X86ExpandPseudo.cpp 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, other late
// optimizations, or simply the encoding of the instructions.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
#include "llvm/IR/GlobalValue.h"
using namespace llvm;

#define DEBUG_TYPE "x86-pseudo"
#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"

namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
  static char ID;
  X86ExpandPseudo() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addPreservedID(MachineLoopInfoID);
    AU.addPreservedID(MachineDominatorsID);
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  const X86Subtarget *STI = nullptr;
  const X86InstrInfo *TII = nullptr;
  const X86RegisterInfo *TRI = nullptr;
  const X86MachineFunctionInfo *X86FI = nullptr;
  const X86FrameLowering *X86FL = nullptr;

  bool runOnMachineFunction(MachineFunction &Fn) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

  StringRef getPassName() const override {
    return "X86 pseudo instruction expansion pass";
  }

private:
  void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
                               MachineBasicBlock::iterator MBBI);

  bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
  bool ExpandMBB(MachineBasicBlock &MBB);
};
char X86ExpandPseudo::ID = 0;

} // End anonymous namespace.

INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
                false)

void X86ExpandPseudo::ExpandICallBranchFunnel(
    MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
  MachineBasicBlock *JTMBB = MBB;
  MachineInstr *JTInst = &*MBBI;
  MachineFunction *MF = MBB->getParent();
  const BasicBlock *BB = MBB->getBasicBlock();
  auto InsPt = MachineFunction::iterator(MBB);
  ++InsPt;

  std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
  DebugLoc DL = JTInst->getDebugLoc();
  MachineOperand Selector = JTInst->getOperand(0);
  const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();

  auto CmpTarget = [&](unsigned Target) {
    if (Selector.isReg())
      MBB->addLiveIn(Selector.getReg());
    BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
        .addReg(X86::RIP)
        .addImm(1)
        .addReg(0)
        .addGlobalAddress(CombinedGlobal,
                          JTInst->getOperand(2 + 2 * Target).getImm())
        .addReg(0);
    BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
        .add(Selector)
        .addReg(X86::R11);
  };

  auto CreateMBB = [&]() {
    auto *NewMBB = MF->CreateMachineBasicBlock(BB);
    MBB->addSuccessor(NewMBB);
    if (!MBB->isLiveIn(X86::EFLAGS))
      MBB->addLiveIn(X86::EFLAGS);
    return NewMBB;
  };

  auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
    BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);

    auto *ElseMBB = CreateMBB();
    MF->insert(InsPt, ElseMBB);
    MBB = ElseMBB;
    MBBI = MBB->end();
  };

  auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
    auto *ThenMBB = CreateMBB();
    TargetMBBs.push_back({ThenMBB, Target});
    EmitCondJump(CC, ThenMBB);
  };

  auto EmitTailCall = [&](unsigned Target) {
    BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
        .add(JTInst->getOperand(3 + 2 * Target));
  };

  std::function<void(unsigned, unsigned)> EmitBranchFunnel =
      [&](unsigned FirstTarget, unsigned NumTargets) {
    if (NumTargets == 1) {
      EmitTailCall(FirstTarget);
      return;
    }

    if (NumTargets == 2) {
      CmpTarget(FirstTarget + 1);
      EmitCondJumpTarget(X86::COND_B, FirstTarget);
      EmitTailCall(FirstTarget + 1);
      return;
    }

    if (NumTargets < 6) {
      CmpTarget(FirstTarget + 1);
      EmitCondJumpTarget(X86::COND_B, FirstTarget);
      EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
      EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
      return;
    }

    auto *ThenMBB = CreateMBB();
    CmpTarget(FirstTarget + (NumTargets / 2));
    EmitCondJump(X86::COND_B, ThenMBB);
    EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
    EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
                  NumTargets - (NumTargets / 2) - 1);

    MF->insert(InsPt, ThenMBB);
    MBB = ThenMBB;
    MBBI = MBB->end();
    EmitBranchFunnel(FirstTarget, NumTargets / 2);
  };

  EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
  for (auto P : TargetMBBs) {
    MF->insert(InsPt, P.first);
    BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
        .add(JTInst->getOperand(3 + 2 * P.second));
  }
  JTMBB->erase(JTInst);
}

/// If \p MBBI is a pseudo instruction, this method expands
/// it to the corresponding (sequence of) actual instruction(s).
/// \returns true if \p MBBI has been expanded.
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator MBBI) {
  MachineInstr &MI = *MBBI;
  unsigned Opcode = MI.getOpcode();
  DebugLoc DL = MBBI->getDebugLoc();
  switch (Opcode) {
  default:
    return false;
  case X86::TCRETURNdi:
  case X86::TCRETURNdicc:
  case X86::TCRETURNri:
  case X86::TCRETURNmi:
  case X86::TCRETURNdi64:
  case X86::TCRETURNdi64cc:
  case X86::TCRETURNri64:
  case X86::TCRETURNmi64: {
    bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
                                                         : 1);
    assert(StackAdjust.isImm() && "Expecting immediate value.");

