XCoreISelLowering.cpp
75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the XCoreTargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "XCoreISelLowering.h"
#include "XCore.h"
#include "XCoreMachineFunctionInfo.h"
#include "XCoreSubtarget.h"
#include "XCoreTargetMachine.h"
#include "XCoreTargetObjectFile.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsXCore.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "xcore-lower"
const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const
{
switch ((XCoreISD::NodeType)Opcode)
{
case XCoreISD::FIRST_NUMBER : break;
case XCoreISD::BL : return "XCoreISD::BL";
case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
case XCoreISD::STWSP : return "XCoreISD::STWSP";
case XCoreISD::RETSP : return "XCoreISD::RETSP";
case XCoreISD::LADD : return "XCoreISD::LADD";
case XCoreISD::LSUB : return "XCoreISD::LSUB";
case XCoreISD::LMUL : return "XCoreISD::LMUL";
case XCoreISD::MACCU : return "XCoreISD::MACCU";
case XCoreISD::MACCS : return "XCoreISD::MACCS";
case XCoreISD::CRC8 : return "XCoreISD::CRC8";
case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
}
return nullptr;
}
XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
const XCoreSubtarget &Subtarget)
: TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
// Set up the register classes.
addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget.getRegisterInfo());
setStackPointerRegisterToSaveRestore(XCore::SP);
setSchedulingPreference(Sched::Source);
// Use i32 for setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
// XCore does not have the NodeTypes below.
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
// 64bit
setOperationAction(ISD::ADD, MVT::i64, Custom);
setOperationAction(ISD::SUB, MVT::i64, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// Bit Manipulation
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// Jump tables.
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
// Conversion of i64 -> double produces constantpool nodes
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
// Loads
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
}
// Custom expand misaligned loads / stores.
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
// Varargs
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
// Dynamic stack
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// Exception handling
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
// Atomic operations
// We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
// As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
// TRAMPOLINE is custom lowered.
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
= MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setMinFunctionAlignment(Align(2));
setPrefFunctionAlignment(Align(4));
}
bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
if (Val.getOpcode() != ISD::LOAD)
return false;
EVT VT1 = Val.getValueType();
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i8:
return true;
}
return false;
}
SDValue XCoreTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode())
{
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
// FIXME: Remove these when LegalizeDAGTypes lands.
case ISD::ADD:
case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
default:
llvm_unreachable("unimplemented operand");
}
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
case ISD::ADD:
case ISD::SUB:
Results.push_back(ExpandADDSUB(N, DAG));
return;
}
}
//===----------------------------------------------------------------------===//
// Misc Lower Operation implementation
//===----------------------------------------------------------------------===//
SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
const GlobalValue *GV,
SelectionDAG &DAG) const {
// FIXME there is no actual debug info here
SDLoc dl(GA);
if (GV->getValueType()->isFunctionTy())
return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
const auto *GVar = dyn_cast<GlobalVariable>(GV);
if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
(GVar && GVar->isConstant() && GV->hasLocalLinkage()))
return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
}
static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
return true;
Type *ObjType = GV->getValueType();
if (!ObjType->isSized())
return false;
auto &DL = GV->getParent()->getDataLayout();
unsigned ObjSize = DL.getTypeAllocSize(ObjType);
return ObjSize < CodeModelLargeSize && ObjSize != 0;
}
SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
{
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
SDLoc DL(GN);
int64_t Offset = GN->getOffset();
if (IsSmallObject(GV, *this)) {
// We can only fold positive offsets that are a multiple of the word size.
int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
GA = getGlobalAddressWrapper(GA, GV, DAG);
// Handle the rest of the offset.
if (Offset != FoldedOffset) {
SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
}
return GA;
} else {
// Ideally we would not fold in offset with an index <= 11.
Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
Ty = Type::getInt32Ty(*DAG.getContext());
Constant *Idx = ConstantInt::get(Ty, Offset);
Constant *GAI = ConstantExpr::getGetElementPtr(
Type::getInt8Ty(*DAG.getContext()), GA, Idx);
SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
DAG.getEntryNode(), CP, MachinePointerInfo());
}
}
SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
{
SDLoc DL(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
}
SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really debug info here
SDLoc dl(CP);
EVT PtrVT = Op.getValueType();
SDValue Res;
if (CP->isMachineConstantPoolEntry()) {
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlign(), CP->getOffset());
} else {
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
CP->getOffset());
}
return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
}
unsigned XCoreTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
{
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc dl(Op);
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
unsigned JTI = JT->getIndex();
MachineFunction &MF = DAG.getMachineFunction();
const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
if (NumEntries <= 32) {
return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
}
assert((NumEntries >> 31) == 0);
SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
ScaledIndex);
}
SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
SelectionDAG &DAG) const {
auto PtrVT = getPointerTy(DAG.getDataLayout());
if ((Offset & 0x3) == 0) {
return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
}
// Lower to pair of consecutive word aligned loads plus some bit shifting.
int32_t HighOffset = alignTo(Offset, 4);
int32_t LowOffset = HighOffset - 4;
SDValue LowAddr, HighAddr;
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
LowOffset);
HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
HighOffset);
} else {
LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
DAG.getConstant(LowOffset, DL, MVT::i32));
HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
DAG.getConstant(HighOffset, DL, MVT::i32));
}
SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
High.getValue(1));
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, DL);
}
static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
{
KnownBits Known = DAG.computeKnownBits(Value);
return Known.countMinTrailingZeros() >= 2;
}
SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
LLVMContext &Context = *DAG.getContext();
LoadSDNode *LD = cast<LoadSDNode>(Op);
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
"Unexpected extension type");
assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
LD->getMemoryVT(), *LD->getMemOperand()))
return SDValue();
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
SDLoc DL(Op);
if (!LD->isVolatile()) {
const GlobalValue *GV;
int64_t Offset = 0;
if (DAG.isBaseWithConstantOffset(BasePtr) &&
isWordAligned(BasePtr->getOperand(0), DAG)) {
SDValue NewBasePtr = BasePtr->getOperand(0);
Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
Offset, DAG);
}
if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
BasePtr->getValueType(0));
return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
Offset, DAG);
}
}
if (LD->getAlignment() == 2) {
SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
LD->getPointerInfo(), MVT::i16, Align(2),
LD->getMemOperand()->getFlags());
SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(2, DL, MVT::i32));
SDValue High =
DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
LD->getPointerInfo().getWithOffset(2), MVT::i16,
Align(2), LD->getMemOperand()->getFlags());
SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
DAG.getConstant(16, DL, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
High.getValue(1));
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, DL);
}
// Lower to a call to __misaligned_load(BasePtr).
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = BasePtr;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
CallingConv::C, IntPtrTy,
DAG.getExternalSymbol("__misaligned_load",
getPointerTy(DAG.getDataLayout())),
std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
SDValue Ops[] = { CallResult.first, CallResult.second };
return DAG.getMergeValues(Ops, DL);
}
SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
LLVMContext &Context = *DAG.getContext();
StoreSDNode *ST = cast<StoreSDNode>(Op);
assert(!ST->isTruncatingStore() && "Unexpected store type");
assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
ST->getMemoryVT(), *ST->getMemOperand()))
return SDValue();
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
SDValue Value = ST->getValue();
SDLoc dl(Op);
if (ST->getAlignment() == 2) {
SDValue Low = Value;
SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
DAG.getConstant(16, dl, MVT::i32));
SDValue StoreLow =
DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
MVT::i16, Align(2), ST->getMemOperand()->getFlags());
SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
DAG.getConstant(2, dl, MVT::i32));
SDValue StoreHigh = DAG.getTruncStore(
Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
MVT::i16, Align(2), ST->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
}
// Lower to a call to __misaligned_store(BasePtr, Value).
