UndefValue>(Condition))
    return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);

  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);

  SwitchInst *SI = dyn_cast<SwitchInst>(TI);
  assert(SI && "Terminator was neither branch nor switch");

  return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
}

bool ScopDetection::isValidCallInst(CallInst &CI,
                                    DetectionContext &Context) const {
  if (CI.doesNotReturn())
    return false;

  if (CI.doesNotAccessMemory())
    return true;

  if (auto *II = dyn_cast<IntrinsicInst>(&CI))
    if (isValidIntrinsicInst(*II, Context))
      return true;

  Function *CalledFunction = CI.getCalledFunction();

  // Indirect calls are not supported.
  if (CalledFunction == nullptr)
    return false;

  if (isDebugCall(&CI)) {
    LLVM_DEBUG(dbgs() << "Allow call to debug function: "
                      << CalledFunction->getName() << '\n');
    return true;
  }

  if (AllowModrefCall) {
    switch (AA.getModRefBehavior(CalledFunction)) {
    case FMRB_UnknownModRefBehavior:
      return false;
    case FMRB_DoesNotAccessMemory:
    case FMRB_OnlyReadsMemory:
    case FMRB_OnlyReadsInaccessibleMem:
    case FMRB_OnlyReadsInaccessibleOrArgMem:
      // Implicitly disable delinearization since we have an unknown
      // accesses with an unknown access function.
      Context.HasUnknownAccess = true;
      // Explicitly use addUnknown so we don't put a loop-variant
      // pointer into the alias set.
      Context.AST.addUnknown(&CI);
      return true;
    case FMRB_OnlyReadsArgumentPointees:
    case FMRB_OnlyAccessesArgumentPointees:
    case FMRB_OnlyWritesArgumentPointees:
      for (const auto &Arg : CI.arg_operands()) {
        if (!Arg->getType()->isPointerTy())
          continue;

        // Bail if a pointer argument has a base address not known to
        // ScalarEvolution. Note that a zero pointer is acceptable.
        auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
        if (ArgSCEV->isZero())
          continue;

        auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
        if (!BP)
          return false;

        // Implicitly disable delinearization since we have an unknown
        // accesses with an unknown access function.
        Context.HasUnknownAccess = true;
      }

      // Explicitly use addUnknown so we don't put a loop-variant
      // pointer into the alias set.
      Context.AST.addUnknown(&CI);
      return true;
    case FMRB_OnlyWritesMemory:
    case FMRB_OnlyWritesInaccessibleMem:
    case FMRB_OnlyWritesInaccessibleOrArgMem:
    case FMRB_OnlyAccessesInaccessibleMem:
    case FMRB_OnlyAccessesInaccessibleOrArgMem:
      return false;
    }
  }

  return false;
}

bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
                                         DetectionContext &Context) const {
  if (isIgnoredIntrinsic(&II))
    return true;

  // The closest loop surrounding the call instruction.
  Loop *L = LI.getLoopFor(II.getParent());

  // The access function and base pointer for memory intrinsics.
  const SCEV *AF;
  const SCEVUnknown *BP;

  switch (II.getIntrinsicID()) {
  // Memory intrinsics that can be represented are supported.
  case Intrinsic::memmove:
  case Intrinsic::memcpy:
    AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
    if (!AF->isZero()) {
      BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
      // Bail if the source pointer is not valid.
      if (!isValidAccess(&II, AF, BP, Context))
        return false;
    }
    LLVM_FALLTHROUGH;
  case Intrinsic::memset:
    AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
    if (!AF->isZero()) {
      BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
      // Bail if the destination pointer is not valid.
      if (!isValidAccess(&II, AF, BP, Context))
        return false;
    }

    // Bail if the length is not affine.
    if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
                  Context))
      return false;

    return true;
  default:
    break;
  }

  return false;
}

bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
                                DetectionContext &Ctx) const {
  // A reference to function argument or constant value is invariant.
  if (isa<Argument>(Val) || isa<Constant>(Val))
    return true;

  Instruction *I = dyn_cast<Instruction>(&Val);
  if (!I)
    return false;

  if (!Reg.contains(I))
    return true;