    // Adjust stack pointer.
    int StackAdj = StackAdjust.getImm();
    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
    int Offset = 0;
    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");

    // Incoporate the retaddr area.
    Offset = StackAdj - MaxTCDelta;
    assert(Offset >= 0 && "Offset should never be negative");

    if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
      assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
    }

    if (Offset) {
      // Check for possible merge with preceding ADD instruction.
      Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
      X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
    }

    // Jump to label or value in register.
    bool IsWin64 = STI->isTargetWin64();
    if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
        Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
      unsigned Op;
      switch (Opcode) {
      case X86::TCRETURNdi:
        Op = X86::TAILJMPd;
        break;
      case X86::TCRETURNdicc:
        Op = X86::TAILJMPd_CC;
        break;
      case X86::TCRETURNdi64cc:
        assert(!MBB.getParent()->hasWinCFI() &&
               "Conditional tail calls confuse "
               "the Win64 unwinder.");
        Op = X86::TAILJMPd64_CC;
        break;
      default:
        // Note: Win64 uses REX prefixes indirect jumps out of functions, but
        // not direct ones.
        Op = X86::TAILJMPd64;
        break;
      }
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      if (JumpTarget.isGlobal()) {
        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
                             JumpTarget.getTargetFlags());
      } else {
        assert(JumpTarget.isSymbol());
        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
                              JumpTarget.getTargetFlags());
      }
      if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
        MIB.addImm(MBBI->getOperand(2).getImm());
      }

    } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
      unsigned Op = (Opcode == X86::TCRETURNmi)
                        ? X86::TAILJMPm
                        : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
        MIB.add(MBBI->getOperand(i));
    } else if (Opcode == X86::TCRETURNri64) {
      JumpTarget.setIsKill();
      BuildMI(MBB, MBBI, DL,
              TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
          .add(JumpTarget);
    } else {
      JumpTarget.setIsKill();
      BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
          .add(JumpTarget);
    }

    MachineInstr &NewMI = *std::prev(MBBI);
    NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);

    // Update the call site info.
    if (MBBI->isCandidateForCallSiteEntry())
      MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);

    // Delete the pseudo instruction TCRETURN.
    MBB.erase(MBBI);

    return true;
  }
  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    MachineOperand &DestAddr = MBBI->getOperand(0);
    assert(DestAddr.isReg() && "Offset should be in register!");
    const bool Uses64BitFramePtr =
        STI->isTarget64BitLP64() || STI->isTargetNaCl64();
    Register StackPtr = TRI->getStackRegister();
    BuildMI(MBB, MBBI, DL,
            TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
        .addReg(DestAddr.getReg());
    // The EH_RETURN pseudo is really removed during the MC Lowering.
    return true;
  }
  case X86::IRET: {
    // Adjust stack to erase error code
    int64_t StackAdj = MBBI->getOperand(0).getImm();
    X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
    // Replace pseudo with machine iret
    BuildMI(MBB, MBBI, DL,
            TII->get(STI->is64Bit() ? X86::IRET64 : X86::IRET32));
    MBB.erase(MBBI);
    return true;
  }
  case X86::RET: {
    // Adjust stack to erase error code
    int64_t StackAdj = MBBI->getOperand(0).getImm();
    MachineInstrBuilder MIB;
    if (StackAdj == 0) {
      MIB = BuildMI(MBB, MBBI, DL,
                    TII->get(STI->is64Bit() ? X86::RETQ : X86::RETL));
    } else if (isUInt<16>(StackAdj)) {
      MIB = BuildMI(MBB, MBBI, DL,
                    TII->get(STI->is64Bit() ? X86::RETIQ : X86::RETIL))
                .addImm(StackAdj);
    } else {
      assert(!STI->is64Bit() &&
             "shouldn't need to do this for x86_64 targets!");
      // A ret can only handle immediates as big as 2**16-1.  If we need to pop
      // off bytes before the return address, we must do it manually.
      BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
      X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
      BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
      MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RETL));
    }
    for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
      MIB.add(MBBI->getOperand(I));
    MBB.erase(MBBI);
    return true;
  }
  case X86::LCMPXCHG8B_SAVE_EBX:
  case X86::LCMPXCHG16B_SAVE_RBX: {
    // Perform the following transformation.
    // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
    // =>
    // [E|R]BX = InArg
    // actualcmpxchg Addr
    // [E|R]BX = SaveRbx
    const MachineOperand &InArg = MBBI->getOperand(6);
    Register SaveRbx = MBBI->getOperand(7).getReg();

