GlobalOpt.cpp 120 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass transforms simple global variables that never have their address
// taken.  If obviously true, it marks read/write globals as constant, deletes
// variables only stored to, etc.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/GlobalOpt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "globalopt"

STATISTIC(NumMarked    , "Number of globals marked constant");
STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
STATISTIC(NumDeleted   , "Number of globals deleted");
STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
STATISTIC(NumLocalized , "Number of globals localized");
STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
STATISTIC(NumInternalFunc, "Number of internal functions");
STATISTIC(NumColdCC, "Number of functions marked coldcc");

static cl::opt<bool>
    EnableColdCCStressTest("enable-coldcc-stress-test",
                           cl::desc("Enable stress test of coldcc by adding "
                                    "calling conv to all internal functions."),
                           cl::init(false), cl::Hidden);

static cl::opt<int> ColdCCRelFreq(
    "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
    cl::desc(
        "Maximum block frequency, expressed as a percentage of caller's "
        "entry frequency, for a call site to be considered cold for enabling"
        "coldcc"));

/// Is this global variable possibly used by a leak checker as a root?  If so,
/// we might not really want to eliminate the stores to it.
static bool isLeakCheckerRoot(GlobalVariable *GV) {
  // A global variable is a root if it is a pointer, or could plausibly contain
  // a pointer.  There are two challenges; one is that we could have a struct
  // the has an inner member which is a pointer.  We recurse through the type to
  // detect these (up to a point).  The other is that we may actually be a union
  // of a pointer and another type, and so our LLVM type is an integer which
  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
  // potentially contained here.

  if (GV->hasPrivateLinkage())
    return false;

  SmallVector<Type *, 4> Types;
  Types.push_back(GV->getValueType());

  unsigned Limit = 20;
  do {
    Type *Ty = Types.pop_back_val();
    switch (Ty->getTypeID()) {
      default: break;
      case Type::PointerTyID:
        return true;
      case Type::FixedVectorTyID:
      case Type::ScalableVectorTyID:
        if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
          return true;
        break;
      case Type::ArrayTyID:
        Types.push_back(cast<ArrayType>(Ty)->getElementType());
        break;
      case Type::StructTyID: {
        StructType *STy = cast<StructType>(Ty);
        if (STy->isOpaque()) return true;
        for (StructType::element_iterator I = STy->element_begin(),
                 E = STy->element_end(); I != E; ++I) {
          Type *InnerTy = *I;
          if (isa<PointerType>(InnerTy)) return true;
          if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
              isa<VectorType>(InnerTy))
            Types.push_back(InnerTy);
        }
        break;
      }
    }
    if (--Limit == 0) return true;
  } while (!Types.empty());
  return false;
}

/// Given a value that is stored to a global but never read, determine whether
/// it's safe to remove the store and the chain of computation that feeds the
/// store.
static bool IsSafeComputationToRemove(
    Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  do {
    if (isa<Constant>(V))
      return true;
    if (!V->hasOneUse())
      return false;
    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
        isa<GlobalValue>(V))
      return false;
    if (isAllocationFn(V, GetTLI))
      return true;

    Instruction *I = cast<Instruction>(V);
    if (I->mayHaveSideEffects())
      return false;
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
      if (!GEP->hasAllConstantIndices())
        return false;
    } else if (I->getNumOperands() != 1) {
      return false;
    }

    V = I->getOperand(0);
  } while (true);
}

/// This GV is a pointer root.  Loop over all users of the global and clean up
/// any that obviously don't assign the global a value that isn't dynamically
/// allocated.
static bool
CleanupPointerRootUsers(GlobalVariable *GV,
                        function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  // A brief explanation of leak checkers.  The goal is to find bugs where
  // pointers are forgotten, causing an accumulating growth in memory
  // usage over time.  The common strategy for leak checkers is to explicitly
  // allow the memory pointed to by globals at exit.  This is popular because it
  // also solves another problem where the main thread of a C++ program may shut
  // down before other threads that are still expecting to use those globals. To
  // handle that case, we expect the program may create a singleton and never
  // destroy it.

  bool Changed = false;

  // If Dead[n].first is the only use of a malloc result, we can delete its
  // chain of computation and the store to the global in Dead[n].second.
  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;

  // Constants can't be pointers to dynamically allocated memory.
  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
       UI != E;) {
    User *U = *UI++;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      Value *V = SI->getValueOperand();
      if (isa<Constant>(V)) {
        Changed = true;
        SI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, SI));
      }
    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
      if (isa<Constant>(MSI->getValue())) {
        Changed = true;
        MSI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, MSI));
      }
    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
      if (MemSrc && MemSrc->isConstant()) {
        Changed = true;
        MTI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, MTI));
      }
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (Constant *C = dyn_cast<Constant>(U)) {
      if (isSafeToDestroyConstant(C)) {
        C->destroyConstant();
        // This could have invalidated UI, start over from scratch.
        Dead.clear();
        CleanupPointerRootUsers(GV, GetTLI);
        return true;
      }
    }
  }

  for (int i = 0, e = Dead.size(); i != e; ++i) {
    if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
      Dead[i].second->eraseFromParent();
      Instruction *I = Dead[i].first;
      do {
        if (isAllocationFn(I, GetTLI))
          break;
        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
        if (!J)
          break;
        I->eraseFromParent();
        I = J;
      } while (true);
      I->eraseFromParent();
      Changed = true;
    }
  }

  return Changed;
}

/// We just marked GV constant.  Loop over all users of the global, cleaning up
/// the obvious ones.  This is largely just a quick scan over the use list to
/// clean up the easy and obvious cruft.  This returns true if it made a change.
static bool CleanupConstantGlobalUsers(
    Value *V, Constant *Init, const DataLayout &DL,
    function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  bool Changed = false;
  // Note that we need to use a weak value handle for the worklist items. When
  // we delete a constant array, we may also be holding pointer to one of its
  // elements (or an element of one of its elements if we're dealing with an
  // array of arrays) in the worklist.
  SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
  while (!WorkList.empty()) {
    Value *UV = WorkList.pop_back_val();
    if (!UV)
      continue;

    User *U = cast<User>(UV);

    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (Init) {
        // Replace the load with the initializer.
        LI->replaceAllUsesWith(Init);
        LI->eraseFromParent();
        Changed = true;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // Store must be unreachable or storing Init into the global.
      SI->eraseFromParent();
      Changed = true;
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        Constant *SubInit = nullptr;
        if (Init)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
      } else if ((CE->getOpcode() == Instruction::BitCast &&
                  CE->getType()->isPointerTy()) ||
                 CE->getOpcode() == Instruction::AddrSpaceCast) {
        // Pointer cast, delete any stores and memsets to the global.
        Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
      }

      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
      // and will invalidate our notion of what Init is.
      Constant *SubInit = nullptr;
      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
        ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
            ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);

        // If the initializer is an all-null value and we have an inbounds GEP,
        // we already know what the result of any load from that GEP is.
        // TODO: Handle splats.
        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
          SubInit = Constant::getNullValue(GEP->getResultElementType());
      }
      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);

      if (GEP->use_empty()) {
        GEP->eraseFromParent();
        Changed = true;
      }
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
      if (MI->getRawDest() == V) {
        MI->eraseFromParent();
        Changed = true;
      }

    } else if (Constant *C = dyn_cast<Constant>(U)) {
      // If we have a chain of dead constantexprs or other things dangling from
      // us, and if they are all dead, nuke them without remorse.
      if (isSafeToDestroyConstant(C)) {
        C->destroyConstant();
        CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
        return true;
      }
    }
  }
  return Changed;
}

static bool isSafeSROAElementUse(Value *V);

/// Return true if the specified GEP is a safe user of a derived
/// expression from a global that we want to SROA.
static bool isSafeSROAGEP(User *U) {
  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
  // don't like < 3 operand CE's, and we don't like non-constant integer
  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
  // value of C.
  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
      !cast<Constant>(U->getOperand(1))->isNullValue())
    return false;

  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
  ++GEPI; // Skip over the pointer index.

  // For all other level we require that the indices are constant and inrange.
  // In particular, consider: A[0][i].  We cannot know that the user isn't doing
  // invalid things like allowing i to index an out-of-range subscript that
  // accesses A[1]. This can also happen between different members of a struct
  // in llvm IR.
  for (; GEPI != E; ++GEPI) {
    if (GEPI.isStruct())
      continue;

    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    if (!IdxVal || (GEPI.isBoundedSequential() &&
                    IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
      return false;
  }

  return llvm::all_of(U->users(),
                      [](User *UU) { return isSafeSROAElementUse(UU); });
}

/// Return true if the specified instruction is a safe user of a derived
/// expression from a global that we want to SROA.
static bool isSafeSROAElementUse(Value *V) {
  // We might have a dead and dangling constant hanging off of here.
  if (Constant *C = dyn_cast<Constant>(V))
    return isSafeToDestroyConstant(C);

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Loads are ok.
  if (isa<LoadInst>(I)) return true;

  // Stores *to* the pointer are ok.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getOperand(0) != V;

  // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
  return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
}

/// Look at all uses of the global and decide whether it is safe for us to
/// perform this transformation.
static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
  for (User *U : GV->users()) {
    // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    if (!isa<GetElementPtrInst>(U) &&
        (!isa<ConstantExpr>(U) ||
        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
      return false;

    // Check the gep and it's users are safe to SRA
    if (!isSafeSROAGEP(U))
      return false;
  }

  return true;
}

static bool IsSRASequential(Type *T) {
  return isa<ArrayType>(T) || isa<VectorType>(T);
}
static uint64_t GetSRASequentialNumElements(Type *T) {
  if (ArrayType *AT = dyn_cast<ArrayType>(T))
    return AT->getNumElements();
  return cast<FixedVectorType>(T)->getNumElements();
}
static Type *GetSRASequentialElementType(Type *T) {
  if (ArrayType *AT = dyn_cast<ArrayType>(T))
    return AT->getElementType();
  return cast<VectorType>(T)->getElementType();
}
static bool CanDoGlobalSRA(GlobalVariable *GV) {
  Constant *Init = GV->getInitializer();

  if (isa<StructType>(Init->getType())) {
    // nothing to check
  } else if (IsSRASequential(Init->getType())) {
    if (GetSRASequentialNumElements(Init->getType()) > 16 &&
        GV->hasNUsesOrMore(16))
      return false; // It's not worth it.
  } else
    return false;

  return GlobalUsersSafeToSRA(GV);
}

/// Copy over the debug info for a variable to its SRA replacements.
static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
                                 uint64_t FragmentOffsetInBits,
                                 uint64_t FragmentSizeInBits,
                                 uint64_t VarSize) {
  SmallVector<DIGlobalVariableExpression *, 1> GVs;
  GV->getDebugInfo(GVs);
  for (auto *GVE : GVs) {
    DIVariable *Var = GVE->getVariable();
    DIExpression *Expr = GVE->getExpression();
    // If the FragmentSize is smaller than the variable,
    // emit a fragment expression.
    if (FragmentSizeInBits < VarSize) {
      if (auto E = DIExpression::createFragmentExpression(
              Expr, FragmentOffsetInBits, FragmentSizeInBits))
        Expr = *E;
      else
        return;
    }
    auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
    NGV->addDebugInfo(NGVE);
  }
}