  // Loads within the SCoP may read arbitrary values, need to hoist them. If it
  // is not hoistable, it will be rejected later, but here we assume it is and
  // that makes the value invariant.
  if (auto LI = dyn_cast<LoadInst>(I)) {
    Ctx.RequiredILS.insert(LI);
    return true;
  }

  return false;
}

namespace {

/// Remove smax of smax(0, size) expressions from a SCEV expression and
/// register the '...' components.
///
/// Array access expressions as they are generated by GFortran contain smax(0,
/// size) expressions that confuse the 'normal' delinearization algorithm.
/// However, if we extract such expressions before the normal delinearization
/// takes place they can actually help to identify array size expressions in
/// Fortran accesses. For the subsequently following delinearization the smax(0,
/// size) component can be replaced by just 'size'. This is correct as we will
/// always add and verify the assumption that for all subscript expressions
/// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
/// that 0 <= size, which means smax(0, size) == size.
class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
public:
  SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
      : SCEVRewriteVisitor(SE), Terms(Terms) {}

  static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
                             std::vector<const SCEV *> *Terms = nullptr) {
    SCEVRemoveMax Rewriter(SE, Terms);
    return Rewriter.visit(Scev);
  }

  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
      auto Res = visit(Expr->getOperand(1));
      if (Terms)
        (*Terms).push_back(Res);
      return Res;
    }

    return Expr;
  }

private:
  std::vector<const SCEV *> *Terms;
};
} // namespace

SmallVector<const SCEV *, 4>
ScopDetection::getDelinearizationTerms(DetectionContext &Context,
                                       const SCEVUnknown *BasePointer) const {
  SmallVector<const SCEV *, 4> Terms;
  for (const auto &Pair : Context.Accesses[BasePointer]) {
    std::vector<const SCEV *> MaxTerms;
    SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
    if (!MaxTerms.empty()) {
      Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
      continue;
    }
    // In case the outermost expression is a plain add, we check if any of its
    // terms has the form 4 * %inst * %param * %param ..., aka a term that
    // contains a product between a parameter and an instruction that is
    // inside the scop. Such instructions, if allowed at all, are instructions
    // SCEV can not represent, but Polly is still looking through. As a
    // result, these instructions can depend on induction variables and are
    // most likely no array sizes. However, terms that are multiplied with
    // them are likely candidates for array sizes.
    if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
      for (auto Op : AF->operands()) {
        if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
          SE.collectParametricTerms(AF2, Terms);
        if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
          SmallVector<const SCEV *, 0> Operands;

          for (auto *MulOp : AF2->operands()) {
            if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
              Operands.push_back(Const);
            if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
              if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
                if (!Context.CurRegion.contains(Inst))
                  Operands.push_back(MulOp);

              } else {
                Operands.push_back(MulOp);
              }
            }
          }
          if (Operands.size())
            Terms.push_back(SE.getMulExpr(Operands));
        }
      }
    }
    if (Terms.empty())
      SE.collectParametricTerms(Pair.second, Terms);
  }
  return Terms;
}

bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
                                       SmallVectorImpl<const SCEV *> &Sizes,
                                       const SCEVUnknown *BasePointer,
                                       Loop *Scope) const {
  // If no sizes were found, all sizes are trivially valid. We allow this case
  // to make it possible to pass known-affine accesses to the delinearization to
  // try to recover some interesting multi-dimensional accesses, but to still
  // allow the already known to be affine access in case the delinearization
  // fails. In such situations, the delinearization will just return a Sizes
  // array of size zero.
  if (Sizes.size() == 0)
    return true;

  Value *BaseValue = BasePointer->getValue();
  Region &CurRegion = Context.CurRegion;
  for (const SCEV *DelinearizedSize : Sizes) {
    // Don't pass down the scope to isAfffine; array dimensions must be
    // invariant across the entire scop.
    if (!isAffine(DelinearizedSize, nullptr, Context)) {
      Sizes.clear();
      break;
    }
    if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
      auto *V = dyn_cast<Value>(Unknown->getValue());
      if (auto *Load = dyn_cast<LoadInst>(V)) {
        if (Context.CurRegion.contains(Load) &&
            isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
          Context.RequiredILS.insert(Load);
        continue;
      }
    }
    if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
                                  Context.RequiredILS))
      return invalid<ReportNonAffineAccess>(
          Context, /*Assert=*/true, DelinearizedSize,
          Context.Accesses[BasePointer].front().first, BaseValue);
  }

  // No array shape derived.
  if (Sizes.empty()) {
    if (AllowNonAffine)
      return true;

    for (const auto &Pair : Context.Accesses[BasePointer]) {
      const Instruction *Insn = Pair.first;
      const SCEV *AF = Pair.second;

      if (!isAffine(AF, Scope, Context)) {
        invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
                                       BaseValue);
        if (!KeepGoing)
          return false;
      }
    }
    return false;
  }
  return true;
}