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = BasePtr;
Args.push_back(Entry);
Entry.Node = Value;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain).setCallee(
CallingConv::C, Type::getVoidTy(Context),
DAG.getExternalSymbol("__misaligned_store",
getPointerTy(DAG.getDataLayout())),
std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
}
SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
{
assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
"Unexpected operand to lower!");
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
LHS, RHS);
SDValue Lo(Hi.getNode(), 1);
SDValue Ops[] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
{
assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
"Unexpected operand to lower!");
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
Zero, Zero);
SDValue Lo(Hi.getNode(), 1);
SDValue Ops[] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
/// isADDADDMUL - Return whether Op is in a form that is equivalent to
/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
/// each intermediate result in the calculation must also have a single use.
/// If the Op is in the correct form the constituent parts are written to Mul0,
/// Mul1, Addend0 and Addend1.
static bool
isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
SDValue &Addend1, bool requireIntermediatesHaveOneUse)
{
if (Op.getOpcode() != ISD::ADD)
return false;
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue AddOp;
SDValue OtherOp;
if (N0.getOpcode() == ISD::ADD) {
AddOp = N0;
OtherOp = N1;
} else if (N1.getOpcode() == ISD::ADD) {
AddOp = N1;
OtherOp = N0;
} else {
return false;
}
if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
return false;
if (OtherOp.getOpcode() == ISD::MUL) {
// add(add(a,b),mul(x,y))
if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
return false;
Mul0 = OtherOp.getOperand(0);
Mul1 = OtherOp.getOperand(1);
Addend0 = AddOp.getOperand(0);
Addend1 = AddOp.getOperand(1);
return true;
}
if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
// add(add(mul(x,y),a),b)
if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
return false;
Mul0 = AddOp.getOperand(0).getOperand(0);
Mul1 = AddOp.getOperand(0).getOperand(1);
Addend0 = AddOp.getOperand(1);
Addend1 = OtherOp;
return true;
}
if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
// add(add(a,mul(x,y)),b)
if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
return false;
Mul0 = AddOp.getOperand(1).getOperand(0);
Mul1 = AddOp.getOperand(1).getOperand(1);
Addend0 = AddOp.getOperand(0);
Addend1 = OtherOp;
return true;
}
return false;
}
SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
{
SDValue Mul;
SDValue Other;
if (N->getOperand(0).getOpcode() == ISD::MUL) {
Mul = N->getOperand(0);
Other = N->getOperand(1);
} else if (N->getOperand(1).getOpcode() == ISD::MUL) {
Mul = N->getOperand(1);
Other = N->getOperand(0);
} else {
return SDValue();
}
SDLoc dl(N);
SDValue LL, RL, AddendL, AddendH;
LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Other, DAG.getConstant(0, dl, MVT::i32));
AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Other, DAG.getConstant(1, dl, MVT::i32));
APInt HighMask = APInt::getHighBitsSet(64, 32);
unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
// The inputs are both zero-extended.
SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
if (LHSSB > 32 && RHSSB > 32) {
// The inputs are both sign-extended.
SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue LH, RH;
LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
{
assert(N->getValueType(0) == MVT::i64 &&
(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Unknown operand to lower!");
if (N->getOpcode() == ISD::ADD)
if (SDValue Result = TryExpandADDWithMul(N, DAG))
return Result;
SDLoc dl(N);
// Extract components
SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(1),
DAG.getConstant(0, dl, MVT::i32));
SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(1),
DAG.getConstant(1, dl, MVT::i32));
// Expand
unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
XCoreISD::LSUB;
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
LHSL, RHSL, Zero);
SDValue Carry(Lo.getNode(), 1);
SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
LHSH, RHSH, Carry);
SDValue Ignored(Hi.getNode(), 1);
// Merge the pieces
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op, SelectionDAG &DAG) const
{
// Whist llvm does not support aggregate varargs we can ignore
// the possibility of the ValueType being an implicit byVal vararg.