/// Perform scalar replacement of aggregates on the specified global variable.
/// This opens the door for other optimizations by exposing the behavior of the
/// program in a more fine-grained way.  We have determined that this
/// transformation is safe already.  We return the first global variable we
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
  // Make sure this global only has simple uses that we can SRA.
  if (!CanDoGlobalSRA(GV))
    return nullptr;

  assert(GV->hasLocalLinkage());
  Constant *Init = GV->getInitializer();
  Type *Ty = Init->getType();
  uint64_t VarSize = DL.getTypeSizeInBits(Ty);

  std::map<unsigned, GlobalVariable *> NewGlobals;

  // Get the alignment of the global, either explicit or target-specific.
  Align StartAlignment =
      DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());

  // Loop over all users and create replacement variables for used aggregate
  // elements.
  for (User *GEP : GV->users()) {
    assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
                                           Instruction::GetElementPtr) ||
            isa<GetElementPtrInst>(GEP)) &&
           "NonGEP CE's are not SRAable!");

    // Ignore the 1th operand, which has to be zero or else the program is quite
    // broken (undefined).  Get the 2nd operand, which is the structure or array
    // index.
    unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    if (NewGlobals.count(ElementIdx) == 1)
      continue; // we`ve already created replacement variable
    assert(NewGlobals.count(ElementIdx) == 0);

    Type *ElTy = nullptr;
    if (StructType *STy = dyn_cast<StructType>(Ty))
      ElTy = STy->getElementType(ElementIdx);
    else
      ElTy = GetSRASequentialElementType(Ty);
    assert(ElTy);

    Constant *In = Init->getAggregateElement(ElementIdx);
    assert(In && "Couldn't get element of initializer?");

    GlobalVariable *NGV = new GlobalVariable(
        ElTy, false, GlobalVariable::InternalLinkage, In,
        GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
        GV->getType()->getAddressSpace());
    NGV->setExternallyInitialized(GV->isExternallyInitialized());
    NGV->copyAttributesFrom(GV);
    NewGlobals.insert(std::make_pair(ElementIdx, NGV));

    if (StructType *STy = dyn_cast<StructType>(Ty)) {
      const StructLayout &Layout = *DL.getStructLayout(STy);

      // Calculate the known alignment of the field.  If the original aggregate
      // had 256 byte alignment for example, something might depend on that:
      // propagate info to each field.
      uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
      Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
      if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
        NGV->setAlignment(NewAlign);

      // Copy over the debug info for the variable.
      uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
      uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
      transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
    } else {
      uint64_t EltSize = DL.getTypeAllocSize(ElTy);
      Align EltAlign = DL.getABITypeAlign(ElTy);
      uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);

      // Calculate the known alignment of the field.  If the original aggregate
      // had 256 byte alignment for example, something might depend on that:
      // propagate info to each field.
      Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
      if (NewAlign > EltAlign)
        NGV->setAlignment(NewAlign);
      transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
                           FragmentSizeInBits, VarSize);
    }
  }

  if (NewGlobals.empty())
    return nullptr;

  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
  for (auto NewGlobalVar : NewGlobals)
    Globals.push_back(NewGlobalVar.second);

  LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");

  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));

  // Loop over all of the uses of the global, replacing the constantexpr geps,
  // with smaller constantexpr geps or direct references.
  while (!GV->use_empty()) {
    User *GEP = GV->user_back();
    assert(((isa<ConstantExpr>(GEP) &&
             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");

    // Ignore the 1th operand, which has to be zero or else the program is quite
    // broken (undefined).  Get the 2nd operand, which is the structure or array
    // index.
    unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    assert(NewGlobals.count(ElementIdx) == 1);

    Value *NewPtr = NewGlobals[ElementIdx];
    Type *NewTy = NewGlobals[ElementIdx]->getValueType();

    // Form a shorter GEP if needed.
    if (GEP->getNumOperands() > 3) {
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
        SmallVector<Constant*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
          Idxs.push_back(CE->getOperand(i));
        NewPtr =
            ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
      } else {
        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
        SmallVector<Value*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
          Idxs.push_back(GEPI->getOperand(i));
        NewPtr = GetElementPtrInst::Create(
            NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
            GEPI);
      }
    }
    GEP->replaceAllUsesWith(NewPtr);

    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
      GEPI->eraseFromParent();
    else
      cast<ConstantExpr>(GEP)->destroyConstant();
  }

  // Delete the old global, now that it is dead.
  Globals.erase(GV);
  ++NumSRA;

  assert(NewGlobals.size() > 0);
  return NewGlobals.begin()->second;
}

/// Return true if all users of the specified value will trap if the value is
/// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
/// reprocessing them.
static bool AllUsesOfValueWillTrapIfNull(const Value *V,
                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
  for (const User *U : V->users()) {
    if (const Instruction *I = dyn_cast<Instruction>(U)) {
      // If null pointer is considered valid, then all uses are non-trapping.
      // Non address-space 0 globals have already been pruned by the caller.
      if (NullPointerIsDefined(I->getFunction()))
        return false;
    }
    if (isa<LoadInst>(U)) {
      // Will trap.
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
      if (SI->getOperand(0) == V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Storing the value.
      }
    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
      if (CI->getCalledOperand() != V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Not calling the ptr
      }
    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
      if (II->getCalledOperand() != V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Not calling the ptr
      }
    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
      // If we've already seen this phi node, ignore it, it has already been
      // checked.
      if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
        return false;
    } else {
      //cerr << "NONTRAPPING USE: " << *U;
      return false;
    }
  }
  return true;
}

/// Return true if all uses of any loads from GV will trap if the loaded value
/// is null.  Note that this also permits comparisons of the loaded value
/// against null, as a special case.
static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
  for (const User *U : GV->users())
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      SmallPtrSet<const PHINode*, 8> PHIs;
      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
        return false;
    } else if (isa<StoreInst>(U)) {
      // Ignore stores to the global.
    } else {
      // We don't know or understand this user, bail out.
      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
      return false;
    }
  return true;
}

static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
  bool Changed = false;
  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
    Instruction *I = cast<Instruction>(*UI++);
    // Uses are non-trapping if null pointer is considered valid.
    // Non address-space 0 globals are already pruned by the caller.
    if (NullPointerIsDefined(I->getFunction()))
      return false;
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      LI->setOperand(0, NewV);
      Changed = true;
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      if (SI->getOperand(1) == V) {
        SI->setOperand(1, NewV);
        Changed = true;
      }
    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
      CallBase *CB = cast<CallBase>(I);
      if (CB->getCalledOperand() == V) {
        // Calling through the pointer!  Turn into a direct call, but be careful
        // that the pointer is not also being passed as an argument.
        CB->setCalledOperand(NewV);
        Changed = true;
        bool PassedAsArg = false;
        for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
          if (CB->getArgOperand(i) == V) {
            PassedAsArg = true;
            CB->setArgOperand(i, NewV);
          }

        if (PassedAsArg) {
          // Being passed as an argument also.  Be careful to not invalidate UI!
          UI = V->user_begin();
        }
      }
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
                                ConstantExpr::getCast(CI->getOpcode(),
                                                      NewV, CI->getType()));
      if (CI->use_empty()) {
        Changed = true;
        CI->eraseFromParent();
      }
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
      // Should handle GEP here.
      SmallVector<Constant*, 8> Idxs;
      Idxs.reserve(GEPI->getNumOperands()-1);
      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
           i != e; ++i)
        if (Constant *C = dyn_cast<Constant>(*i))
          Idxs.push_back(C);
        else
          break;
      if (Idxs.size() == GEPI->getNumOperands()-1)
        Changed |= OptimizeAwayTrappingUsesOfValue(
            GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
                                                 NewV, Idxs));
      if (GEPI->use_empty()) {
        Changed = true;
        GEPI->eraseFromParent();
      }
    }
  }

  return Changed;
}

/// The specified global has only one non-null value stored into it.  If there
/// are uses of the loaded value that would trap if the loaded value is
/// dynamically null, then we know that they cannot be reachable with a null
/// optimize away the load.
static bool OptimizeAwayTrappingUsesOfLoads(
    GlobalVariable *GV, Constant *LV, const DataLayout &DL,
    function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  bool Changed = false;

  // Keep track of whether we are able to remove all the uses of the global
  // other than the store that defines it.
  bool AllNonStoreUsesGone = true;

  // Replace all uses of loads with uses of uses of the stored value.
  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
    User *GlobalUser = *GUI++;
    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
      // If we were able to delete all uses of the loads
      if (LI->use_empty()) {
        LI->eraseFromParent();
        Changed = true;
      } else {
        AllNonStoreUsesGone = false;
      }
    } else if (isa<StoreInst>(GlobalUser)) {
      // Ignore the store that stores "LV" to the global.
      assert(GlobalUser->getOperand(1) == GV &&
             "Must be storing *to* the global");
    } else {
      AllNonStoreUsesGone = false;

      // If we get here we could have other crazy uses that are transitively
      // loaded.
      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
              isa<BitCastInst>(GlobalUser) ||
              isa<GetElementPtrInst>(GlobalUser)) &&
             "Only expect load and stores!");
    }
  }

  if (Changed) {
    LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
                      << "\n");
    ++NumGlobUses;
  }

  // If we nuked all of the loads, then none of the stores are needed either,
  // nor is the global.
  if (AllNonStoreUsesGone) {
    if (isLeakCheckerRoot(GV)) {
      Changed |= CleanupPointerRootUsers(GV, GetTLI);
    } else {
      Changed = true;
      CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
    }
    if (GV->use_empty()) {
      LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
      Changed = true;
      GV->eraseFromParent();
      ++NumDeleted;
    }
  }
  return Changed;
}

/// Walk the use list of V, constant folding all of the instructions that are
/// foldable.
static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
                                TargetLibraryInfo *TLI) {
  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
    if (Instruction *I = dyn_cast<Instruction>(*UI++))
      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
        I->replaceAllUsesWith(NewC);

        // Advance UI to the next non-I use to avoid invalidating it!
        // Instructions could multiply use V.
        while (UI != E && *UI == I)
          ++UI;
        if (isInstructionTriviallyDead(I, TLI))
          I->eraseFromParent();
      }
}

