InstCombineNegator.cpp 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sinking of negation into expression trees,
// as long as that can be done without increasing instruction count.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <cassert>
#include <cstdint>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>

namespace llvm {
class AssumptionCache;
class DataLayout;
class DominatorTree;
class LLVMContext;
} // namespace llvm

using namespace llvm;

#define DEBUG_TYPE "instcombine"

STATISTIC(NegatorTotalNegationsAttempted,
          "Negator: Number of negations attempted to be sinked");
STATISTIC(NegatorNumTreesNegated,
          "Negator: Number of negations successfully sinked");
STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
                                  "reached while attempting to sink negation");
STATISTIC(NegatorTimesDepthLimitReached,
          "Negator: How many times did the traversal depth limit was reached "
          "during sinking");
STATISTIC(
    NegatorNumValuesVisited,
    "Negator: Total number of values visited during attempts to sink negation");
STATISTIC(NegatorNumNegationsFoundInCache,
          "Negator: How many negations did we retrieve/reuse from cache");
STATISTIC(NegatorMaxTotalValuesVisited,
          "Negator: Maximal number of values ever visited while attempting to "
          "sink negation");
STATISTIC(NegatorNumInstructionsCreatedTotal,
          "Negator: Number of new negated instructions created, total");
STATISTIC(NegatorMaxInstructionsCreated,
          "Negator: Maximal number of new instructions created during negation "
          "attempt");
STATISTIC(NegatorNumInstructionsNegatedSuccess,
          "Negator: Number of new negated instructions created in successful "
          "negation sinking attempts");

DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
              "Controls Negator transformations in InstCombine pass");

static cl::opt<bool>
    NegatorEnabled("instcombine-negator-enabled", cl::init(true),
                   cl::desc("Should we attempt to sink negations?"));

static cl::opt<unsigned>
    NegatorMaxDepth("instcombine-negator-max-depth",
                    cl::init(NegatorDefaultMaxDepth),
                    cl::desc("What is the maximal lookup depth when trying to "
                             "check for viability of negation sinking."));

Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
                 const DominatorTree &DT_, bool IsTrulyNegation_)
    : Builder(C, TargetFolder(DL_),
              IRBuilderCallbackInserter([&](Instruction *I) {
                ++NegatorNumInstructionsCreatedTotal;
                NewInstructions.push_back(I);
              })),
      DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}

#if LLVM_ENABLE_STATS
Negator::~Negator() {
  NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
}
#endif

// FIXME: can this be reworked into a worklist-based algorithm while preserving
// the depth-first, early bailout traversal?
LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
  // -(undef) -> undef.
  if (match(V, m_Undef()))
    return V;

  // In i1, negation can simply be ignored.
  if (V->getType()->isIntOrIntVectorTy(1))
    return V;

  Value *X;

  // -(-(X)) -> X.
  if (match(V, m_Neg(m_Value(X))))
    return X;

  // Integral constants can be freely negated.
  if (match(V, m_AnyIntegralConstant()))
    return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
                                /*HasNSW=*/false);

  // If we have a non-instruction, then give up.
  if (!isa<Instruction>(V))
    return nullptr;

  // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
  // got instruction that does not require recursive reasoning, we can still
  // negate it even if it has other uses, without increasing instruction count.
  if (!V->hasOneUse() && !IsTrulyNegation)
    return nullptr;

  auto *I = cast<Instruction>(V);
  unsigned BitWidth = I->getType()->getScalarSizeInBits();

  // We must preserve the insertion point and debug info that is set in the
  // builder at the time this function is called.
  InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
  // And since we are trying to negate instruction I, that tells us about the
  // insertion point and the debug info that we need to keep.
  Builder.SetInsertPoint(I);

  // In some cases we can give the answer without further recursion.
  switch (I->getOpcode()) {
  case Instruction::Add:
    // `inc` is always negatible.
    if (match(I->getOperand(1), m_One()))
      return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
    break;
  case Instruction::Xor:
    // `not` is always negatible.
    if (match(I, m_Not(m_Value(X))))
      return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
                               I->getName() + ".neg");
    break;
  case Instruction::AShr:
  case Instruction::LShr: {
    // Right-shift sign bit smear is negatible.
    const APInt *Op1Val;
    if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
      Value *BO = I->getOpcode() == Instruction::AShr
                      ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
                      : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
      if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
        NewInstr->copyIRFlags(I);
        NewInstr->setName(I->getName() + ".neg");
      }
      return BO;
    }
    // While we could negate exact arithmetic shift:
    //   ashr exact %x, C  -->   sdiv exact i8 %x, -1<<C
    // iff C != 0 and C u< bitwidth(%x), we don't want to,
    // because division is *THAT* much worse than a shift.
    break;
  }
  case Instruction::SExt:
  case Instruction::ZExt:
    // `*ext` of i1 is always negatible
    if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
      return I->getOpcode() == Instruction::SExt
                 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
                                      I->getName() + ".neg")
                 : Builder.CreateSExt(I->getOperand(0), I->getType(),
                                      I->getName() + ".neg");
    break;
  default:
    break; // Other instructions require recursive reasoning.
  }