// We first store the resulting memory accesses in TempMemoryAccesses. Only
// if the access functions for all memory accesses have been successfully
// delinearized we continue. Otherwise, we either report a failure or, if
// non-affine accesses are allowed, we drop the information. In case the
// information is dropped the memory accesses need to be overapproximated
// when translated to a polyhedral representation.
bool ScopDetection::computeAccessFunctions(
    DetectionContext &Context, const SCEVUnknown *BasePointer,
    std::shared_ptr<ArrayShape> Shape) const {
  Value *BaseValue = BasePointer->getValue();
  bool BasePtrHasNonAffine = false;
  MapInsnToMemAcc TempMemoryAccesses;
  for (const auto &Pair : Context.Accesses[BasePointer]) {
    const Instruction *Insn = Pair.first;
    auto *AF = Pair.second;
    AF = SCEVRemoveMax::rewrite(AF, SE);
    bool IsNonAffine = false;
    TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
    MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
    auto *Scope = LI.getLoopFor(Insn->getParent());

    if (!AF) {
      if (isAffine(Pair.second, Scope, Context))
        Acc->DelinearizedSubscripts.push_back(Pair.second);
      else
        IsNonAffine = true;
    } else {
      if (Shape->DelinearizedSizes.size() == 0) {
        Acc->DelinearizedSubscripts.push_back(AF);
      } else {
        SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
                                  Shape->DelinearizedSizes);
        if (Acc->DelinearizedSubscripts.size() == 0)
          IsNonAffine = true;
      }
      for (const SCEV *S : Acc->DelinearizedSubscripts)
        if (!isAffine(S, Scope, Context))
          IsNonAffine = true;
    }

    // (Possibly) report non affine access
    if (IsNonAffine) {
      BasePtrHasNonAffine = true;
      if (!AllowNonAffine)
        invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
                                       Insn, BaseValue);
      if (!KeepGoing && !AllowNonAffine)
        return false;
    }
  }

  if (!BasePtrHasNonAffine)
    Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
                                TempMemoryAccesses.end());

  return true;
}

bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
                                          const SCEVUnknown *BasePointer,
                                          Loop *Scope) const {
  auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));

  auto Terms = getDelinearizationTerms(Context, BasePointer);

  SE.findArrayDimensions(Terms, Shape->DelinearizedSizes,
                         Context.ElementSize[BasePointer]);

  if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
                          Scope))
    return false;

  return computeAccessFunctions(Context, BasePointer, Shape);
}

bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
  // TODO: If we have an unknown access and other non-affine accesses we do
  //       not try to delinearize them for now.
  if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
    return AllowNonAffine;

  for (auto &Pair : Context.NonAffineAccesses) {
    auto *BasePointer = Pair.first;
    auto *Scope = Pair.second;
    if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
      if (KeepGoing)
        continue;
      else
        return false;
    }
  }
  return true;
}

bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
                                  const SCEVUnknown *BP,
                                  DetectionContext &Context) const {

  if (!BP)
    return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);

  auto *BV = BP->getValue();
  if (isa<UndefValue>(BV))
    return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);

  // FIXME: Think about allowing IntToPtrInst
  if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
    return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);

  // Check that the base address of the access is invariant in the current
  // region.
  if (!isInvariant(*BV, Context.CurRegion, Context))
    return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);

  AF = SE.getMinusSCEV(AF, BP);

  const SCEV *Size;
  if (!isa<MemIntrinsic>(Inst)) {
    Size = SE.getElementSize(Inst);
  } else {
    auto *SizeTy =
        SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
    Size = SE.getConstant(SizeTy, 8);
  }

  if (Context.ElementSize[BP]) {
    if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
      return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
                                                      Inst, BV);

    Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
  } else {
    Context.ElementSize[BP] = Size;
  }

  bool IsVariantInNonAffineLoop = false;
  SetVector<const Loop *> Loops;
  findLoops(AF, Loops);
  for (const Loop *L : Loops)
    if (Context.BoxedLoopsSet.count(L))
      IsVariantInNonAffineLoop = true;

  auto *Scope = LI.getLoopFor(Inst->getParent());
  bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
  // Do not try to delinearize memory intrinsics and force them to be affine.
  if (isa<MemIntrinsic>(Inst) && !IsAffine) {
    return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
                                          BV);
  } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
    Context.Accesses[BP].push_back({Inst, AF});

    if (!IsAffine || hasIVParams(AF))
      Context.NonAffineAccesses.insert(
          std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
  } else if (!AllowNonAffine && !IsAffine) {
    return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
                                          BV);
  }

  if (IgnoreAliasing)
    return true;