/// This function takes the specified global variable, and transforms the
/// program as if it always contained the result of the specified malloc.
/// Because it is always the result of the specified malloc, there is no reason
/// to actually DO the malloc.  Instead, turn the malloc into a global, and any
/// loads of GV as uses of the new global.
static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
                              ConstantInt *NElements, const DataLayout &DL,
                              TargetLibraryInfo *TLI) {
  LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
                    << '\n');

  Type *GlobalType;
  if (NElements->getZExtValue() == 1)
    GlobalType = AllocTy;
  else
    // If we have an array allocation, the global variable is of an array.
    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());

  // Create the new global variable.  The contents of the malloc'd memory is
  // undefined, so initialize with an undef value.
  GlobalVariable *NewGV = new GlobalVariable(
      *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
      UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
      GV->getThreadLocalMode());

  // If there are bitcast users of the malloc (which is typical, usually we have
  // a malloc + bitcast) then replace them with uses of the new global.  Update
  // other users to use the global as well.
  BitCastInst *TheBC = nullptr;
  while (!CI->use_empty()) {
    Instruction *User = cast<Instruction>(CI->user_back());
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
      if (BCI->getType() == NewGV->getType()) {
        BCI->replaceAllUsesWith(NewGV);
        BCI->eraseFromParent();
      } else {
        BCI->setOperand(0, NewGV);
      }
    } else {
      if (!TheBC)
        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
      User->replaceUsesOfWith(CI, TheBC);
    }
  }

  Constant *RepValue = NewGV;
  if (NewGV->getType() != GV->getValueType())
    RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());

  // If there is a comparison against null, we will insert a global bool to
  // keep track of whether the global was initialized yet or not.
  GlobalVariable *InitBool =
    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
                       GlobalValue::InternalLinkage,
                       ConstantInt::getFalse(GV->getContext()),
                       GV->getName()+".init", GV->getThreadLocalMode());
  bool InitBoolUsed = false;

  // Loop over all uses of GV, processing them in turn.
  while (!GV->use_empty()) {
    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
      // The global is initialized when the store to it occurs.
      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
                    Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI);
      SI->eraseFromParent();
      continue;
    }

    LoadInst *LI = cast<LoadInst>(GV->user_back());
    while (!LI->use_empty()) {
      Use &LoadUse = *LI->use_begin();
      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
      if (!ICI) {
        LoadUse = RepValue;
        continue;
      }

      // Replace the cmp X, 0 with a use of the bool value.
      // Sink the load to where the compare was, if atomic rules allow us to.
      Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
                               InitBool->getName() + ".val", false, Align(1),
                               LI->getOrdering(), LI->getSyncScopeID(),
                               LI->isUnordered() ? (Instruction *)ICI : LI);
      InitBoolUsed = true;
      switch (ICI->getPredicate()) {
      default: llvm_unreachable("Unknown ICmp Predicate!");
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_SLT:   // X < null -> always false
        LV = ConstantInt::getFalse(GV->getContext());
        break;
      case ICmpInst::ICMP_ULE:
      case ICmpInst::ICMP_SLE:
      case ICmpInst::ICMP_EQ:
        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
        break;
      case ICmpInst::ICMP_NE:
      case ICmpInst::ICMP_UGE:
      case ICmpInst::ICMP_SGE:
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_SGT:
        break;  // no change.
      }
      ICI->replaceAllUsesWith(LV);
      ICI->eraseFromParent();
    }
    LI->eraseFromParent();
  }

  // If the initialization boolean was used, insert it, otherwise delete it.
  if (!InitBoolUsed) {
    while (!InitBool->use_empty())  // Delete initializations
      cast<StoreInst>(InitBool->user_back())->eraseFromParent();
    delete InitBool;
  } else
    GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);

  // Now the GV is dead, nuke it and the malloc..
  GV->eraseFromParent();
  CI->eraseFromParent();

  // To further other optimizations, loop over all users of NewGV and try to
  // constant prop them.  This will promote GEP instructions with constant
  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
  ConstantPropUsersOf(NewGV, DL, TLI);
  if (RepValue != NewGV)
    ConstantPropUsersOf(RepValue, DL, TLI);

  return NewGV;
}

/// Scan the use-list of V checking to make sure that there are no complex uses
/// of V.  We permit simple things like dereferencing the pointer, but not
/// storing through the address, unless it is to the specified global.
static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
                                                      const GlobalVariable *GV,
                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
  for (const User *U : V->users()) {
    const Instruction *Inst = cast<Instruction>(U);

    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
      continue; // Fine, ignore.
    }

    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
        return false;  // Storing the pointer itself... bad.
      continue; // Otherwise, storing through it, or storing into GV... fine.
    }

    // Must index into the array and into the struct.
    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
        return false;
      continue;
    }

    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
      // cycles.
      if (PHIs.insert(PN).second)
        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
          return false;
      continue;
    }

    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
        return false;
      continue;
    }

    return false;
  }
  return true;
}

/// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
/// allocation into loads from the global and uses of the resultant pointer.
/// Further, delete the store into GV.  This assumes that these value pass the
/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
                                          GlobalVariable *GV) {
  while (!Alloc->use_empty()) {
    Instruction *U = cast<Instruction>(*Alloc->user_begin());
    Instruction *InsertPt = U;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // If this is the store of the allocation into the global, remove it.
      if (SI->getOperand(1) == GV) {
        SI->eraseFromParent();
        continue;
      }
    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
      // Insert the load in the corresponding predecessor, not right before the
      // PHI.
      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
    } else if (isa<BitCastInst>(U)) {
      // Must be bitcast between the malloc and store to initialize the global.
      ReplaceUsesOfMallocWithGlobal(U, GV);
      U->eraseFromParent();
      continue;
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      // If this is a "GEP bitcast" and the user is a store to the global, then
      // just process it as a bitcast.
      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
          if (SI->getOperand(1) == GV) {
            // Must be bitcast GEP between the malloc and store to initialize
            // the global.
            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
            GEPI->eraseFromParent();
            continue;
          }
    }

    // Insert a load from the global, and use it instead of the malloc.
    Value *NL =
        new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
    U->replaceUsesOfWith(Alloc, NL);
  }
}

/// Verify that all uses of V (a load, or a phi of a load) are simple enough to
/// perform heap SRA on.  This permits GEP's that index through the array and
/// struct field, icmps of null, and PHIs.
static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
  // We permit two users of the load: setcc comparing against the null
  // pointer, and a getelementptr of a specific form.
  for (const User *U : V->users()) {
    const Instruction *UI = cast<Instruction>(U);

    // Comparison against null is ok.
    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
        return false;
      continue;
    }

    // getelementptr is also ok, but only a simple form.
    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
      // Must index into the array and into the struct.
      if (GEPI->getNumOperands() < 3)
        return false;

      // Otherwise the GEP is ok.
      continue;
    }

    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
      if (!LoadUsingPHIsPerLoad.insert(PN).second)
        // This means some phi nodes are dependent on each other.
        // Avoid infinite looping!
        return false;
      if (!LoadUsingPHIs.insert(PN).second)
        // If we have already analyzed this PHI, then it is safe.
        continue;

      // Make sure all uses of the PHI are simple enough to transform.
      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
        return false;

      continue;
    }

    // Otherwise we don't know what this is, not ok.
    return false;
  }

  return true;
}

/// If all users of values loaded from GV are simple enough to perform HeapSRA,
/// return true.
static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
                                                    Instruction *StoredVal) {
  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
  for (const User *U : GV->users())
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
                                          LoadUsingPHIsPerLoad))
        return false;
      LoadUsingPHIsPerLoad.clear();
    }

  // If we reach here, we know that all uses of the loads and transitive uses
  // (through PHI nodes) are simple enough to transform.  However, we don't know
  // that all inputs the to the PHI nodes are in the same equivalence sets.
  // Check to verify that all operands of the PHIs are either PHIS that can be
  // transformed, loads from GV, or MI itself.
  for (const PHINode *PN : LoadUsingPHIs) {
    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
      Value *InVal = PN->getIncomingValue(op);

      // PHI of the stored value itself is ok.
      if (InVal == StoredVal) continue;

      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
        // One of the PHIs in our set is (optimistically) ok.
        if (LoadUsingPHIs.count(InPN))
          continue;
        return false;
      }

      // Load from GV is ok.
      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
        if (LI->getOperand(0) == GV)
          continue;

      // UNDEF? NULL?

      // Anything else is rejected.
      return false;
    }
  }

  return true;
}

static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
  std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];

  if (FieldNo >= FieldVals.size())
    FieldVals.resize(FieldNo+1);

  // If we already have this value, just reuse the previously scalarized
  // version.
  if (Value *FieldVal = FieldVals[FieldNo])
    return FieldVal;

  // Depending on what instruction this is, we have several cases.
  Value *Result;
  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
    // This is a scalarized version of the load from the global.  Just create
    // a new Load of the scalarized global.
    Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
                                InsertedScalarizedValues, PHIsToRewrite);
    Result = new LoadInst(V->getType()->getPointerElementType(), V,
                          LI->getName() + ".f" + Twine(FieldNo), LI);
  } else {
    PHINode *PN = cast<PHINode>(V);
    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
    // field.

