X86CallingConv.td
46.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("static_cast<const X86Subtarget&>"
"(State.getMachineFunction().getSubtarget()).", F),
A>;
/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
class CCIfNotSubtarget<string F, CCAction A>
: CCIf<!strconcat("!static_cast<const X86Subtarget&>"
"(State.getMachineFunction().getSubtarget()).", F),
A>;
// Register classes for RegCall
class RC_X86_RegCall {
list<Register> GPR_8 = [];
list<Register> GPR_16 = [];
list<Register> GPR_32 = [];
list<Register> GPR_64 = [];
list<Register> FP_CALL = [FP0];
list<Register> FP_RET = [FP0, FP1];
list<Register> XMM = [];
list<Register> YMM = [];
list<Register> ZMM = [];
}
// RegCall register classes for 32 bits
def RC_X86_32_RegCall : RC_X86_RegCall {
let GPR_8 = [AL, CL, DL, DIL, SIL];
let GPR_16 = [AX, CX, DX, DI, SI];
let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
///< \todo Fix AssignToReg to enable empty lists
let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
}
class RC_X86_64_RegCall : RC_X86_RegCall {
let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
}
def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
}
def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
}
// X86-64 Intel regcall calling convention.
multiclass X86_RegCall_base<RC_X86_RegCall RC> {
def CC_#NAME : CallingConv<[
// Handles byval parameters.
CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// Promote v8i1/v16i1/v32i1 arguments to i32.
CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
// bool, char, int, enum, long, pointer --> GPR
CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
// long long, __int64 --> GPR
CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
// __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
CCIfType<[v64i1], CCPromoteToType<i64>>,
CCIfSubtarget<"is64Bit()", CCIfType<[i64],
CCAssignToReg<RC.GPR_64>>>,
CCIfSubtarget<"is32Bit()", CCIfType<[i64],
CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
// float, double, float128 --> XMM
// In the case of SSE disabled --> save to stack
CCIfType<[f32, f64, f128],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// long double --> FP
CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
// __m128, __m128i, __m128d --> XMM
// In the case of SSE disabled --> save to stack
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// __m256, __m256i, __m256d --> YMM
// In the case of SSE disabled --> save to stack
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
// __m512, __m512i, __m512d --> ZMM
// In the case of SSE disabled --> save to stack
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
// If no register was found -> assign to stack
// In 64 bit, assign 64/32 bit values to 8 byte stack
CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
CCAssignToStack<8, 8>>>,
// In 32 bit, assign 64/32 bit values to 8/4 byte stack
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
// MMX type gets 8 byte slot in stack , while alignment depends on target
CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
// float 128 get stack slots whose size and alignment depends
// on the subtarget.
CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToStack<16, 16>>,
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToStack<64, 64>>
]>;
def RetCC_#NAME : CallingConv<[
// Promote i1, v1i1, v8i1 arguments to i8.
CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
// Promote v16i1 arguments to i16.
CCIfType<[v16i1], CCPromoteToType<i16>>,
// Promote v32i1 arguments to i32.
CCIfType<[v32i1], CCPromoteToType<i32>>,
// bool, char, int, enum, long, pointer --> GPR
CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
// long long, __int64 --> GPR
CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
// __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
CCIfType<[v64i1], CCPromoteToType<i64>>,
CCIfSubtarget<"is64Bit()", CCIfType<[i64],
CCAssignToReg<RC.GPR_64>>>,
CCIfSubtarget<"is32Bit()", CCIfType<[i64],
CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
// long double --> FP
CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
// float, double, float128 --> XMM
CCIfType<[f32, f64, f128],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// __m128, __m128i, __m128d --> XMM
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// __m256, __m256i, __m256d --> YMM
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
// __m512, __m512i, __m512d --> ZMM
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
]>;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//
// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
// Scalar values are returned in AX first, then DX. For i8, the ABI
// requires the values to be in AL and AH, however this code uses AL and DL
// instead. This is because using AH for the second register conflicts with
// the way LLVM does multiple return values -- a return of {i16,i8} would end
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
// for functions that return two i8 values are currently expected to pack the
// values into an i16 (which uses AX, and thus AL:AH).
//
// For code that doesn't care about the ABI, we allow returning more than two
// integer values in registers.
CCIfType<[v1i1], CCPromoteToType<i8>>,
CCIfType<[i1], CCPromoteToType<i8>>,
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
// Boolean vectors of AVX-512 are returned in SIMD registers.
// The call from AVX to AVX-512 function should work,
// since the boolean types in AVX/AVX2 are promoted by default.