    unsigned ActualInArg =
        Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
    // Copy the input argument of the pseudo into the argument of the
    // actual instruction.
    TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, InArg.getReg(),
                     InArg.isKill());
    // Create the actual instruction.
    unsigned ActualOpc =
        Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::LCMPXCHG8B : X86::LCMPXCHG16B;
    MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(ActualOpc));
    // Copy the operands related to the address.
    for (unsigned Idx = 1; Idx < 6; ++Idx)
      NewInstr->addOperand(MBBI->getOperand(Idx));
    // Finally, restore the value of RBX.
    TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, SaveRbx,
                     /*SrcIsKill*/ true);

    // Delete the pseudo.
    MBBI->eraseFromParent();
    return true;
  }
  // Loading/storing mask pairs requires two kmov operations. The second one of
  // these needs a 2 byte displacement relative to the specified address (with
  // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
  // same spill size, they all are stored using MASKPAIR16STORE, loaded using
  // MASKPAIR16LOAD.
  //
  // The displacement value might wrap around in theory, thus the asserts in
  // both cases.
  case X86::MASKPAIR16LOAD: {
    int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
    assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
    Register Reg = MBBI->getOperand(0).getReg();
    bool DstIsDead = MBBI->getOperand(0).isDead();
    Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
    Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);

    auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
      .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
    auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
      .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));

    for (int i = 0; i < X86::AddrNumOperands; ++i) {
      MIBLo.add(MBBI->getOperand(1 + i));
      if (i == X86::AddrDisp)
        MIBHi.addImm(Disp + 2);
      else
        MIBHi.add(MBBI->getOperand(1 + i));
    }

    // Split the memory operand, adjusting the offset and size for the halves.
    MachineMemOperand *OldMMO = MBBI->memoperands().front();
    MachineFunction *MF = MBB.getParent();
    MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
    MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);

    MIBLo.setMemRefs(MMOLo);
    MIBHi.setMemRefs(MMOHi);

    // Delete the pseudo.
    MBB.erase(MBBI);
    return true;
  }
  case X86::MASKPAIR16STORE: {
    int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
    assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
    Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
    bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
    Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
    Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);

    auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
    auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));

    for (int i = 0; i < X86::AddrNumOperands; ++i) {
      MIBLo.add(MBBI->getOperand(i));
      if (i == X86::AddrDisp)
        MIBHi.addImm(Disp + 2);
      else
        MIBHi.add(MBBI->getOperand(i));
    }
    MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
    MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));

    // Split the memory operand, adjusting the offset and size for the halves.
    MachineMemOperand *OldMMO = MBBI->memoperands().front();
    MachineFunction *MF = MBB.getParent();
    MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
    MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);

    MIBLo.setMemRefs(MMOLo);
    MIBHi.setMemRefs(MMOHi);

    // Delete the pseudo.
    MBB.erase(MBBI);
    return true;
  }
  case X86::MWAITX_SAVE_RBX: {
    // Perform the following transformation.
    // SaveRbx = pseudomwaitx InArg, SaveRbx
    // =>
    // [E|R]BX = InArg
    // actualmwaitx
    // [E|R]BX = SaveRbx
    const MachineOperand &InArg = MBBI->getOperand(1);
    // Copy the input argument of the pseudo into the argument of the
    // actual instruction.
    TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
    // Create the actual instruction.
    BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
    // Finally, restore the value of RBX.
    Register SaveRbx = MBBI->getOperand(2).getReg();
    TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
    // Delete the pseudo.
    MBBI->eraseFromParent();
    return true;
  }
  case TargetOpcode::ICALL_BRANCH_FUNNEL:
    ExpandICallBranchFunnel(&MBB, MBBI);
    return true;
  }
  llvm_unreachable("Previous switch has a fallthrough?");
}

/// Expand all pseudo instructions contained in \p MBB.
/// \returns true if any expansion occurred for \p MBB.
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
  bool Modified = false;

  // MBBI may be invalidated by the expansion.
  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
  while (MBBI != E) {
    MachineBasicBlock::iterator NMBBI = std::next(MBBI);
    Modified |= ExpandMI(MBB, MBBI);
    MBBI = NMBBI;
  }

  return Modified;
}

bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
  STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  X86FI = MF.getInfo<X86MachineFunctionInfo>();
  X86FL = STI->getFrameLowering();

  bool Modified = false;
  for (MachineBasicBlock &MBB : MF)
    Modified |= ExpandMBB(MBB);
  return Modified;
}

/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createX86ExpandPseudoPass() {
  return new X86ExpandPseudo();
}