  // Check if the base pointer of the memory access does alias with
  // any other pointer. This cannot be handled at the moment.
  AAMDNodes AATags;
  Inst->getAAMetadata(AATags);
  AliasSet &AS = Context.AST.getAliasSetFor(
      MemoryLocation(BP->getValue(), MemoryLocation::UnknownSize, AATags));

  if (!AS.isMustAlias()) {
    if (PollyUseRuntimeAliasChecks) {
      bool CanBuildRunTimeCheck = true;
      // The run-time alias check places code that involves the base pointer at
      // the beginning of the SCoP. This breaks if the base pointer is defined
      // inside the scop. Hence, we can only create a run-time check if we are
      // sure the base pointer is not an instruction defined inside the scop.
      // However, we can ignore loads that will be hoisted.

      InvariantLoadsSetTy VariantLS, InvariantLS;
      // In order to detect loads which are dependent on other invariant loads
      // as invariant, we use fixed-point iteration method here i.e we iterate
      // over the alias set for arbitrary number of times until it is safe to
      // assume that all the invariant loads have been detected
      while (1) {
        const unsigned int VariantSize = VariantLS.size(),
                           InvariantSize = InvariantLS.size();

        for (const auto &Ptr : AS) {
          Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
          if (Inst && Context.CurRegion.contains(Inst)) {
            auto *Load = dyn_cast<LoadInst>(Inst);
            if (Load && InvariantLS.count(Load))
              continue;
            if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
                                        InvariantLS)) {
              if (VariantLS.count(Load))
                VariantLS.remove(Load);
              Context.RequiredILS.insert(Load);
              InvariantLS.insert(Load);
            } else {
              CanBuildRunTimeCheck = false;
              VariantLS.insert(Load);
            }
          }
        }

        if (InvariantSize == InvariantLS.size() &&
            VariantSize == VariantLS.size())
          break;
      }

      if (CanBuildRunTimeCheck)
        return true;
    }
    return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
  }

  return true;
}

bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
                                        DetectionContext &Context) const {
  Value *Ptr = Inst.getPointerOperand();
  Loop *L = LI.getLoopFor(Inst->getParent());
  const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
  const SCEVUnknown *BasePointer;

  BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));

  return isValidAccess(Inst, AccessFunction, BasePointer, Context);
}

bool ScopDetection::isValidInstruction(Instruction &Inst,
                                       DetectionContext &Context) const {
  for (auto &Op : Inst.operands()) {
    auto *OpInst = dyn_cast<Instruction>(&Op);

    if (!OpInst)
      continue;

    if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) {
      auto *PHI = dyn_cast<PHINode>(OpInst);
      if (PHI) {
        for (User *U : PHI->users()) {
          auto *UI = dyn_cast<Instruction>(U);
          if (!UI || !UI->isTerminator())
            return false;
        }
      } else {
        return false;
      }
    }
  }

  if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
    return false;

  // We only check the call instruction but not invoke instruction.
  if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
    if (isValidCallInst(*CI, Context))
      return true;

    return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
  }

  if (!Inst.mayReadOrWriteMemory()) {
    if (!isa<AllocaInst>(Inst))
      return true;

    return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
  }

  // Check the access function.
  if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
    Context.hasStores |= isa<StoreInst>(MemInst);
    Context.hasLoads |= isa<LoadInst>(MemInst);
    if (!MemInst.isSimple())
      return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
                                                  &Inst);

    return isValidMemoryAccess(MemInst, Context);
  }

  // We do not know this instruction, therefore we assume it is invalid.
  return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
}

/// Check whether @p L has exiting blocks.
///
/// @param L The loop of interest
///
/// @return True if the loop has exiting blocks, false otherwise.
static bool hasExitingBlocks(Loop *L) {
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  return !ExitingBlocks.empty();
}

bool ScopDetection::canUseISLTripCount(Loop *L,
                                       DetectionContext &Context) const {
  // Ensure the loop has valid exiting blocks as well as latches, otherwise we
  // need to overapproximate it as a boxed loop.
  SmallVector<BasicBlock *, 4> LoopControlBlocks;
  L->getExitingBlocks(LoopControlBlocks);
  L->getLoopLatches(LoopControlBlocks);
  for (BasicBlock *ControlBB : LoopControlBlocks) {
    if (!isValidCFG(*ControlBB, true, false, Context))
      return false;
  }