  // Some other cases, while still don't require recursion,
  // are restricted to the one-use case.
  if (!V->hasOneUse())
    return nullptr;

  switch (I->getOpcode()) {
  case Instruction::Sub:
    // `sub` is always negatible.
    // But if the old `sub` sticks around, even thought we don't increase
    // instruction count, this is a likely regression since we increased
    // live-range of *both* of the operands, which might lead to more spilling.
    return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
                             I->getName() + ".neg");
  case Instruction::SDiv:
    // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
    // While this is normally not behind a use-check,
    // let's consider division to be special since it's costly.
    if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
      if (!Op1C->containsUndefElement() && Op1C->isNotMinSignedValue() &&
          Op1C->isNotOneValue()) {
        Value *BO =
            Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
                               I->getName() + ".neg");
        if (auto *NewInstr = dyn_cast<Instruction>(BO))
          NewInstr->setIsExact(I->isExact());
        return BO;
      }
    }
    break;
  }

  // Rest of the logic is recursive, so if it's time to give up then it's time.
  if (Depth > NegatorMaxDepth) {
    LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
                      << *V << ". Giving up.\n");
    ++NegatorTimesDepthLimitReached;
    return nullptr;
  }

  switch (I->getOpcode()) {
  case Instruction::Freeze: {
    // `freeze` is negatible if its operand is negatible.
    Value *NegOp = negate(I->getOperand(0), Depth + 1);
    if (!NegOp) // Early return.
      return nullptr;
    return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
  }
  case Instruction::PHI: {
    // `phi` is negatible if all the incoming values are negatible.
    auto *PHI = cast<PHINode>(I);
    SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
    for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
      if (!(std::get<1>(I) =
                negate(std::get<0>(I), Depth + 1))) // Early return.
        return nullptr;
    }
    // All incoming values are indeed negatible. Create negated PHI node.
    PHINode *NegatedPHI = Builder.CreatePHI(
        PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
    for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
      NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
    return NegatedPHI;
  }
  case Instruction::Select: {
    if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
      // Of one hand of select is known to be negation of another hand,
      // just swap the hands around.
      auto *NewSelect = cast<SelectInst>(I->clone());
      // Just swap the operands of the select.
      NewSelect->swapValues();
      // Don't swap prof metadata, we didn't change the branch behavior.
      NewSelect->setName(I->getName() + ".neg");
      Builder.Insert(NewSelect);
      return NewSelect;
    }
    // `select` is negatible if both hands of `select` are negatible.
    Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
    if (!NegOp1) // Early return.
      return nullptr;
    Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
    if (!NegOp2)
      return nullptr;
    // Do preserve the metadata!
    return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
                                I->getName() + ".neg", /*MDFrom=*/I);
  }
  case Instruction::ShuffleVector: {
    // `shufflevector` is negatible if both operands are negatible.
    auto *Shuf = cast<ShuffleVectorInst>(I);
    Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
    if (!NegOp0) // Early return.
      return nullptr;
    Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
    if (!NegOp1)
      return nullptr;
    return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
                                       I->getName() + ".neg");
  }
  case Instruction::ExtractElement: {
    // `extractelement` is negatible if source operand is negatible.
    auto *EEI = cast<ExtractElementInst>(I);
    Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
    if (!NegVector) // Early return.
      return nullptr;
    return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
                                        I->getName() + ".neg");
  }
  case Instruction::InsertElement: {
    // `insertelement` is negatible if both the source vector and
    // element-to-be-inserted are negatible.
    auto *IEI = cast<InsertElementInst>(I);
    Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
    if (!NegVector) // Early return.
      return nullptr;
    Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
    if (!NegNewElt) // Early return.
      return nullptr;
    return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
                                       I->getName() + ".neg");
  }
  case Instruction::Trunc: {
    // `trunc` is negatible if its operand is negatible.
    Value *NegOp = negate(I->getOperand(0), Depth + 1);
    if (!NegOp) // Early return.
      return nullptr;
    return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
  }
  case Instruction::Shl: {
    // `shl` is negatible if the first operand is negatible.
    if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
      return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
    // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
    auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
    if (!Op1C) // Early return.
      return nullptr;
    return Builder.CreateMul(
        I->getOperand(0),
        ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
        I->getName() + ".neg");
  }
  case Instruction::Or:
    if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
                             &DT))
      return nullptr; // Don't know how to handle `or` in general.
    // `or`/`add` are interchangeable when operands have no common bits set.
    // `inc` is always negatible.
    if (match(I->getOperand(1), m_One()))
      return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
    // Else, just defer to Instruction::Add handling.
    LLVM_FALLTHROUGH;
  case Instruction::Add: {
    // `add` is negatible if both of its operands are negatible.
    SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
    for (Value *Op : I->operands()) {
      // Can we sink the negation into this operand?
      if (Value *NegOp = negate(Op, Depth + 1)) {
        NegatedOps.emplace_back(NegOp); // Successfully negated operand!
        continue;
      }
      // Failed to sink negation into this operand. IFF we started from negation
      // and we manage to sink negation into one operand, we can still do this.
      if (!IsTrulyNegation)
        return nullptr;
      NonNegatedOps.emplace_back(Op); // Just record which operand that was.
    }
    assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
           "Internal consistency sanity check.");
    // Did we manage to sink negation into both of the operands?
    if (NegatedOps.size() == 2) // Then we get to keep the `add`!
      return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
                               I->getName() + ".neg");
    assert(IsTrulyNegation && "We should have early-exited then.");
    // Completely failed to sink negation?
    if (NonNegatedOps.size() == 2)
      return nullptr;
    // 0-(a+b) --> (-a)-b
    return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
                             I->getName() + ".neg");
  }
  case Instruction::Xor:
    // `xor` is negatible if one of its operands is invertible.
    // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
    if (auto *C = dyn_cast<Constant>(I->getOperand(1))) {
      Value *Xor = Builder.CreateXor(I->getOperand(0), ConstantExpr::getNot(C));
      return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
                               I->getName() + ".neg");
    }
    return nullptr;
  case Instruction::Mul: {
    // `mul` is negatible if one of its operands is negatible.
    Value *NegatedOp, *OtherOp;
    // First try the second operand, in case it's a constant it will be best to
    // just invert it instead of sinking the `neg` deeper.
    if (Value *NegOp1 = negate(I->getOperand(1), Depth + 1)) {
      NegatedOp = NegOp1;
      OtherOp = I->getOperand(0);
    } else if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1)) {
      NegatedOp = NegOp0;
      OtherOp = I->getOperand(1);
    } else
      // Can't negate either of them.
      return nullptr;
    return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
  }
  default:
    return nullptr; // Don't know, likely not negatible for free.
  }