    PointerType *PTy = cast<PointerType>(PN->getType());
    StructType *ST = cast<StructType>(PTy->getElementType());

    unsigned AS = PTy->getAddressSpace();
    PHINode *NewPN =
      PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
                     PN->getNumIncomingValues(),
                     PN->getName()+".f"+Twine(FieldNo), PN);
    Result = NewPN;
    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
  }

  return FieldVals[FieldNo] = Result;
}

/// Given a load instruction and a value derived from the load, rewrite the
/// derived value to use the HeapSRoA'd load.
static void RewriteHeapSROALoadUser(Instruction *LoadUser,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
  // If this is a comparison against null, handle it.
  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
    // If we have a setcc of the loaded pointer, we can use a setcc of any
    // field.
    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
                                   InsertedScalarizedValues, PHIsToRewrite);

    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
                              Constant::getNullValue(NPtr->getType()),
                              SCI->getName());
    SCI->replaceAllUsesWith(New);
    SCI->eraseFromParent();
    return;
  }

  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
           && "Unexpected GEPI!");

    // Load the pointer for this field.
    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
                                     InsertedScalarizedValues, PHIsToRewrite);

    // Create the new GEP idx vector.
    SmallVector<Value*, 8> GEPIdx;
    GEPIdx.push_back(GEPI->getOperand(1));
    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());

    Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
                                             GEPI->getName(), GEPI);
    GEPI->replaceAllUsesWith(NGEPI);
    GEPI->eraseFromParent();
    return;
  }

  // Recursively transform the users of PHI nodes.  This will lazily create the
  // PHIs that are needed for individual elements.  Keep track of what PHIs we
  // see in InsertedScalarizedValues so that we don't get infinite loops (very
  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
  // already been seen first by another load, so its uses have already been
  // processed.
  PHINode *PN = cast<PHINode>(LoadUser);
  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
                                              std::vector<Value *>())).second)
    return;

  // If this is the first time we've seen this PHI, recursively process all
  // users.
  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
  }
}

/// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
/// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                  std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
  }

  if (Load->use_empty()) {
    Load->eraseFromParent();
    InsertedScalarizedValues.erase(Load);
  }
}

/// CI is an allocation of an array of structures.  Break it up into multiple
/// allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
                                            Value *NElems, const DataLayout &DL,
                                            const TargetLibraryInfo *TLI) {
  LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
                    << '\n');
  Type *MAT = getMallocAllocatedType(CI, TLI);
  StructType *STy = cast<StructType>(MAT);

  // There is guaranteed to be at least one use of the malloc (storing
  // it into GV).  If there are other uses, change them to be uses of
  // the global to simplify later code.  This also deletes the store
  // into GV.
  ReplaceUsesOfMallocWithGlobal(CI, GV);

  // Okay, at this point, there are no users of the malloc.  Insert N
  // new mallocs at the same place as CI, and N globals.
  std::vector<Value *> FieldGlobals;
  std::vector<Value *> FieldMallocs;

  SmallVector<OperandBundleDef, 1> OpBundles;
  CI->getOperandBundlesAsDefs(OpBundles);

  unsigned AS = GV->getType()->getPointerAddressSpace();
  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
    Type *FieldTy = STy->getElementType(FieldNo);
    PointerType *PFieldTy = PointerType::get(FieldTy, AS);

    GlobalVariable *NGV = new GlobalVariable(
        *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
        Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
        nullptr, GV->getThreadLocalMode());
    NGV->copyAttributesFrom(GV);
    FieldGlobals.push_back(NGV);

    unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
    if (StructType *ST = dyn_cast<StructType>(FieldTy))
      TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
    Type *IntPtrTy = DL.getIntPtrType(CI->getType());
    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
                                        ConstantInt::get(IntPtrTy, TypeSize),
                                        NElems, OpBundles, nullptr,
                                        CI->getName() + ".f" + Twine(FieldNo));
    FieldMallocs.push_back(NMI);
    new StoreInst(NMI, NGV, CI);
  }

  // The tricky aspect of this transformation is handling the case when malloc
  // fails.  In the original code, malloc failing would set the result pointer
  // of malloc to null.  In this case, some mallocs could succeed and others
  // could fail.  As such, we emit code that looks like this:
  //    F0 = malloc(field0)
  //    F1 = malloc(field1)
  //    F2 = malloc(field2)
  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
  //      if (F0) { free(F0); F0 = 0; }
  //      if (F1) { free(F1); F1 = 0; }
  //      if (F2) { free(F2); F2 = 0; }
  //    }
  // The malloc can also fail if its argument is too large.
  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
                                  ConstantZero, "isneg");
  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
                             Constant::getNullValue(FieldMallocs[i]->getType()),
                               "isnull");
    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
  }

  // Split the basic block at the old malloc.
  BasicBlock *OrigBB = CI->getParent();
  BasicBlock *ContBB =
      OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");

  // Create the block to check the first condition.  Put all these blocks at the
  // end of the function as they are unlikely to be executed.
  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
                                                "malloc_ret_null",
                                                OrigBB->getParent());

  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
  // branch on RunningOr.
  OrigBB->getTerminator()->eraseFromParent();
  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);

  // Within the NullPtrBlock, we need to emit a comparison and branch for each
  // pointer, because some may be null while others are not.
  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
    Value *GVVal =
        new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
                     FieldGlobals[i], "tmp", NullPtrBlock);
    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
                              Constant::getNullValue(GVVal->getType()));
    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
                                               OrigBB->getParent());
    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
                                               OrigBB->getParent());
    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
                                         Cmp, NullPtrBlock);

    // Fill in FreeBlock.
    CallInst::CreateFree(GVVal, OpBundles, BI);
    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
                  FreeBlock);
    BranchInst::Create(NextBlock, FreeBlock);

    NullPtrBlock = NextBlock;
  }

  BranchInst::Create(ContBB, NullPtrBlock);

  // CI is no longer needed, remove it.
  CI->eraseFromParent();

  /// As we process loads, if we can't immediately update all uses of the load,
  /// keep track of what scalarized loads are inserted for a given load.
  DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
  InsertedScalarizedValues[GV] = FieldGlobals;

  std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;

  // Okay, the malloc site is completely handled.  All of the uses of GV are now
  // loads, and all uses of those loads are simple.  Rewrite them to use loads
  // of the per-field globals instead.
  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);

    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
      continue;
    }

    // Must be a store of null.
    StoreInst *SI = cast<StoreInst>(User);
    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
           "Unexpected heap-sra user!");

    // Insert a store of null into each global.
    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
      Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
      Constant *Null = Constant::getNullValue(ValTy);
      new StoreInst(Null, FieldGlobals[i], SI);
    }
    // Erase the original store.
    SI->eraseFromParent();
  }

  // While we have PHIs that are interesting to rewrite, do it.
  while (!PHIsToRewrite.empty()) {
    PHINode *PN = PHIsToRewrite.back().first;
    unsigned FieldNo = PHIsToRewrite.back().second;
    PHIsToRewrite.pop_back();
    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");

    // Add all the incoming values.  This can materialize more phis.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
                               PHIsToRewrite);
      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
    }
  }

  // Drop all inter-phi links and any loads that made it this far.
  for (DenseMap<Value *, std::vector<Value *>>::iterator
       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
       I != E; ++I) {
    if (PHINode *PN = dyn_cast<PHINode>(I->first))
      PN->dropAllReferences();
    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
      LI->dropAllReferences();
  }

  // Delete all the phis and loads now that inter-references are dead.
  for (DenseMap<Value *, std::vector<Value *>>::iterator
       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
       I != E; ++I) {
    if (PHINode *PN = dyn_cast<PHINode>(I->first))
      PN->eraseFromParent();
    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
      LI->eraseFromParent();
  }

  // The old global is now dead, remove it.
  GV->eraseFromParent();

  ++NumHeapSRA;
  return cast<GlobalVariable>(FieldGlobals[0]);
}

/// This function is called when we see a pointer global variable with a single
/// value stored it that is a malloc or cast of malloc.
static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
                                               Type *AllocTy,
                                               AtomicOrdering Ordering,
                                               const DataLayout &DL,
                                               TargetLibraryInfo *TLI) {
  // If this is a malloc of an abstract type, don't touch it.
  if (!AllocTy->isSized())
    return false;

  // We can't optimize this global unless all uses of it are *known* to be
  // of the malloc value, not of the null initializer value (consider a use
  // that compares the global's value against zero to see if the malloc has
  // been reached).  To do this, we check to see if all uses of the global
  // would trap if the global were null: this proves that they must all
  // happen after the malloc.
  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
    return false;

  // We can't optimize this if the malloc itself is used in a complex way,
  // for example, being stored into multiple globals.  This allows the
  // malloc to be stored into the specified global, loaded icmp'd, and
  // GEP'd.  These are all things we could transform to using the global
  // for.
  SmallPtrSet<const PHINode*, 8> PHIs;
  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
    return false;

  // If we have a global that is only initialized with a fixed size malloc,
  // transform the program to use global memory instead of malloc'd memory.
  // This eliminates dynamic allocation, avoids an indirection accessing the
  // data, and exposes the resultant global to further GlobalOpt.
  // We cannot optimize the malloc if we cannot determine malloc array size.
  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
  if (!NElems)
    return false;

  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
    // Restrict this transformation to only working on small allocations
    // (2048 bytes currently), as we don't want to introduce a 16M global or
    // something.
    if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
      OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
      return true;
    }

  // If the allocation is an array of structures, consider transforming this
  // into multiple malloc'd arrays, one for each field.  This is basically
  // SRoA for malloc'd memory.

  if (Ordering != AtomicOrdering::NotAtomic)
    return false;

  // If this is an allocation of a fixed size array of structs, analyze as a
  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
      AllocTy = AT->getElementType();

  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
  if (!AllocSTy)
    return false;

  // This the structure has an unreasonable number of fields, leave it
  // alone.
  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {

    // If this is a fixed size array, transform the Malloc to be an alloc of
    // structs.  malloc [100 x struct],1 -> malloc struct, 100
    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
      Type *IntPtrTy = DL.getIntPtrType(CI->getType());
      unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
      SmallVector<OperandBundleDef, 1> OpBundles;
      CI->getOperandBundlesAsDefs(OpBundles);
      Instruction *Malloc =
          CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
                                 OpBundles, nullptr, CI->getName());
      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
      CI->replaceAllUsesWith(Cast);
      CI->eraseFromParent();
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
        CI = cast<CallInst>(BCI->getOperand(0));
      else
        CI = cast<CallInst>(Malloc);
    }

    PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
                         TLI);
    return true;
  }

  return false;
}

// Try to optimize globals based on the knowledge that only one value (besides
// its initializer) is ever stored to the global.
static bool
optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
                         AtomicOrdering Ordering, const DataLayout &DL,
                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  // Ignore no-op GEPs and bitcasts.
  StoredOnceVal = StoredOnceVal->stripPointerCasts();

  // If we are dealing with a pointer global that is initialized to null and
  // only has one (non-null) value stored into it, then we can optimize any
  // users of the loaded value (often calls and loads) that would trap if the
  // value was null.
  if (GV->getInitializer()->getType()->isPointerTy() &&
      GV->getInitializer()->isNullValue() &&
      !NullPointerIsDefined(
          nullptr /* F */,
          GV->getInitializer()->getType()->getPointerAddressSpace())) {
    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
      if (GV->getInitializer()->getType() != SOVC->getType())
        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());

      // Optimize away any trapping uses of the loaded value.
      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
        return true;
    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
      auto *TLI = &GetTLI(*CI->getFunction());
      Type *MallocType = getMallocAllocatedType(CI, TLI);
      if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
                                                           Ordering, DL, TLI))
        return true;
    }
  }

  return false;
}

/// At this point, we have learned that the only two values ever stored into GV
/// are its initializer and OtherVal.  See if we can shrink the global into a
/// boolean and select between the two values whenever it is used.  This exposes
/// the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
  Type *GVElType = GV->getValueType();

  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
  // an FP value, pointer or vector, don't do this optimization because a select
  // between them is very expensive and unlikely to lead to later
  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
  // where v1 and v2 both require constant pool loads, a big loss.
  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
      GVElType->isFloatingPointTy() ||
      GVElType->isPointerTy() || GVElType->isVectorTy())
    return false;