  // We can use ISL to compute the trip count of L.
  return true;
}

bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
  // Loops that contain part but not all of the blocks of a region cannot be
  // handled by the schedule generation. Such loop constructs can happen
  // because a region can contain BBs that have no path to the exit block
  // (Infinite loops, UnreachableInst), but such blocks are never part of a
  // loop.
  //
  // _______________
  // | Loop Header | <-----------.
  // ---------------             |
  //        |                    |
  // _______________       ______________
  // | RegionEntry |-----> | RegionExit |----->
  // ---------------       --------------
  //        |
  // _______________
  // | EndlessLoop | <--.
  // ---------------    |
  //       |            |
  //       \------------/
  //
  // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
  // neither entirely contained in the region RegionEntry->RegionExit
  // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
  // in the loop.
  // The block EndlessLoop is contained in the region because Region::contains
  // tests whether it is not dominated by RegionExit. This is probably to not
  // having to query the PostdominatorTree. Instead of an endless loop, a dead
  // end can also be formed by an UnreachableInst. This case is already caught
  // by isErrorBlock(). We hence only have to reject endless loops here.
  if (!hasExitingBlocks(L))
    return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);

  // The algorithm for domain construction assumes that loops has only a single
  // exit block (and hence corresponds to a subregion). Note that we cannot use
  // L->getExitBlock() because it does not check whether all exiting edges point
  // to the same BB.
  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  BasicBlock *TheExitBlock = ExitBlocks[0];
  for (BasicBlock *ExitBB : ExitBlocks) {
    if (TheExitBlock != ExitBB)
      return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
  }

  if (canUseISLTripCount(L, Context))
    return true;

  if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
    Region *R = RI.getRegionFor(L->getHeader());
    while (R != &Context.CurRegion && !R->contains(L))
      R = R->getParent();

    if (addOverApproximatedRegion(R, Context))
      return true;
  }

  const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
  return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
}

/// Return the number of loops in @p L (incl. @p L) that have a trip
///        count that is not known to be less than @MinProfitableTrips.
ScopDetection::LoopStats
ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
                                       unsigned MinProfitableTrips) {
  auto *TripCount = SE.getBackedgeTakenCount(L);

  int NumLoops = 1;
  int MaxLoopDepth = 1;
  if (MinProfitableTrips > 0)
    if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
      if (TripCountC->getType()->getScalarSizeInBits() <= 64)
        if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
          NumLoops -= 1;

  for (auto &SubLoop : *L) {
    LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
    NumLoops += Stats.NumLoops;
    MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
  }

  return {NumLoops, MaxLoopDepth};
}

ScopDetection::LoopStats
ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
                                    LoopInfo &LI, unsigned MinProfitableTrips) {
  int LoopNum = 0;
  int MaxLoopDepth = 0;

  auto L = LI.getLoopFor(R->getEntry());

  // If L is fully contained in R, move to first loop surrounding R. Otherwise,
  // L is either nullptr or already surrounding R.
  if (L && R->contains(L)) {
    L = R->outermostLoopInRegion(L);
    L = L->getParentLoop();
  }

  auto SubLoops =
      L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());

  for (auto &SubLoop : SubLoops)
    if (R->contains(SubLoop)) {
      LoopStats Stats =
          countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
      LoopNum += Stats.NumLoops;
      MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
    }

  return {LoopNum, MaxLoopDepth};
}

Region *ScopDetection::expandRegion(Region &R) {
  // Initial no valid region was found (greater than R)
  std::unique_ptr<Region> LastValidRegion;
  auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());

  LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");

  while (ExpandedRegion) {
    const auto &It = DetectionContextMap.insert(std::make_pair(
        getBBPairForRegion(ExpandedRegion.get()),
        DetectionContext(*ExpandedRegion, AA, false /*verifying*/)));
    DetectionContext &Context = It.first->second;
    LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
    // Only expand when we did not collect errors.

    if (!Context.Log.hasErrors()) {
      // If the exit is valid check all blocks
      //  - if true, a valid region was found => store it + keep expanding
      //  - if false, .tbd. => stop  (should this really end the loop?)
      if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
        removeCachedResults(*ExpandedRegion);
        DetectionContextMap.erase(It.first);
        break;
      }

      // Store this region, because it is the greatest valid (encountered so
      // far).
      if (LastValidRegion) {
        removeCachedResults(*LastValidRegion);
        DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
      }
      LastValidRegion = std::move(ExpandedRegion);

      // Create and test the next greater region (if any)
      ExpandedRegion =
          std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());

    } else {
      // Create and test the next greater region (if any)
      removeCachedResults(*ExpandedRegion);
      DetectionContextMap.erase(It.first);
      ExpandedRegion =
          std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
    }
  }