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0); // not an aggregate
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
EVT PtrVT = VAListPtr.getValueType();
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc dl(Node);
SDValue VAList =
DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
// Increment the pointer, VAList, to the next vararg
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
dl));
// Store the incremented VAList to the legalized pointer
InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
MachinePointerInfo(SV));
// Load the actual argument out of the pointer VAList
return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
}
SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op, SelectionDAG &DAG) const
{
SDLoc dl(Op);
// vastart stores the address of the VarArgsFrameIndex slot into the
// memory location argument
MachineFunction &MF = DAG.getMachineFunction();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
MachinePointerInfo());
}
SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
// This nodes represent llvm.frameaddress on the DAG.
// It takes one operand, the index of the frame address to return.
// An index of zero corresponds to the current function's frame address.
// An index of one to the parent's frame address, and so on.
// Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
RegInfo->getFrameRegister(MF), MVT::i32);
}
SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
// This nodes represent llvm.returnaddress on the DAG.
// It takes one operand, the index of the return address to return.
// An index of zero corresponds to the current function's return address.
// An index of one to the parent's return address, and so on.
// Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
int FI = XFI->createLRSpillSlot(MF);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
DAG.getEntryNode(), FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
// This node represents offset from frame pointer to first on-stack argument.
// This is needed for correct stack adjustment during unwind.
// However, we don't know the offset until after the frame has be finalised.
// This is done during the XCoreFTAOElim pass.
return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
}
SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
// This node represents 'eh_return' gcc dwarf builtin, which is used to
// return from exception. The general meaning is: adjust stack by OFFSET and
// pass execution to HANDLER.
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl(Op);
// Absolute SP = (FP + FrameToArgs) + Offset
const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
RegInfo->getFrameRegister(MF), MVT::i32);
SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
MVT::i32);
Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
// R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
// which leaves 2 caller saved registers, R2 & R3 for us to use.
unsigned StackReg = XCore::R2;
unsigned HandlerReg = XCore::R3;
SDValue OutChains[] = {
DAG.getCopyToReg(Chain, dl, StackReg, Stack),
DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
};
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
DAG.getRegister(StackReg, MVT::i32),
DAG.getRegister(HandlerReg, MVT::i32));
}
SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
return Op.getOperand(0);
}
SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
// .align 4
// LDAPF_u10 r11, nest
// LDW_2rus r11, r11[0]
// STWSP_ru6 r11, sp[0]
// LDAPF_u10 r11, fptr
// LDW_2rus r11, r11[0]
// BAU_1r r11
// nest:
// .word nest
// fptr:
// .word fptr
SDValue OutChains[5];
SDValue Addr = Trmp;
SDLoc dl(Op);
OutChains[0] =
DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
MachinePointerInfo(TrmpAddr));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(4, dl, MVT::i32));
OutChains[1] =
DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
MachinePointerInfo(TrmpAddr, 4));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(8, dl, MVT::i32));
OutChains[2] =
DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
MachinePointerInfo(TrmpAddr, 8));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(12, dl, MVT::i32));
OutChains[3] =
DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(16, dl, MVT::i32));
OutChains[4] =
DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
case Intrinsic::xcore_crc8:
EVT VT = Op.getValueType();
SDValue Data =
DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
SDValue Crc(Data.getNode(), 1);
SDValue Results[] = { Crc, Data };
return DAG.getMergeValues(Results, DL);
}
return SDValue();
}
SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
}
SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *N = cast<AtomicSDNode>(Op);
assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
assert((N->getOrdering() == AtomicOrdering::Unordered ||
N->getOrdering() == AtomicOrdering::Monotonic) &&
"setInsertFencesForAtomic(true) expects unordered / monotonic");
if (N->getMemoryVT() == MVT::i32) {
if (N->getAlignment() < 4)
report_fatal_error("atomic load must be aligned");
return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
N->getChain(), N->getBasePtr(), N->getPointerInfo(),