  // Walk the use list of the global seeing if all the uses are load or store.
  // If there is anything else, bail out.
  for (User *U : GV->users())
    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
      return false;

  LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");

  // Create the new global, initializing it to false.
  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
                                             false,
                                             GlobalValue::InternalLinkage,
                                        ConstantInt::getFalse(GV->getContext()),
                                             GV->getName()+".b",
                                             GV->getThreadLocalMode(),
                                             GV->getType()->getAddressSpace());
  NewGV->copyAttributesFrom(GV);
  GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);

  Constant *InitVal = GV->getInitializer();
  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
         "No reason to shrink to bool!");

  SmallVector<DIGlobalVariableExpression *, 1> GVs;
  GV->getDebugInfo(GVs);

  // If initialized to zero and storing one into the global, we can use a cast
  // instead of a select to synthesize the desired value.
  bool IsOneZero = false;
  bool EmitOneOrZero = true;
  auto *CI = dyn_cast<ConstantInt>(OtherVal);
  if (CI && CI->getValue().getActiveBits() <= 64) {
    IsOneZero = InitVal->isNullValue() && CI->isOne();

    auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
    if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
      uint64_t ValInit = CIInit->getZExtValue();
      uint64_t ValOther = CI->getZExtValue();
      uint64_t ValMinus = ValOther - ValInit;

      for(auto *GVe : GVs){
        DIGlobalVariable *DGV = GVe->getVariable();
        DIExpression *E = GVe->getExpression();
        const DataLayout &DL = GV->getParent()->getDataLayout();
        unsigned SizeInOctets =
          DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;

        // It is expected that the address of global optimized variable is on
        // top of the stack. After optimization, value of that variable will
        // be ether 0 for initial value or 1 for other value. The following
        // expression should return constant integer value depending on the
        // value at global object address:
        // val * (ValOther - ValInit) + ValInit:
        // DW_OP_deref DW_OP_constu <ValMinus>
        // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
        SmallVector<uint64_t, 12> Ops = {
            dwarf::DW_OP_deref_size, SizeInOctets,
            dwarf::DW_OP_constu, ValMinus,
            dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
            dwarf::DW_OP_plus};
        bool WithStackValue = true;
        E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
        DIGlobalVariableExpression *DGVE =
          DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
        NewGV->addDebugInfo(DGVE);
     }
     EmitOneOrZero = false;
    }
  }

  if (EmitOneOrZero) {
     // FIXME: This will only emit address for debugger on which will
     // be written only 0 or 1.
     for(auto *GV : GVs)
       NewGV->addDebugInfo(GV);
   }

  while (!GV->use_empty()) {
    Instruction *UI = cast<Instruction>(GV->user_back());
    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
      // Change the store into a boolean store.
      bool StoringOther = SI->getOperand(0) == OtherVal;
      // Only do this if we weren't storing a loaded value.
      Value *StoreVal;
      if (StoringOther || SI->getOperand(0) == InitVal) {
        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
                                    StoringOther);
      } else {
        // Otherwise, we are storing a previously loaded copy.  To do this,
        // change the copy from copying the original value to just copying the
        // bool.
        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));

        // If we've already replaced the input, StoredVal will be a cast or
        // select instruction.  If not, it will be a load of the original
        // global.
        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
          assert(LI->getOperand(0) == GV && "Not a copy!");
          // Insert a new load, to preserve the saved value.
          StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
                                  LI->getName() + ".b", false, Align(1),
                                  LI->getOrdering(), LI->getSyncScopeID(), LI);
        } else {
          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
                 "This is not a form that we understand!");
          StoreVal = StoredVal->getOperand(0);
          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
        }
      }
      StoreInst *NSI =
          new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
                        SI->getSyncScopeID(), SI);
      NSI->setDebugLoc(SI->getDebugLoc());
    } else {
      // Change the load into a load of bool then a select.
      LoadInst *LI = cast<LoadInst>(UI);
      LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
                                   LI->getName() + ".b", false, Align(1),
                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
      Instruction *NSI;
      if (IsOneZero)
        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
      else
        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
      NSI->takeName(LI);
      // Since LI is split into two instructions, NLI and NSI both inherit the
      // same DebugLoc
      NLI->setDebugLoc(LI->getDebugLoc());
      NSI->setDebugLoc(LI->getDebugLoc());
      LI->replaceAllUsesWith(NSI);
    }
    UI->eraseFromParent();
  }

  // Retain the name of the old global variable. People who are debugging their
  // programs may expect these variables to be named the same.
  NewGV->takeName(GV);
  GV->eraseFromParent();
  return true;
}

static bool deleteIfDead(
    GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
  GV.removeDeadConstantUsers();

  if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
    return false;

  if (const Comdat *C = GV.getComdat())
    if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
      return false;

  bool Dead;
  if (auto *F = dyn_cast<Function>(&GV))
    Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
  else
    Dead = GV.use_empty();
  if (!Dead)
    return false;

  LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
  GV.eraseFromParent();
  ++NumDeleted;
  return true;
}

static bool isPointerValueDeadOnEntryToFunction(
    const Function *F, GlobalValue *GV,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  // Find all uses of GV. We expect them all to be in F, and if we can't
  // identify any of the uses we bail out.
  //
  // On each of these uses, identify if the memory that GV points to is
  // used/required/live at the start of the function. If it is not, for example
  // if the first thing the function does is store to the GV, the GV can
  // possibly be demoted.
  //
  // We don't do an exhaustive search for memory operations - simply look
  // through bitcasts as they're quite common and benign.
  const DataLayout &DL = GV->getParent()->getDataLayout();
  SmallVector<LoadInst *, 4> Loads;
  SmallVector<StoreInst *, 4> Stores;
  for (auto *U : GV->users()) {
    if (Operator::getOpcode(U) == Instruction::BitCast) {
      for (auto *UU : U->users()) {
        if (auto *LI = dyn_cast<LoadInst>(UU))
          Loads.push_back(LI);
        else if (auto *SI = dyn_cast<StoreInst>(UU))
          Stores.push_back(SI);
        else
          return false;
      }
      continue;
    }

    Instruction *I = dyn_cast<Instruction>(U);
    if (!I)
      return false;
    assert(I->getParent()->getParent() == F);

    if (auto *LI = dyn_cast<LoadInst>(I))
      Loads.push_back(LI);
    else if (auto *SI = dyn_cast<StoreInst>(I))
      Stores.push_back(SI);
    else
      return false;
  }

  // We have identified all uses of GV into loads and stores. Now check if all
  // of them are known not to depend on the value of the global at the function
  // entry point. We do this by ensuring that every load is dominated by at
  // least one store.
  auto &DT = LookupDomTree(*const_cast<Function *>(F));

  // The below check is quadratic. Check we're not going to do too many tests.
  // FIXME: Even though this will always have worst-case quadratic time, we
  // could put effort into minimizing the average time by putting stores that
  // have been shown to dominate at least one load at the beginning of the
  // Stores array, making subsequent dominance checks more likely to succeed
  // early.
  //
  // The threshold here is fairly large because global->local demotion is a
  // very powerful optimization should it fire.
  const unsigned Threshold = 100;
  if (Loads.size() * Stores.size() > Threshold)
    return false;

  for (auto *L : Loads) {
    auto *LTy = L->getType();
    if (none_of(Stores, [&](const StoreInst *S) {
          auto *STy = S->getValueOperand()->getType();
          // The load is only dominated by the store if DomTree says so
          // and the number of bits loaded in L is less than or equal to
          // the number of bits stored in S.
          return DT.dominates(S, L) &&
                 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
        }))
      return false;
  }
  // All loads have known dependences inside F, so the global can be localized.
  return true;
}

/// C may have non-instruction users. Can all of those users be turned into
/// instructions?
static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
  // We don't do this exhaustively. The most common pattern that we really need
  // to care about is a constant GEP or constant bitcast - so just looking
  // through one single ConstantExpr.
  //
  // The set of constants that this function returns true for must be able to be
  // handled by makeAllConstantUsesInstructions.
  for (auto *U : C->users()) {
    if (isa<Instruction>(U))
      continue;
    if (!isa<ConstantExpr>(U))
      // Non instruction, non-constantexpr user; cannot convert this.
      return false;
    for (auto *UU : U->users())
      if (!isa<Instruction>(UU))
        // A constantexpr used by another constant. We don't try and recurse any
        // further but just bail out at this point.
        return false;
  }

  return true;
}

/// C may have non-instruction users, and
/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
/// non-instruction users to instructions.
static void makeAllConstantUsesInstructions(Constant *C) {
  SmallVector<ConstantExpr*,4> Users;
  for (auto *U : C->users()) {
    if (isa<ConstantExpr>(U))
      Users.push_back(cast<ConstantExpr>(U));
    else
      // We should never get here; allNonInstructionUsersCanBeMadeInstructions
      // should not have returned true for C.
      assert(
          isa<Instruction>(U) &&
          "Can't transform non-constantexpr non-instruction to instruction!");
  }

  SmallVector<Value*,4> UUsers;
  for (auto *U : Users) {
    UUsers.clear();
    for (auto *UU : U->users())
      UUsers.push_back(UU);
    for (auto *UU : UUsers) {
      Instruction *UI = cast<Instruction>(UU);
      Instruction *NewU = U->getAsInstruction();
      NewU->insertBefore(UI);
      UI->replaceUsesOfWith(U, NewU);
    }
    // We've replaced all the uses, so destroy the constant. (destroyConstant
    // will update value handles and metadata.)
    U->destroyConstant();
  }
}

/// Analyze the specified global variable and optimize
/// it if possible.  If we make a change, return true.
static bool
processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
                      function_ref<TargetLibraryInfo &(Function &)> GetTLI,
                      function_ref<DominatorTree &(Function &)> LookupDomTree) {
  auto &DL = GV->getParent()->getDataLayout();
  // If this is a first class global and has only one accessing function and
  // this function is non-recursive, we replace the global with a local alloca
  // in this function.
  //
  // NOTE: It doesn't make sense to promote non-single-value types since we
  // are just replacing static memory to stack memory.
  //
  // If the global is in different address space, don't bring it to stack.
  if (!GS.HasMultipleAccessingFunctions &&
      GS.AccessingFunction &&
      GV->getValueType()->isSingleValueType() &&
      GV->getType()->getAddressSpace() == 0 &&
      !GV->isExternallyInitialized() &&
      allNonInstructionUsersCanBeMadeInstructions(GV) &&
      GS.AccessingFunction->doesNotRecurse() &&
      isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
                                          LookupDomTree)) {
    const DataLayout &DL = GV->getParent()->getDataLayout();

    LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
                                                   ->getEntryBlock().begin());
    Type *ElemTy = GV->getValueType();
    // FIXME: Pass Global's alignment when globals have alignment
    AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
                                        GV->getName(), &FirstI);
    if (!isa<UndefValue>(GV->getInitializer()))
      new StoreInst(GV->getInitializer(), Alloca, &FirstI);

    makeAllConstantUsesInstructions(GV);

    GV->replaceAllUsesWith(Alloca);
    GV->eraseFromParent();
    ++NumLocalized;
    return true;
  }

  bool Changed = false;

  // If the global is never loaded (but may be stored to), it is dead.
  // Delete it now.
  if (!GS.IsLoaded) {
    LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");

    if (isLeakCheckerRoot(GV)) {
      // Delete any constant stores to the global.
      Changed = CleanupPointerRootUsers(GV, GetTLI);
    } else {
      // Delete any stores we can find to the global.  We may not be able to
      // make it completely dead though.
      Changed =
          CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
    }

    // If the global is dead now, delete it.
    if (GV->use_empty()) {
      GV->eraseFromParent();
      ++NumDeleted;
      Changed = true;
    }
    return Changed;

  }
  if (GS.StoredType <= GlobalStatus::InitializerStored) {
    LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");

    // Don't actually mark a global constant if it's atomic because atomic loads
    // are implemented by a trivial cmpxchg in some edge-cases and that usually
    // requires write access to the variable even if it's not actually changed.
    if (GS.Ordering == AtomicOrdering::NotAtomic) {
      assert(!GV->isConstant() && "Expected a non-constant global");
      GV->setConstant(true);
      Changed = true;
    }

    // Clean up any obviously simplifiable users now.
    Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);

    // If the global is dead now, just nuke it.
    if (GV->use_empty()) {
      LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
                        << "all users and delete global!\n");
      GV->eraseFromParent();
      ++NumDeleted;
      return true;
    }

    // Fall through to the next check; see if we can optimize further.
    ++NumMarked;
  }
  if (!GV->getInitializer()->getType()->isSingleValueType()) {
    const DataLayout &DL = GV->getParent()->getDataLayout();
    if (SRAGlobal(GV, DL))
      return true;
  }
  if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
    // If the initial value for the global was an undef value, and if only
    // one other value was stored into it, we can just change the
    // initializer to be the stored value, then delete all stores to the
    // global.  This allows us to mark it constant.
    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
      if (isa<UndefValue>(GV->getInitializer())) {
        // Change the initial value here.
        GV->setInitializer(SOVConstant);

        // Clean up any obviously simplifiable users now.
        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);

        if (GV->use_empty()) {
          LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
                            << "simplify all users and delete global!\n");
          GV->eraseFromParent();
          ++NumDeleted;
        }
        ++NumSubstitute;
        return true;
      }

    // Try to optimize globals based on the knowledge that only one value
    // (besides its initializer) is ever stored to the global.
    if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
                                 GetTLI))
      return true;

    // Otherwise, if the global was not a boolean, we can shrink it to be a
    // boolean.
    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
      if (GS.Ordering == AtomicOrdering::NotAtomic) {
        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
          ++NumShrunkToBool;
          return true;
        }
      }
    }
  }

  return Changed;
}

/// Analyze the specified global variable and optimize it if possible.  If we
/// make a change, return true.
static bool
processGlobal(GlobalValue &GV,
              function_ref<TargetLibraryInfo &(Function &)> GetTLI,
              function_ref<DominatorTree &(Function &)> LookupDomTree) {
  if (GV.getName().startswith("llvm."))
    return false;

  GlobalStatus GS;

  if (GlobalStatus::analyzeGlobal(&GV, GS))
    return false;

  bool Changed = false;
  if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
    auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
                                               : GlobalValue::UnnamedAddr::Local;
    if (NewUnnamedAddr != GV.getUnnamedAddr()) {
      GV.setUnnamedAddr(NewUnnamedAddr);
      NumUnnamed++;
      Changed = true;
    }
  }

  // Do more involved optimizations if the global is internal.
  if (!GV.hasLocalLinkage())
    return Changed;

  auto *GVar = dyn_cast<GlobalVariable>(&GV);
  if (!GVar)
    return Changed;

  if (GVar->isConstant() || !GVar->hasInitializer())
    return Changed;

  return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
}

/// Walk all of the direct calls of the specified function, changing them to
/// FastCC.
static void ChangeCalleesToFastCall(Function *F) {
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
  }
}

static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
                               Attribute::AttrKind A) {
  unsigned AttrIndex;
  if (Attrs.hasAttrSomewhere(A, &AttrIndex))
    return Attrs.removeAttribute(C, AttrIndex, A);
  return Attrs;
}

static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
  F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallBase *CB = cast<CallBase>(U);
    CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
  }
}

/// Return true if this is a calling convention that we'd like to change.  The
/// idea here is that we don't want to mess with the convention if the user
/// explicitly requested something with performance implications like coldcc,
/// GHC, or anyregcc.
static bool hasChangeableCC(Function *F) {
  CallingConv::ID CC = F->getCallingConv();

  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
  if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
    return false;

  // FIXME: Change CC for the whole chain of musttail calls when possible.
  //
  // Can't change CC of the function that either has musttail calls, or is a
  // musttail callee itself
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallInst* CI = dyn_cast<CallInst>(U);
    if (!CI)
      continue;

    if (CI->isMustTailCall())
      return false;
  }

  for (BasicBlock &BB : *F)
    if (BB.getTerminatingMustTailCall())
      return false;

  return true;
}

/// Return true if the block containing the call site has a BlockFrequency of
/// less than ColdCCRelFreq% of the entry block.
static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
  const BranchProbability ColdProb(ColdCCRelFreq, 100);
  auto *CallSiteBB = CB.getParent();
  auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
  auto CallerEntryFreq =
      CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
  return CallSiteFreq < CallerEntryFreq * ColdProb;
}

// This function checks if the input function F is cold at all call sites. It
// also looks each call site's containing function, returning false if the
// caller function contains other non cold calls. The input vector AllCallsCold
// contains a list of functions that only have call sites in cold blocks.
static bool
isValidCandidateForColdCC(Function &F,
                          function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
                          const std::vector<Function *> &AllCallsCold) {

  if (F.user_empty())
    return false;

  for (User *U : F.users()) {
    if (isa<BlockAddress>(U))
      continue;

    CallBase &CB = cast<CallBase>(*U);
    Function *CallerFunc = CB.getParent()->getParent();
    BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
    if (!isColdCallSite(CB, CallerBFI))
      return false;
    if (!llvm::is_contained(AllCallsCold, CallerFunc))
      return false;
  }
  return true;
}

static void changeCallSitesToColdCC(Function *F) {
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
  }
}

// This function iterates over all the call instructions in the input Function
// and checks that all call sites are in cold blocks and are allowed to use the
// coldcc calling convention.
static bool
hasOnlyColdCalls(Function &F,
                 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
  for (BasicBlock &BB : F) {
    for (Instruction &I : BB) {
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
        // Skip over isline asm instructions since they aren't function calls.
        if (CI->isInlineAsm())
          continue;
        Function *CalledFn = CI->getCalledFunction();
        if (!CalledFn)
          return false;
        if (!CalledFn->hasLocalLinkage())
          return false;
        // Skip over instrinsics since they won't remain as function calls.
        if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
          continue;
        // Check if it's valid to use coldcc calling convention.
        if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
            CalledFn->hasAddressTaken())
          return false;
        BlockFrequencyInfo &CallerBFI = GetBFI(F);
        if (!isColdCallSite(*CI, CallerBFI))
          return false;
      }
    }
  }
  return true;
}

static bool hasMustTailCallers(Function *F) {
  for (User *U : F->users()) {
    CallBase *CB = dyn_cast<CallBase>(U);
    if (!CB) {
      assert(isa<BlockAddress>(U) &&
             "Expected either CallBase or BlockAddress");
      continue;
    }
    if (CB->isMustTailCall())
      return true;
  }
  return false;
}

static bool hasInvokeCallers(Function *F) {
  for (User *U : F->users())
    if (isa<InvokeInst>(U))
      return true;
  return false;
}

static void RemovePreallocated(Function *F) {
  RemoveAttribute(F, Attribute::Preallocated);

  auto *M = F->getParent();

  IRBuilder<> Builder(M->getContext());

  // Cannot modify users() while iterating over it, so make a copy.
  SmallVector<User *, 4> PreallocatedCalls(F->users());
  for (User *U : PreallocatedCalls) {
    CallBase *CB = dyn_cast<CallBase>(U);
    if (!CB)
      continue;

    assert(
        !CB->isMustTailCall() &&
        "Shouldn't call RemotePreallocated() on a musttail preallocated call");
    // Create copy of call without "preallocated" operand bundle.
    SmallVector<OperandBundleDef, 1> OpBundles;
    CB->getOperandBundlesAsDefs(OpBundles);
    CallBase *PreallocatedSetup = nullptr;
    for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
      if (It->getTag() == "preallocated") {
        PreallocatedSetup = cast<CallBase>(*It->input_begin());
        OpBundles.erase(It);
        break;
      }
    }
    assert(PreallocatedSetup && "Did not find preallocated bundle");
    uint64_t ArgCount =
        cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();

    assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
           "Unknown indirect call type");
    CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
    CB->replaceAllUsesWith(NewCB);
    NewCB->takeName(CB);
    CB->eraseFromParent();

    Builder.SetInsertPoint(PreallocatedSetup);
    auto *StackSave =
        Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));

    Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
    Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
                       StackSave);

    // Replace @llvm.call.preallocated.arg() with alloca.
    // Cannot modify users() while iterating over it, so make a copy.
    // @llvm.call.preallocated.arg() can be called with the same index multiple
    // times. So for each @llvm.call.preallocated.arg(), we see if we have
    // already created a Value* for the index, and if not, create an alloca and
    // bitcast right after the @llvm.call.preallocated.setup() so that it
    // dominates all uses.
    SmallVector<Value *, 2> ArgAllocas(ArgCount);
    SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
    for (auto *User : PreallocatedArgs) {
      auto *UseCall = cast<CallBase>(User);
      assert(UseCall->getCalledFunction()->getIntrinsicID() ==
                 Intrinsic::call_preallocated_arg &&
             "preallocated token use was not a llvm.call.preallocated.arg");
      uint64_t AllocArgIndex =
          cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
      Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
      if (!AllocaReplacement) {
        auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
        auto *ArgType = UseCall
                            ->getAttribute(AttributeList::FunctionIndex,
                                           Attribute::Preallocated)
                            .getValueAsType();
        auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
        Builder.SetInsertPoint(InsertBefore);
        auto *Alloca =
            Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
        auto *BitCast = Builder.CreateBitCast(
            Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
        ArgAllocas[AllocArgIndex] = BitCast;
        AllocaReplacement = BitCast;
      }