  LLVM_DEBUG({
    if (LastValidRegion)
      dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
    else
      dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
  });

  return LastValidRegion.release();
}

static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
  for (const BasicBlock *BB : R.blocks())
    if (R.contains(LI.getLoopFor(BB)))
      return false;

  return true;
}

void ScopDetection::removeCachedResultsRecursively(const Region &R) {
  for (auto &SubRegion : R) {
    if (ValidRegions.count(SubRegion.get())) {
      removeCachedResults(*SubRegion.get());
    } else
      removeCachedResultsRecursively(*SubRegion);
  }
}

void ScopDetection::removeCachedResults(const Region &R) {
  ValidRegions.remove(&R);
}

void ScopDetection::findScops(Region &R) {
  const auto &It = DetectionContextMap.insert(std::make_pair(
      getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/)));
  DetectionContext &Context = It.first->second;

  bool RegionIsValid = false;
  if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
    invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
  else
    RegionIsValid = isValidRegion(Context);

  bool HasErrors = !RegionIsValid || Context.Log.size() > 0;

  if (HasErrors) {
    removeCachedResults(R);
  } else {
    ValidRegions.insert(&R);
    return;
  }

  for (auto &SubRegion : R)
    findScops(*SubRegion);

  // Try to expand regions.
  //
  // As the region tree normally only contains canonical regions, non canonical
  // regions that form a Scop are not found. Therefore, those non canonical
  // regions are checked by expanding the canonical ones.

  std::vector<Region *> ToExpand;

  for (auto &SubRegion : R)
    ToExpand.push_back(SubRegion.get());

  for (Region *CurrentRegion : ToExpand) {
    // Skip invalid regions. Regions may become invalid, if they are element of
    // an already expanded region.
    if (!ValidRegions.count(CurrentRegion))
      continue;

    // Skip regions that had errors.
    bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
    if (HadErrors)
      continue;

    Region *ExpandedR = expandRegion(*CurrentRegion);

    if (!ExpandedR)
      continue;

    R.addSubRegion(ExpandedR, true);
    ValidRegions.insert(ExpandedR);
    removeCachedResults(*CurrentRegion);
    removeCachedResultsRecursively(*ExpandedR);
  }
}

bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;

  for (const BasicBlock *BB : CurRegion.blocks()) {
    Loop *L = LI.getLoopFor(BB);
    if (L && L->getHeader() == BB) {
      if (CurRegion.contains(L)) {
        if (!isValidLoop(L, Context) && !KeepGoing)
          return false;
      } else {
        SmallVector<BasicBlock *, 1> Latches;
        L->getLoopLatches(Latches);
        for (BasicBlock *Latch : Latches)
          if (CurRegion.contains(Latch))
            return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
                                                      L);
      }
    }
  }

  for (BasicBlock *BB : CurRegion.blocks()) {
    bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT);

    // Also check exception blocks (and possibly register them as non-affine
    // regions). Even though exception blocks are not modeled, we use them
    // to forward-propagate domain constraints during ScopInfo construction.
    if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
      return false;

    if (IsErrorBlock)
      continue;

    for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
      if (!isValidInstruction(*I, Context) && !KeepGoing)
        return false;
  }

  if (!hasAffineMemoryAccesses(Context))
    return false;

  return true;
}

bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
                                         int NumLoops) const {
  int InstCount = 0;

  if (NumLoops == 0)
    return false;

  for (auto *BB : Context.CurRegion.blocks())
    if (Context.CurRegion.contains(LI.getLoopFor(BB)))
      InstCount += BB->size();

  InstCount = InstCount / NumLoops;

  return InstCount >= ProfitabilityMinPerLoopInstructions;
}

bool ScopDetection::hasPossiblyDistributableLoop(
    DetectionContext &Context) const {
  for (auto *BB : Context.CurRegion.blocks()) {
    auto *L = LI.getLoopFor(BB);
    if (!Context.CurRegion.contains(L))
      continue;
    if (Context.BoxedLoopsSet.count(L))
      continue;
    unsigned StmtsWithStoresInLoops = 0;
    for (auto *LBB : L->blocks()) {
      bool MemStore = false;
      for (auto &I : *LBB)
        MemStore |= isa<StoreInst>(&I);
      StmtsWithStoresInLoops += MemStore;
    }
    return (StmtsWithStoresInLoops > 1);
  }
  return false;
}

bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;

  if (PollyProcessUnprofitable)
    return true;

  // We can probably not do a lot on scops that only write or only read
  // data.
  if (!Context.hasStores || !Context.hasLoads)
    return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);

  int NumLoops =
      countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
  int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();