  llvm_unreachable("Can't get here. We always return from switch.");
}

LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
  NegatorMaxDepthVisited.updateMax(Depth);
  ++NegatorNumValuesVisited;

#if LLVM_ENABLE_STATS
  ++NumValuesVisitedInThisNegator;
#endif

#ifndef NDEBUG
  // We can't ever have a Value with such an address.
  Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
#endif

  // Did we already try to negate this value?
  auto NegationsCacheIterator = NegationsCache.find(V);
  if (NegationsCacheIterator != NegationsCache.end()) {
    ++NegatorNumNegationsFoundInCache;
    Value *NegatedV = NegationsCacheIterator->second;
    assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
    return NegatedV;
  }

#ifndef NDEBUG
  // We did not find a cached result for negation of V. While there,
  // let's temporairly cache a placeholder value, with the idea that if later
  // during negation we fetch it from cache, we'll know we're in a cycle.
  NegationsCache[V] = Placeholder;
#endif

  // No luck. Try negating it for real.
  Value *NegatedV = visitImpl(V, Depth);
  // And cache the (real) result for the future.
  NegationsCache[V] = NegatedV;

  return NegatedV;
}

LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
  Value *Negated = negate(Root, /*Depth=*/0);
  if (!Negated) {
    // We must cleanup newly-inserted instructions, to avoid any potential
    // endless combine looping.
    llvm::for_each(llvm::reverse(NewInstructions),
                   [&](Instruction *I) { I->eraseFromParent(); });
    return llvm::None;
  }
  return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
}

LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
                                      InstCombinerImpl &IC) {
  ++NegatorTotalNegationsAttempted;
  LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
                    << "\n");

  if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
    return nullptr;

  Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
            IC.getDominatorTree(), LHSIsZero);
  Optional<Result> Res = N.run(Root);
  if (!Res) { // Negation failed.
    LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
                      << "\n");
    return nullptr;
  }

  LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
                    << "\n         NEW: " << *Res->second << "\n");
  ++NegatorNumTreesNegated;

  // We must temporarily unset the 'current' insertion point and DebugLoc of the
  // InstCombine's IRBuilder so that it won't interfere with the ones we have
  // already specified when producing negated instructions.
  InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
  IC.Builder.ClearInsertionPoint();
  IC.Builder.SetCurrentDebugLocation(DebugLoc());

  // And finally, we must add newly-created instructions into the InstCombine's
  // worklist (in a proper order!) so it can attempt to combine them.
  LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
                    << " instrs to InstCombine\n");
  NegatorMaxInstructionsCreated.updateMax(Res->first.size());
  NegatorNumInstructionsNegatedSuccess += Res->first.size();

  // They are in def-use order, so nothing fancy, just insert them in order.
  llvm::for_each(Res->first,
                 [&](Instruction *I) { IC.Builder.Insert(I, I->getName()); });

  // And return the new root.
  return Res->second;
}