      UseCall->replaceAllUsesWith(AllocaReplacement);
      UseCall->eraseFromParent();
    }
    // Remove @llvm.call.preallocated.setup().
    cast<Instruction>(PreallocatedSetup)->eraseFromParent();
  }
}

static bool
OptimizeFunctions(Module &M,
                  function_ref<TargetLibraryInfo &(Function &)> GetTLI,
                  function_ref<TargetTransformInfo &(Function &)> GetTTI,
                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
                  function_ref<DominatorTree &(Function &)> LookupDomTree,
                  SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {

  bool Changed = false;

  std::vector<Function *> AllCallsCold;
  for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
    Function *F = &*FI++;
    if (hasOnlyColdCalls(*F, GetBFI))
      AllCallsCold.push_back(F);
  }

  // Optimize functions.
  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
    Function *F = &*FI++;

    // Don't perform global opt pass on naked functions; we don't want fast
    // calling conventions for naked functions.
    if (F->hasFnAttribute(Attribute::Naked))
      continue;

    // Functions without names cannot be referenced outside this module.
    if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
      F->setLinkage(GlobalValue::InternalLinkage);

    if (deleteIfDead(*F, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    // LLVM's definition of dominance allows instructions that are cyclic
    // in unreachable blocks, e.g.:
    // %pat = select i1 %condition, @global, i16* %pat
    // because any instruction dominates an instruction in a block that's
    // not reachable from entry.
    // So, remove unreachable blocks from the function, because a) there's
    // no point in analyzing them and b) GlobalOpt should otherwise grow
    // some more complicated logic to break these cycles.
    // Removing unreachable blocks might invalidate the dominator so we
    // recalculate it.
    if (!F->isDeclaration()) {
      if (removeUnreachableBlocks(*F)) {
        auto &DT = LookupDomTree(*F);
        DT.recalculate(*F);
        Changed = true;
      }
    }

    Changed |= processGlobal(*F, GetTLI, LookupDomTree);

    if (!F->hasLocalLinkage())
      continue;

    // If we have an inalloca parameter that we can safely remove the
    // inalloca attribute from, do so. This unlocks optimizations that
    // wouldn't be safe in the presence of inalloca.
    // FIXME: We should also hoist alloca affected by this to the entry
    // block if possible.
    if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
        !F->hasAddressTaken() && !hasMustTailCallers(F)) {
      RemoveAttribute(F, Attribute::InAlloca);
      Changed = true;
    }

    // FIXME: handle invokes
    // FIXME: handle musttail
    if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
      if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
          !hasInvokeCallers(F)) {
        RemovePreallocated(F);
        Changed = true;
      }
      continue;
    }

    if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
      NumInternalFunc++;
      TargetTransformInfo &TTI = GetTTI(*F);
      // Change the calling convention to coldcc if either stress testing is
      // enabled or the target would like to use coldcc on functions which are
      // cold at all call sites and the callers contain no other non coldcc
      // calls.
      if (EnableColdCCStressTest ||
          (TTI.useColdCCForColdCall(*F) &&
           isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
        F->setCallingConv(CallingConv::Cold);
        changeCallSitesToColdCC(F);
        Changed = true;
        NumColdCC++;
      }
    }

    if (hasChangeableCC(F) && !F->isVarArg() &&
        !F->hasAddressTaken()) {
      // If this function has a calling convention worth changing, is not a
      // varargs function, and is only called directly, promote it to use the
      // Fast calling convention.
      F->setCallingConv(CallingConv::Fast);
      ChangeCalleesToFastCall(F);
      ++NumFastCallFns;
      Changed = true;
    }

    if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
        !F->hasAddressTaken()) {
      // The function is not used by a trampoline intrinsic, so it is safe
      // to remove the 'nest' attribute.
      RemoveAttribute(F, Attribute::Nest);
      ++NumNestRemoved;
      Changed = true;
    }
  }
  return Changed;
}

static bool
OptimizeGlobalVars(Module &M,
                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
                   function_ref<DominatorTree &(Function &)> LookupDomTree,
                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
  bool Changed = false;

  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
       GVI != E; ) {
    GlobalVariable *GV = &*GVI++;
    // Global variables without names cannot be referenced outside this module.
    if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
      GV->setLinkage(GlobalValue::InternalLinkage);
    // Simplify the initializer.
    if (GV->hasInitializer())
      if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
        auto &DL = M.getDataLayout();
        // TLI is not used in the case of a Constant, so use default nullptr
        // for that optional parameter, since we don't have a Function to
        // provide GetTLI anyway.
        Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
        if (New != C)
          GV->setInitializer(New);
      }

    if (deleteIfDead(*GV, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
  }
  return Changed;
}

/// Evaluate a piece of a constantexpr store into a global initializer.  This
/// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
/// GEP operands of Addr [0, OpNo) have been stepped into.
static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
                                   ConstantExpr *Addr, unsigned OpNo) {
  // Base case of the recursion.
  if (OpNo == Addr->getNumOperands()) {
    assert(Val->getType() == Init->getType() && "Type mismatch!");
    return Val;
  }

  SmallVector<Constant*, 32> Elts;
  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
    // Break up the constant into its elements.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      Elts.push_back(Init->getAggregateElement(i));

    // Replace the element that we are supposed to.
    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
    unsigned Idx = CU->getZExtValue();
    assert(Idx < STy->getNumElements() && "Struct index out of range!");
    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);

    // Return the modified struct.
    return ConstantStruct::get(STy, Elts);
  }

  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
  uint64_t NumElts;
  if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
    NumElts = ATy->getNumElements();
  else
    NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();

  // Break up the array into elements.
  for (uint64_t i = 0, e = NumElts; i != e; ++i)
    Elts.push_back(Init->getAggregateElement(i));

  assert(CI->getZExtValue() < NumElts);
  Elts[CI->getZExtValue()] =
    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);

  if (Init->getType()->isArrayTy())
    return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
  return ConstantVector::get(Elts);
}

/// We have decided that Addr (which satisfies the predicate
/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
static void CommitValueTo(Constant *Val, Constant *Addr) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    assert(GV->hasInitializer());
    GV->setInitializer(Val);
    return;
  }

  ConstantExpr *CE = cast<ConstantExpr>(Addr);
  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
}

/// Given a map of address -> value, where addresses are expected to be some form
/// of either a global or a constant GEP, set the initializer for the address to
/// be the value. This performs mostly the same function as CommitValueTo()
/// and EvaluateStoreInto() but is optimized to be more efficient for the common
/// case where the set of addresses are GEPs sharing the same underlying global,
/// processing the GEPs in batches rather than individually.
///
/// To give an example, consider the following C++ code adapted from the clang
/// regression tests:
/// struct S {
///  int n = 10;
///  int m = 2 * n;
///  S(int a) : n(a) {}
/// };
///
/// template<typename T>
/// struct U {
///  T *r = &q;
///  T q = 42;
///  U *p = this;
/// };
///
/// U<S> e;
///
/// The global static constructor for 'e' will need to initialize 'r' and 'p' of
/// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
/// members. This batch algorithm will simply use general CommitValueTo() method
/// to handle the complex nested S struct initialization of 'q', before
/// processing the outermost members in a single batch. Using CommitValueTo() to
/// handle member in the outer struct is inefficient when the struct/array is
/// very large as we end up creating and destroy constant arrays for each
/// initialization.
/// For the above case, we expect the following IR to be generated:
///
/// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
/// %struct.S = type { i32, i32 }
/// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
///                                                  i64 0, i32 1),
///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
/// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
/// constant expression, while the other two elements of @e are "simple".
static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
  SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
  SimpleCEs.reserve(Mem.size());

  for (const auto &I : Mem) {
    if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
      GVs.push_back(std::make_pair(GV, I.second));
    } else {
      ConstantExpr *GEP = cast<ConstantExpr>(I.first);
      // We don't handle the deeply recursive case using the batch method.
      if (GEP->getNumOperands() > 3)
        ComplexCEs.push_back(std::make_pair(GEP, I.second));
      else
        SimpleCEs.push_back(std::make_pair(GEP, I.second));
    }
  }

  // The algorithm below doesn't handle cases like nested structs, so use the
  // slower fully general method if we have to.
  for (auto ComplexCE : ComplexCEs)
    CommitValueTo(ComplexCE.second, ComplexCE.first);

  for (auto GVPair : GVs) {
    assert(GVPair.first->hasInitializer());
    GVPair.first->setInitializer(GVPair.second);
  }

  if (SimpleCEs.empty())
    return;

  // We cache a single global's initializer elements in the case where the
  // subsequent address/val pair uses the same one. This avoids throwing away and
  // rebuilding the constant struct/vector/array just because one element is
  // modified at a time.
  SmallVector<Constant *, 32> Elts;
  Elts.reserve(SimpleCEs.size());
  GlobalVariable *CurrentGV = nullptr;

  auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
    Constant *Init = GV->getInitializer();
    Type *Ty = Init->getType();
    if (Update) {
      if (CurrentGV) {
        assert(CurrentGV && "Expected a GV to commit to!");
        Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
        // We have a valid cache that needs to be committed.
        if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
          CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
        else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
          CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
        else
          CurrentGV->setInitializer(ConstantVector::get(Elts));
      }
      if (CurrentGV == GV)
        return;
      // Need to clear and set up cache for new initializer.
      CurrentGV = GV;
      Elts.clear();
      unsigned NumElts;
      if (auto *STy = dyn_cast<StructType>(Ty))
        NumElts = STy->getNumElements();
      else if (auto *ATy = dyn_cast<ArrayType>(Ty))
        NumElts = ATy->getNumElements();
      else
        NumElts = cast<FixedVectorType>(Ty)->getNumElements();
      for (unsigned i = 0, e = NumElts; i != e; ++i)
        Elts.push_back(Init->getAggregateElement(i));
    }
  };

  for (auto CEPair : SimpleCEs) {
    ConstantExpr *GEP = CEPair.first;
    Constant *Val = CEPair.second;

    GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
    commitAndSetupCache(GV, GV != CurrentGV);
    ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
    Elts[CI->getZExtValue()] = Val;
  }
  // The last initializer in the list needs to be committed, others
  // will be committed on a new initializer being processed.
  commitAndSetupCache(CurrentGV, true);
}

/// Evaluate static constructors in the function, if we can.  Return true if we
/// can, false otherwise.
static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
                                      TargetLibraryInfo *TLI) {
  // Call the function.
  Evaluator Eval(DL, TLI);
  Constant *RetValDummy;
  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
                                           SmallVector<Constant*, 0>());

  if (EvalSuccess) {
    ++NumCtorsEvaluated;