  // Scops with at least two loops may allow either loop fusion or tiling and
  // are consequently interesting to look at.
  if (NumAffineLoops >= 2)
    return true;

  // A loop with multiple non-trivial blocks might be amendable to distribution.
  if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
    return true;

  // Scops that contain a loop with a non-trivial amount of computation per
  // loop-iteration are interesting as we may be able to parallelize such
  // loops. Individual loops that have only a small amount of computation
  // per-iteration are performance-wise very fragile as any change to the
  // loop induction variables may affect performance. To not cause spurious
  // performance regressions, we do not consider such loops.
  if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
    return true;

  return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
}

bool ScopDetection::isValidRegion(DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;

  LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");

  if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
    LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
    return false;
  }

  DebugLoc DbgLoc;
  if (CurRegion.getExit() &&
      isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
    LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
    return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
                                            CurRegion.getExit(), DbgLoc);
  }

  if (!OnlyRegion.empty() &&
      !CurRegion.getEntry()->getName().count(OnlyRegion)) {
    LLVM_DEBUG({
      dbgs() << "Region entry does not match -polly-region-only";
      dbgs() << "\n";
    });
    return false;
  }

  // SCoP cannot contain the entry block of the function, because we need
  // to insert alloca instruction there when translate scalar to array.
  if (!PollyAllowFullFunction &&
      CurRegion.getEntry() ==
          &(CurRegion.getEntry()->getParent()->getEntryBlock()))
    return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());

  if (!allBlocksValid(Context))
    return false;

  if (!isReducibleRegion(CurRegion, DbgLoc))
    return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
                                            &CurRegion, DbgLoc);

  LLVM_DEBUG(dbgs() << "OK\n");
  return true;
}

void ScopDetection::markFunctionAsInvalid(Function *F) {
  F->addFnAttr(PollySkipFnAttr);
}

bool ScopDetection::isValidFunction(Function &F) {
  return !F.hasFnAttribute(PollySkipFnAttr);
}

void ScopDetection::printLocations(Function &F) {
  for (const Region *R : *this) {
    unsigned LineEntry, LineExit;
    std::string FileName;

    getDebugLocation(R, LineEntry, LineExit, FileName);
    DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
    F.getContext().diagnose(Diagnostic);
  }
}

void ScopDetection::emitMissedRemarks(const Function &F) {
  for (auto &DIt : DetectionContextMap) {
    auto &DC = DIt.getSecond();
    if (DC.Log.hasErrors())
      emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
  }
}

bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
  /// Enum for coloring BBs in Region.
  ///
  /// WHITE - Unvisited BB in DFS walk.
  /// GREY - BBs which are currently on the DFS stack for processing.
  /// BLACK - Visited and completely processed BB.
  enum Color { WHITE, GREY, BLACK };

  BasicBlock *REntry = R.getEntry();
  BasicBlock *RExit = R.getExit();
  // Map to match the color of a BasicBlock during the DFS walk.
  DenseMap<const BasicBlock *, Color> BBColorMap;
  // Stack keeping track of current BB and index of next child to be processed.
  std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;

  unsigned AdjacentBlockIndex = 0;
  BasicBlock *CurrBB, *SuccBB;
  CurrBB = REntry;

  // Initialize the map for all BB with WHITE color.
  for (auto *BB : R.blocks())
    BBColorMap[BB] = WHITE;

  // Process the entry block of the Region.
  BBColorMap[CurrBB] = GREY;
  DFSStack.push(std::make_pair(CurrBB, 0));

  while (!DFSStack.empty()) {
    // Get next BB on stack to be processed.
    CurrBB = DFSStack.top().first;
    AdjacentBlockIndex = DFSStack.top().second;
    DFSStack.pop();

    // Loop to iterate over the successors of current BB.
    const Instruction *TInst = CurrBB->getTerminator();
    unsigned NSucc = TInst->getNumSuccessors();
    for (unsigned I = AdjacentBlockIndex; I < NSucc;
         ++I, ++AdjacentBlockIndex) {
      SuccBB = TInst->getSuccessor(I);

      // Checks for region exit block and self-loops in BB.
      if (SuccBB == RExit || SuccBB == CurrBB)
        continue;