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo(), N->getRanges());
}
if (N->getMemoryVT() == MVT::i16) {
if (N->getAlignment() < 2)
report_fatal_error("atomic load must be aligned");
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
N->getBasePtr(), N->getPointerInfo(), MVT::i16,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i8)
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
N->getBasePtr(), N->getPointerInfo(), MVT::i8,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
return SDValue();
}
SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *N = cast<AtomicSDNode>(Op);
assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
assert((N->getOrdering() == AtomicOrdering::Unordered ||
N->getOrdering() == AtomicOrdering::Monotonic) &&
"setInsertFencesForAtomic(true) expects unordered / monotonic");
if (N->getMemoryVT() == MVT::i32) {
if (N->getAlignment() < 4)
report_fatal_error("atomic store must be aligned");
return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
N->getPointerInfo(), N->getAlignment(),
N->getMemOperand()->getFlags(), N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i16) {
if (N->getAlignment() < 2)
report_fatal_error("atomic store must be aligned");
return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(), MVT::i16,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i8)
return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(), MVT::i8,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
return SDValue();
}
MachineMemOperand::Flags
XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
// Because of how we convert atomic_load and atomic_store to normal loads and
// stores in the DAG, we need to ensure that the MMOs are marked volatile
// since DAGCombine hasn't been updated to account for atomic, but non
// volatile loads. (See D57601)
if (auto *SI = dyn_cast<StoreInst>(&I))
if (SI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *LI = dyn_cast<LoadInst>(&I))
if (LI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
if (AI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
if (AI->isAtomic())
return MachineMemOperand::MOVolatile;
return MachineMemOperand::MONone;
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "XCoreGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// XCore call implementation
SDValue
XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// XCore target does not yet support tail call optimization.
isTailCall = false;
// For now, only CallingConv::C implemented
switch (CallConv)
{
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, OutVals, Ins, dl, DAG, InVals);
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers / memory locations.
static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
const SmallVectorImpl<CCValAssign> &RVLocs,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
// Copy results out of physical registers.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
const CCValAssign &VA = RVLocs[i];
if (VA.isRegLoc()) {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
} else {
assert(VA.isMemLoc());
ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
InVals.size()));
// Reserve space for this result.
InVals.push_back(SDValue());
}
}
// Copy results out of memory.
SmallVector<SDValue, 4> MemOpChains;
for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
int offset = ResultMemLocs[i].first;
unsigned index = ResultMemLocs[i].second;
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
InVals[index] = load;
MemOpChains.push_back(load.getValue(1));
}
// Transform all loads nodes into one single node because
// all load nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
return Chain;
}
/// LowerCCCCallTo - functions arguments are copied from virtual
/// regs to (physical regs)/(stack frame), CALLSEQ_START and
/// CALLSEQ_END are emitted.
/// TODO: isTailCall, sret.
SDValue XCoreTargetLowering::LowerCCCCallTo(
SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// The ABI dictates there should be one stack slot available to the callee
// on function entry (for saving lr).
CCInfo.AllocateStack(4, Align(4));
CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
SmallVector<CCValAssign, 16> RVLocs;
// Analyze return values to determine the number of bytes of stack required.
CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = RetCCInfo.getNextStackOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
int Offset = VA.getLocMemOffset();
MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
Chain, Arg,
DAG.getConstant(Offset/4, dl,
MVT::i32)));
}
}
// Transform all store nodes into one single node because
// all store nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
// XCoreBranchLink = #chain, #target_address, #opt_in_flags...
// = Chain, Callee, Reg#1, Reg#2, ...
//
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
namespace {
struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
}
/// XCore formal arguments implementation
SDValue XCoreTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv)
{
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
}
/// LowerCCCArguments - transform physical registers into
/// virtual registers and generate load operations for
/// arguments places on the stack.