    // We succeeded at evaluation: commit the result.
    LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
                      << F->getName() << "' to "
                      << Eval.getMutatedMemory().size() << " stores.\n");
    BatchCommitValueTo(Eval.getMutatedMemory());
    for (GlobalVariable *GV : Eval.getInvariants())
      GV->setConstant(true);
  }

  return EvalSuccess;
}

static int compareNames(Constant *const *A, Constant *const *B) {
  Value *AStripped = (*A)->stripPointerCasts();
  Value *BStripped = (*B)->stripPointerCasts();
  return AStripped->getName().compare(BStripped->getName());
}

static void setUsedInitializer(GlobalVariable &V,
                               const SmallPtrSetImpl<GlobalValue *> &Init) {
  if (Init.empty()) {
    V.eraseFromParent();
    return;
  }

  // Type of pointer to the array of pointers.
  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);

  SmallVector<Constant *, 8> UsedArray;
  for (GlobalValue *GV : Init) {
    Constant *Cast
      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
    UsedArray.push_back(Cast);
  }
  // Sort to get deterministic order.
  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());

  Module *M = V.getParent();
  V.removeFromParent();
  GlobalVariable *NV =
      new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
                         ConstantArray::get(ATy, UsedArray), "");
  NV->takeName(&V);
  NV->setSection("llvm.metadata");
  delete &V;
}

namespace {

/// An easy to access representation of llvm.used and llvm.compiler.used.
class LLVMUsed {
  SmallPtrSet<GlobalValue *, 8> Used;
  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
  GlobalVariable *UsedV;
  GlobalVariable *CompilerUsedV;

public:
  LLVMUsed(Module &M) {
    UsedV = collectUsedGlobalVariables(M, Used, false);
    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
  }

  using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
  using used_iterator_range = iterator_range<iterator>;

  iterator usedBegin() { return Used.begin(); }
  iterator usedEnd() { return Used.end(); }

  used_iterator_range used() {
    return used_iterator_range(usedBegin(), usedEnd());
  }

  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
  iterator compilerUsedEnd() { return CompilerUsed.end(); }

  used_iterator_range compilerUsed() {
    return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
  }

  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }

  bool compilerUsedCount(GlobalValue *GV) const {
    return CompilerUsed.count(GV);
  }

  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
  bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }

  bool compilerUsedInsert(GlobalValue *GV) {
    return CompilerUsed.insert(GV).second;
  }

  void syncVariablesAndSets() {
    if (UsedV)
      setUsedInitializer(*UsedV, Used);
    if (CompilerUsedV)
      setUsedInitializer(*CompilerUsedV, CompilerUsed);
  }
};

} // end anonymous namespace

static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
  if (GA.use_empty()) // No use at all.
    return false;

  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
         "We should have removed the duplicated "
         "element from llvm.compiler.used");
  if (!GA.hasOneUse())
    // Strictly more than one use. So at least one is not in llvm.used and
    // llvm.compiler.used.
    return true;

  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
}

static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
                                               const LLVMUsed &U) {
  unsigned N = 2;
  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
         "We should have removed the duplicated "
         "element from llvm.compiler.used");
  if (U.usedCount(&V) || U.compilerUsedCount(&V))
    ++N;
  return V.hasNUsesOrMore(N);
}

static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
  if (!GA.hasLocalLinkage())
    return true;

  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
}

static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
                             bool &RenameTarget) {
  RenameTarget = false;
  bool Ret = false;
  if (hasUseOtherThanLLVMUsed(GA, U))
    Ret = true;

  // If the alias is externally visible, we may still be able to simplify it.
  if (!mayHaveOtherReferences(GA, U))
    return Ret;

  // If the aliasee has internal linkage, give it the name and linkage
  // of the alias, and delete the alias.  This turns:
  //   define internal ... @f(...)
  //   @a = alias ... @f
  // into:
  //   define ... @a(...)
  Constant *Aliasee = GA.getAliasee();
  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
  if (!Target->hasLocalLinkage())
    return Ret;

  // Do not perform the transform if multiple aliases potentially target the
  // aliasee. This check also ensures that it is safe to replace the section
  // and other attributes of the aliasee with those of the alias.
  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
    return Ret;

  RenameTarget = true;
  return true;
}

static bool
OptimizeGlobalAliases(Module &M,
                      SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
  bool Changed = false;
  LLVMUsed Used(M);

  for (GlobalValue *GV : Used.used())
    Used.compilerUsedErase(GV);

  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
       I != E;) {
    GlobalAlias *J = &*I++;

    // Aliases without names cannot be referenced outside this module.
    if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
      J->setLinkage(GlobalValue::InternalLinkage);

    if (deleteIfDead(*J, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    // If the alias can change at link time, nothing can be done - bail out.
    if (J->isInterposable())
      continue;

    Constant *Aliasee = J->getAliasee();
    GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
    // We can't trivially replace the alias with the aliasee if the aliasee is
    // non-trivial in some way.
    // TODO: Try to handle non-zero GEPs of local aliasees.
    if (!Target)
      continue;
    Target->removeDeadConstantUsers();

    // Make all users of the alias use the aliasee instead.
    bool RenameTarget;
    if (!hasUsesToReplace(*J, Used, RenameTarget))
      continue;

    J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
    ++NumAliasesResolved;
    Changed = true;

    if (RenameTarget) {
      // Give the aliasee the name, linkage and other attributes of the alias.
      Target->takeName(&*J);
      Target->setLinkage(J->getLinkage());
      Target->setDSOLocal(J->isDSOLocal());
      Target->setVisibility(J->getVisibility());
      Target->setDLLStorageClass(J->getDLLStorageClass());

      if (Used.usedErase(&*J))
        Used.usedInsert(Target);

      if (Used.compilerUsedErase(&*J))
        Used.compilerUsedInsert(Target);
    } else if (mayHaveOtherReferences(*J, Used))
      continue;

    // Delete the alias.
    M.getAliasList().erase(J);
    ++NumAliasesRemoved;
    Changed = true;
  }

  Used.syncVariablesAndSets();

  return Changed;
}

static Function *
FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  // Hack to get a default TLI before we have actual Function.
  auto FuncIter = M.begin();
  if (FuncIter == M.end())
    return nullptr;
  auto *TLI = &GetTLI(*FuncIter);

  LibFunc F = LibFunc_cxa_atexit;
  if (!TLI->has(F))
    return nullptr;

  Function *Fn = M.getFunction(TLI->getName(F));
  if (!Fn)
    return nullptr;

  // Now get the actual TLI for Fn.
  TLI = &GetTLI(*Fn);

  // Make sure that the function has the correct prototype.
  if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
    return nullptr;

  return Fn;
}

/// Returns whether the given function is an empty C++ destructor and can
/// therefore be eliminated.
/// Note that we assume that other optimization passes have already simplified
/// the code so we simply check for 'ret'.
static bool cxxDtorIsEmpty(const Function &Fn) {
  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
  // nounwind, but that doesn't seem worth doing.
  if (Fn.isDeclaration())
    return false;

  for (auto &I : Fn.getEntryBlock()) {
    if (isa<DbgInfoIntrinsic>(I))
      continue;
    if (isa<ReturnInst>(I))
      return true;
    break;
  }
  return false;
}

static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
  /// Itanium C++ ABI p3.3.5:
  ///
  ///   After constructing a global (or local static) object, that will require
  ///   destruction on exit, a termination function is registered as follows:
  ///
  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
  ///
  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
  ///   call f(p) when DSO d is unloaded, before all such termination calls
  ///   registered before this one. It returns zero if registration is
  ///   successful, nonzero on failure.

  // This pass will look for calls to __cxa_atexit where the function is trivial
  // and remove them.
  bool Changed = false;

  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
       I != E;) {
    // We're only interested in calls. Theoretically, we could handle invoke
    // instructions as well, but neither llvm-gcc nor clang generate invokes
    // to __cxa_atexit.
    CallInst *CI = dyn_cast<CallInst>(*I++);
    if (!CI)
      continue;

    Function *DtorFn =
      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
    if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
      continue;

    // Just remove the call.
    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
    CI->eraseFromParent();

    ++NumCXXDtorsRemoved;

    Changed |= true;
  }

  return Changed;
}

static bool optimizeGlobalsInModule(
    Module &M, const DataLayout &DL,
    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<TargetTransformInfo &(Function &)> GetTTI,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
  bool Changed = false;
  bool LocalChange = true;
  while (LocalChange) {
    LocalChange = false;

    NotDiscardableComdats.clear();
    for (const GlobalVariable &GV : M.globals())
      if (const Comdat *C = GV.getComdat())
        if (!GV.isDiscardableIfUnused() || !GV.use_empty())
          NotDiscardableComdats.insert(C);
    for (Function &F : M)
      if (const Comdat *C = F.getComdat())
        if (!F.isDefTriviallyDead())
          NotDiscardableComdats.insert(C);
    for (GlobalAlias &GA : M.aliases())
      if (const Comdat *C = GA.getComdat())
        if (!GA.isDiscardableIfUnused() || !GA.use_empty())
          NotDiscardableComdats.insert(C);

    // Delete functions that are trivially dead, ccc -> fastcc
    LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
                                     NotDiscardableComdats);

    // Optimize global_ctors list.
    LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
      return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
    });

    // Optimize non-address-taken globals.
    LocalChange |=
        OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);

    // Resolve aliases, when possible.
    LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);

    // Try to remove trivial global destructors if they are not removed
    // already.
    Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
    if (CXAAtExitFn)
      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);

    Changed |= LocalChange;
  }

  // TODO: Move all global ctors functions to the end of the module for code
  // layout.

  return Changed;
}

PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
    auto &DL = M.getDataLayout();
    auto &FAM =
        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
    auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
      return FAM.getResult<DominatorTreeAnalysis>(F);
    };
    auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
      return FAM.getResult<TargetLibraryAnalysis>(F);
    };
    auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
      return FAM.getResult<TargetIRAnalysis>(F);
    };

    auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
      return FAM.getResult<BlockFrequencyAnalysis>(F);
    };

    if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
      return PreservedAnalyses::all();
    return PreservedAnalyses::none();
}

namespace {

struct GlobalOptLegacyPass : public ModulePass {
  static char ID; // Pass identification, replacement for typeid

  GlobalOptLegacyPass() : ModulePass(ID) {
    initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    auto &DL = M.getDataLayout();
    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
    };
    auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
      return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    };
    auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
      return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    };

    auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
      return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
    };

    return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
                                   LookupDomTree);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
  }
};

} // end anonymous namespace

char GlobalOptLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
                      "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
                    "Global Variable Optimizer", false, false)

ModulePass *llvm::createGlobalOptimizerPass() {
  return new GlobalOptLegacyPass();
}