      // WHITE indicates an unvisited BB in DFS walk.
      if (BBColorMap[SuccBB] == WHITE) {
        // Push the current BB and the index of the next child to be visited.
        DFSStack.push(std::make_pair(CurrBB, I + 1));
        // Push the next BB to be processed.
        DFSStack.push(std::make_pair(SuccBB, 0));
        // First time the BB is being processed.
        BBColorMap[SuccBB] = GREY;
        break;
      } else if (BBColorMap[SuccBB] == GREY) {
        // GREY indicates a loop in the control flow.
        // If the destination dominates the source, it is a natural loop
        // else, an irreducible control flow in the region is detected.
        if (!DT.dominates(SuccBB, CurrBB)) {
          // Get debug info of instruction which causes irregular control flow.
          DbgLoc = TInst->getDebugLoc();
          return false;
        }
      }
    }

    // If all children of current BB have been processed,
    // then mark that BB as fully processed.
    if (AdjacentBlockIndex == NSucc)
      BBColorMap[CurrBB] = BLACK;
  }

  return true;
}

static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
                                     bool OnlyProfitable) {
  if (!OnlyProfitable) {
    NumLoopsInScop += Stats.NumLoops;
    MaxNumLoopsInScop =
        std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
    if (Stats.MaxDepth == 0)
      NumScopsDepthZero++;
    else if (Stats.MaxDepth == 1)
      NumScopsDepthOne++;
    else if (Stats.MaxDepth == 2)
      NumScopsDepthTwo++;
    else if (Stats.MaxDepth == 3)
      NumScopsDepthThree++;
    else if (Stats.MaxDepth == 4)
      NumScopsDepthFour++;
    else if (Stats.MaxDepth == 5)
      NumScopsDepthFive++;
    else
      NumScopsDepthLarger++;
  } else {
    NumLoopsInProfScop += Stats.NumLoops;
    MaxNumLoopsInProfScop =
        std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
    if (Stats.MaxDepth == 0)
      NumProfScopsDepthZero++;
    else if (Stats.MaxDepth == 1)
      NumProfScopsDepthOne++;
    else if (Stats.MaxDepth == 2)
      NumProfScopsDepthTwo++;
    else if (Stats.MaxDepth == 3)
      NumProfScopsDepthThree++;
    else if (Stats.MaxDepth == 4)
      NumProfScopsDepthFour++;
    else if (Stats.MaxDepth == 5)
      NumProfScopsDepthFive++;
    else
      NumProfScopsDepthLarger++;
  }
}

ScopDetection::DetectionContext *
ScopDetection::getDetectionContext(const Region *R) const {
  auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
  if (DCMIt == DetectionContextMap.end())
    return nullptr;
  return &DCMIt->second;
}

const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
  const DetectionContext *DC = getDetectionContext(R);
  return DC ? &DC->Log : nullptr;
}

void ScopDetection::verifyRegion(const Region &R) const {
  assert(isMaxRegionInScop(R) && "Expect R is a valid region.");

  DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
  isValidRegion(Context);
}

void ScopDetection::verifyAnalysis() const {
  if (!VerifyScops)
    return;

  for (const Region *R : ValidRegions)
    verifyRegion(*R);
}

bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE));
  return false;
}

void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  // We also need AA and RegionInfo when we are verifying analysis.
  AU.addRequiredTransitive<AAResultsWrapperPass>();
  AU.addRequiredTransitive<RegionInfoPass>();
  AU.setPreservesAll();
}

void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
  for (const Region *R : Result->ValidRegions)
    OS << "Valid Region for Scop: " << R->getNameStr() << '\n';

  OS << "\n";
}

ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
  // Disable runtime alias checks if we ignore aliasing all together.
  if (IgnoreAliasing)
    PollyUseRuntimeAliasChecks = false;
}

ScopAnalysis::ScopAnalysis() {
  // Disable runtime alias checks if we ignore aliasing all together.
  if (IgnoreAliasing)
    PollyUseRuntimeAliasChecks = false;
}

void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }

char ScopDetectionWrapperPass::ID;

AnalysisKey ScopAnalysis::Key;

ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
  auto &AA = FAM.getResult<AAManager>(F);
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  return {F, DT, SE, LI, RI, AA, ORE};
}

PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
                                               FunctionAnalysisManager &FAM) {
  OS << "Detected Scops in Function " << F.getName() << "\n";
  auto &SD = FAM.getResult<ScopAnalysis>(F);
  for (const Region *R : SD.ValidRegions)
    OS << "Valid Region for Scop: " << R->getNameStr() << '\n';

  OS << "\n";
  return PreservedAnalyses::all();
}

Pass *polly::createScopDetectionWrapperPassPass() {
  return new ScopDetectionWrapperPass();
}

INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
                      "Polly - Detect static control parts (SCoPs)", false,
                      false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
                    "Polly - Detect static control parts (SCoPs)", false, false)