/// TODO: sret
SDValue XCoreTargetLowering::LowerCCCArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
unsigned LRSaveSize = StackSlotSize;
if (!isVarArg)
XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
// All getCopyFromReg ops must precede any getMemcpys to prevent the
// scheduler clobbering a register before it has been copied.
// The stages are:
// 1. CopyFromReg (and load) arg & vararg registers.
// 2. Chain CopyFromReg nodes into a TokenFactor.
// 3. Memcpy 'byVal' args & push final InVals.
// 4. Chain mem ops nodes into a TokenFactor.
SmallVector<SDValue, 4> CFRegNode;
SmallVector<ArgDataPair, 4> ArgData;
SmallVector<SDValue, 4> MemOps;
// 1a. CopyFromReg (and load) arg registers.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgIn;
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
switch (RegVT.getSimpleVT().SimpleTy) {
default:
{
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< RegVT.getEVTString() << "\n";
#endif
llvm_unreachable(nullptr);
}
case MVT::i32:
Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
}
} else {
// sanity check
assert(VA.isMemLoc());
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > StackSlotSize) {
errs() << "LowerFormalArguments Unhandled argument type: "
<< EVT(VA.getLocVT()).getEVTString()
<< "\n";
}
// Create the frame index object for this incoming parameter...
int FI = MFI.CreateFixedObject(ObjSize,
LRSaveSize + VA.getLocMemOffset(),
true);
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
ArgData.push_back(ADP);
}
// 1b. CopyFromReg vararg registers.
if (isVarArg) {
// Argument registers
static const MCPhysReg ArgRegs[] = {
XCore::R0, XCore::R1, XCore::R2, XCore::R3
};
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
if (FirstVAReg < array_lengthof(ArgRegs)) {
int offset = 0;
// Save remaining registers, storing higher register numbers at a higher
// address
for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
// Create a stack slot
int FI = MFI.CreateFixedObject(4, offset, true);
if (i == (int)FirstVAReg) {
XFI->setVarArgsFrameIndex(FI);
}
offset -= StackSlotSize;
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
// Move argument from phys reg -> virt reg
Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
RegInfo.addLiveIn(ArgRegs[i], VReg);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
// Move argument from virt reg -> stack
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
MemOps.push_back(Store);
}
} else {
// This will point to the next argument passed via stack.
XFI->setVarArgsFrameIndex(
MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
true));
}
}
// 2. chain CopyFromReg nodes into a TokenFactor.
if (!CFRegNode.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
// 3. Memcpy 'byVal' args & push final InVals.
// Aggregates passed "byVal" need to be copied by the callee.
// The callee will use a pointer to this copy, rather than the original
// pointer.
for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
ArgDE = ArgData.end();
ArgDI != ArgDE; ++ArgDI) {
if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
unsigned Size = ArgDI->Flags.getByValSize();
Align Alignment =
std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
// Create a new object on the stack and copy the pointee into it.
int FI = MFI.CreateStackObject(Size, Alignment, false);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
InVals.push_back(FIN);
MemOps.push_back(DAG.getMemcpy(
Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
Alignment, false, false, false, MachinePointerInfo(),
MachinePointerInfo()));
} else {
InVals.push_back(ArgDI->SDV);
}
}
// 4, chain mem ops nodes into a TokenFactor.
if (!MemOps.empty()) {
MemOps.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
return false;
if (CCInfo.getNextStackOffset() != 0 && isVarArg)
return false;
return true;
}
SDValue
XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
XCoreFunctionInfo *XFI =
DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
if (!isVarArg)
CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Return on XCore is always a "retsp 0"
RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
SmallVector<SDValue, 4> MemOpChains;
// Handle return values that must be copied to memory.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (VA.isRegLoc())
continue;
assert(VA.isMemLoc());
if (isVarArg) {
report_fatal_error("Can't return value from vararg function in memory");
}
int Offset = VA.getLocMemOffset();
unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
// Create the frame index object for the memory location.
int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
// Create a SelectionDAG node corresponding to a store
// to this memory location.
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
MemOpChains.push_back(DAG.getStore(
Chain, dl, OutVals[i], FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
// Transform all store nodes into one single node because
// all stores are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Now handle return values copied to registers.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (!VA.isRegLoc())
continue;
// Copy the result values into the output registers.
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
// guarantee that all emitted copies are
// stuck together, avoiding something bad
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
assert((MI.getOpcode() == XCore::SELECT_CC) &&
"Unexpected instr type to insert");
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
.addReg(MI.getOperand(1).getReg())
.addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(3).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
switch (N->getOpcode()) {
default: break;
case ISD::INTRINSIC_VOID:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
case Intrinsic::xcore_outt:
case Intrinsic::xcore_outct:
case Intrinsic::xcore_chkct: {
SDValue OutVal = N->getOperand(3);
// These instructions ignore the high bits.
if (OutVal.hasOneUse()) {
unsigned BitWidth = OutVal.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case Intrinsic::xcore_setpt: {
SDValue Time = N->getOperand(3);
// This instruction ignores the high bits.
if (Time.hasOneUse()) {
unsigned BitWidth = Time.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
}
break;
case XCoreISD::LADD: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
// fold (ladd 0, 0, x) -> 0, x & 1
if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
SDValue Carry = DAG.getConstant(0, dl, VT);
SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
DAG.getConstant(1, dl, VT));
SDValue Ops[] = { Result, Carry };
return DAG.getMergeValues(Ops, dl);
}
// fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
// low bit set
if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
KnownBits Known = DAG.computeKnownBits(N2);
if ((Known.Zero & Mask) == Mask) {
SDValue Carry = DAG.getConstant(0, dl, VT);
SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
SDValue Ops[] = { Result, Carry };
return DAG.getMergeValues(Ops, dl);
}
}
}
break;
case XCoreISD::LSUB: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
KnownBits Known = DAG.computeKnownBits(N2);
if ((Known.Zero & Mask) == Mask) {
SDValue Borrow = N2;
SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
DAG.getConstant(0, dl, VT), N2);
SDValue Ops[] = { Result, Borrow };
return DAG.getMergeValues(Ops, dl);
}
}
// fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
// low bit set
if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
KnownBits Known = DAG.computeKnownBits(N2);
if ((Known.Zero & Mask) == Mask) {
SDValue Borrow = DAG.getConstant(0, dl, VT);
SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
SDValue Ops[] = { Result, Borrow };
return DAG.getMergeValues(Ops, dl);
}
}
}
break;
case XCoreISD::LMUL: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// Canonicalize multiplicative constant to RHS. If both multiplicative
// operands are constant canonicalize smallest to RHS.
if ((N0C && !N1C) ||
(N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
N1, N0, N2, N3);
// lmul(x, 0, a, b)
if (N1C && N1C->isNullValue()) {
// If the high result is unused fold to add(a, b)
if (N->hasNUsesOfValue(0, 0)) {
SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
SDValue Ops[] = { Lo, Lo };
return DAG.getMergeValues(Ops, dl);
}
// Otherwise fold to ladd(a, b, 0)
SDValue Result =
DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
SDValue Carry(Result.getNode(), 1);
SDValue Ops[] = { Carry, Result };
return DAG.getMergeValues(Ops, dl);
}
}
break;
case ISD::ADD: {
// Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
// lmul(x, y, a, b). The high result of lmul will be ignored.
// This is only profitable if the intermediate results are unused
// elsewhere.
SDValue Mul0, Mul1, Addend0, Addend1;
if (N->getValueType(0) == MVT::i32 &&
isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), Mul0,
Mul1, Addend0, Addend1);
SDValue Result(Ignored.getNode(), 1);
return Result;
}
APInt HighMask = APInt::getHighBitsSet(64, 32);
// Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
// lmul(x, y, a, b) if all operands are zero-extended. We do this
// before type legalization as it is messy to match the operands after
// that.
if (N->getValueType(0) == MVT::i64 &&
isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
DAG.MaskedValueIsZero(Mul0, HighMask) &&
DAG.MaskedValueIsZero(Mul1, HighMask) &&
DAG.MaskedValueIsZero(Addend0, HighMask) &&
DAG.MaskedValueIsZero(Addend1, HighMask)) {
SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul0, DAG.getConstant(0, dl, MVT::i32));
SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul1, DAG.getConstant(0, dl, MVT::i32));
SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Addend0, DAG.getConstant(0, dl, MVT::i32));
SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Addend1, DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
Addend0L, Addend1L);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
}
break;
case ISD::STORE: {
// Replace unaligned store of unaligned load with memmove.
StoreSDNode *ST = cast<StoreSDNode>(N);
if (!DCI.isBeforeLegalize() ||
allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
ST->getMemoryVT(),
*ST->getMemOperand()) ||
ST->isVolatile() || ST->isIndexed()) {
break;
}
SDValue Chain = ST->getChain();
unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
assert((StoreBits % 8) == 0 &&
"Store size in bits must be a multiple of 8");
unsigned Alignment = ST->getAlignment();
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
LD->getAlignment() == Alignment &&
!LD->isVolatile() && !LD->isIndexed() &&
Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
bool isTail = isInTailCallPosition(DAG, ST, Chain);
return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
DAG.getConstant(StoreBits / 8, dl, MVT::i32),
Align(Alignment), false, isTail,
ST->getPointerInfo(), LD->getPointerInfo());
}
}
break;
}
}
return SDValue();
}
void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
Known.resetAll();
switch (Op.getOpcode()) {
default: break;
case XCoreISD::LADD:
case XCoreISD::LSUB:
if (Op.getResNo() == 1) {
// Top bits of carry / borrow are clear.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 1);
}
break;
case ISD::INTRINSIC_W_CHAIN:
{
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntNo) {
case Intrinsic::xcore_getts:
// High bits are known to be zero.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 16);
break;
case Intrinsic::xcore_int:
case Intrinsic::xcore_inct:
// High bits are known to be zero.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 8);
break;
case Intrinsic::xcore_testct:
// Result is either 0 or 1.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 1);
break;
case Intrinsic::xcore_testwct:
// Result is in the range 0 - 4.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 3);
break;
}
}
break;
}
}
//===----------------------------------------------------------------------===//
// Addressing mode description hooks
//===----------------------------------------------------------------------===//
static inline bool isImmUs(int64_t val)
{
return (val >= 0 && val <= 11);
}
static inline bool isImmUs2(int64_t val)
{
return (val%2 == 0 && isImmUs(val/2));
}
static inline bool isImmUs4(int64_t val)
{
return (val%4 == 0 && isImmUs(val/4));
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I) const {
if (Ty->getTypeID() == Type::VoidTyID)
return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
unsigned Size = DL.getTypeAllocSize(Ty);
if (AM.BaseGV) {
return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
AM.BaseOffs%4 == 0;
}
switch (Size) {
case 1:
// reg + imm
if (AM.Scale == 0) {
return isImmUs(AM.BaseOffs);
}
// reg + reg
return AM.Scale == 1 && AM.BaseOffs == 0;
case 2:
case 3:
// reg + imm
if (AM.Scale == 0) {
return isImmUs2(AM.BaseOffs);
}
// reg + reg<<1
return AM.Scale == 2 && AM.BaseOffs == 0;
default:
// reg + imm
if (AM.Scale == 0) {
return isImmUs4(AM.BaseOffs);
}
// reg + reg<<2
return AM.Scale == 4 && AM.BaseOffs == 0;
}
}
//===----------------------------------------------------------------------===//
// XCore Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default : break;
case 'r':
return std::make_pair(0U, &XCore::GRRegsRegClass);
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}