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
// Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
// can only be used by ABI non-compliant code. If the target doesn't have XMM
// registers, it won't have vector types.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
// can only be used by ABI non-compliant code. This vector type is only
// supported while using the AVX target feature.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
// 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
// can only be used by ABI non-compliant code. This vector type is only
// supported while using the AVX-512 target feature.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
// MMX vector types are always returned in MM0. If the target doesn't have
// MM0, it doesn't support these vector types.
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
// Long double types are always returned in FP0 (even with SSE),
// except on Win64.
CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
]>;
// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
// The X86-32 calling convention returns FP values in FP0, unless marked
// with "inreg" (used here to distinguish one kind of reg from another,
// weirdly; this is really the sse-regparm calling convention) in which
// case they use XMM0, otherwise it is the same as the common X86 calling
// conv.
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
// SSE2.
// This can happen when a float, 2 x float, or 3 x float vector is split by
// target lowering, and is returned in 1-3 sse regs.
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
// For integers, ECX can be used as an extra return register
CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
// Otherwise, it is the same as the common X86 calling convention.
CCDelegateTo<RetCC_X86Common>
]>;
// Intel_OCL_BI return-value convention.
def RetCC_Intel_OCL_BI : CallingConv<[
// Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// 256-bit FP vectors
// No more than 4 registers
CCIfType<[v8f32, v4f64, v8i32, v4i64],
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
// 512-bit FP vectors
CCIfType<[v16f32, v8f64, v16i32, v8i64],
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
// i32, i64 in the standard way
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 HiPE return-value convention.
def RetCC_X86_32_HiPE : CallingConv<[
// Promote all types to i32
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Return: HP, P, VAL1, VAL2
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
]>;
// X86-32 Vectorcall return-value convention.
def RetCC_X86_32_VectorCall : CallingConv<[
// Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
CCIfType<[f32, f64, f128],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// Return integers in the standard way.
CCDelegateTo<RetCC_X86Common>
]>;
// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
// MMX vector types are always returned in XMM0.
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
// The X86-Win64 calling convention always returns __m64 values in RAX.
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
// GCC returns FP values in RAX on Win64.
CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
// Otherwise, everything is the same as 'normal' X86-64 C CC.
CCDelegateTo<RetCC_X86_64_C>
]>;
// X86-64 vectorcall return-value convention.
def RetCC_X86_64_Vectorcall : CallingConv<[
// Vectorcall calling convention always returns FP values in XMMs.
CCIfType<[f32, f64, f128],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// Otherwise, everything is the same as Windows X86-64 C CC.
CCDelegateTo<RetCC_X86_Win64_C>
]>;
// X86-64 HiPE return-value convention.
def RetCC_X86_64_HiPE : CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: HP, P, VAL1, VAL2
CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
]>;
// X86-64 WebKit_JS return-value convention.
def RetCC_X86_64_WebKit_JS : CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: RAX
CCIfType<[i64], CCAssignToReg<[RAX]>>
]>;
def RetCC_X86_64_Swift : CallingConv<[
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
// For integers, ECX, R8D can be used as extra return registers.
CCIfType<[v1i1], CCPromoteToType<i8>>,
CCIfType<[i1], CCPromoteToType<i8>>,
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
// XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-64 AnyReg return-value convention. No explicit register is specified for
// the return-value. The register allocator is allowed and expected to choose
// any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def RetCC_X86_64_AnyReg : CallingConv<[
CCCustom<"CC_X86_AnyReg_Error">
]>;
// X86-64 HHVM return-value convention.
def RetCC_X86_64_HHVM: CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: could return in any GP register save RSP and R12.
CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
RAX, R10, R11, R13, R14, R15]>>
]>;
defm X86_32_RegCall :
X86_RegCall_base<RC_X86_32_RegCall>;
defm X86_Win64_RegCall :
X86_RegCall_base<RC_X86_64_RegCall_Win>;
defm X86_SysV64_RegCall :
X86_RegCall_base<RC_X86_64_RegCall_SysV>;
// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
// If FastCC, use RetCC_X86_32_Fast.
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
// CFGuard_Check never returns a value so does not need a RetCC.
// If HiPE, use RetCC_X86_32_HiPE.
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
// Otherwise, use RetCC_X86_32_C.
CCDelegateTo<RetCC_X86_32_C>
]>;
// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
// HiPE uses RetCC_X86_64_HiPE
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
// Handle JavaScript calls.
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
// Handle Swift calls.
CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
// Handle explicit CC selection
CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
// Handle Vectorcall CC
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
// Handle HHVM calls.
CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
CCIfCC<"CallingConv::X86_RegCall",
CCIfSubtarget<"isTargetWin64()",
CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<RetCC_X86_64_C>
]>;
// This is the return-value convention used for the entire X86 backend.
let Entry = 1 in
def RetCC_X86 : CallingConv<[
// Check if this is the Intel OpenCL built-ins calling convention
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
CCDelegateTo<RetCC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_X86_64_C : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<8, 8>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
CCIfNest<CCAssignToReg<[R10]>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
// A SwiftError is passed in R12.
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
// For Swift Calling Convention, pass sret in %rax.
CCIfCC<"CallingConv::Swift",
CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The first 8 MMX vector arguments are passed in XMM registers on Darwin.
CCIfType<[x86mmx],
CCIfSubtarget<"isTargetDarwin()",
CCIfSubtarget<"hasSSE2()",
CCPromoteToType<v2i64>>>>,
// Boolean vectors of AVX-512 are passed in SIMD registers.
// The call from AVX to AVX-512 function should work,
// since the boolean types in AVX/AVX2 are promoted by default.
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 256-bit vector arguments are passed in YMM registers, unless
// this is a vararg function.
// FIXME: This isn't precisely correct; the x86-64 ABI document says that
// fixed arguments to vararg functions are supposed to be passed in
// registers. Actually modeling that would be a lot of work, though.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()",
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
YMM4, YMM5, YMM6, YMM7]>>>>,
// The first 8 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToStack<64, 64>>
]>;
// Calling convention for X86-64 HHVM.
def CC_X86_64_HHVM : CallingConv<[
// Use all/any GP registers for args, except RSP.
CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
RDI, RSI, RDX, RCX, R8, R9,
RAX, R10, R11, R13, R14]>>
]>;
// Calling convention for helper functions in HHVM.
def CC_X86_64_HHVM_C : CallingConv<[
// Pass the first argument in RBP.
CCIfType<[i64], CCAssignToReg<[RBP]>>,
// Otherwise it's the same as the regular C calling convention.
CCDelegateTo<CC_X86_64_C>
]>;
// Calling convention used on Win64
def CC_X86_Win64_C : CallingConv<[
// FIXME: Handle varargs.
// Byval aggregates are passed by pointer
CCIfByVal<CCPassIndirect<i64>>,
// Promote i1/v1i1 arguments to i8.
CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// A SwiftError is passed in R12.
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
// The 'CFGuardTarget' parameter, if any, is passed in RAX.
CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
// 128 bit vectors are passed by pointer
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
// 256 bit vectors are passed by pointer
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
// 512 bit vectors are passed by pointer
CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
// Long doubles are passed by pointer
CCIfType<[f80], CCPassIndirect<i64>>,
// The first 4 MMX vector arguments are passed in GPRs.
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
// If SSE was disabled, pass FP values smaller than 64-bits as integers in
// GPRs or on the stack.
CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
// The first 4 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64],
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
[RCX , RDX , R8 , R9 ]>>,
// The first 4 integer arguments are passed in integer registers.
CCIfType<[i8 ], CCAssignToRegWithShadow<[CL , DL , R8B , R9B ],
[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[i16], CCAssignToRegWithShadow<[CX , DX , R8W , R9W ],
[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>,
// Do not pass the sret argument in RCX, the Win64 thiscall calling
// convention requires "this" to be passed in RCX.
CCIfCC<"CallingConv::X86_ThisCall",
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
[XMM1, XMM2, XMM3]>>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
[XMM0, XMM1, XMM2, XMM3]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;
def CC_X86_Win64_VectorCall : CallingConv<[
CCCustom<"CC_X86_64_VectorCall">,
// Delegate to fastcall to handle integer types.
CCDelegateTo<CC_X86_Win64_C>
]>;
def CC_X86_64_GHC : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
CCIfType<[i64],
CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
// Pass in STG registers: F1, F2, F3, F4, D1, D2
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
// AVX
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()",
CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
// AVX-512
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",
CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
]>;
def CC_X86_64_HiPE : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;
def CC_X86_64_WebKit_JS : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Only the first integer argument is passed in register.
CCIfType<[i32], CCAssignToReg<[EAX]>>,
CCIfType<[i64], CCAssignToReg<[RAX]>>,
// The remaining integer arguments are passed on the stack. 32bit integer and
// floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
// 64bit integer and floating-point arguments are aligned to 8 byte and stored
// in 8 byte stack slots.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
// No explicit register is specified for the AnyReg calling convention. The
// register allocator may assign the arguments to any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def CC_X86_64_AnyReg : CallingConv<[
CCCustom<"CC_X86_AnyReg_Error">
]>;
//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//
/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
/// values are spilled on the stack.
def CC_X86_32_Vector_Common : CallingConv<[
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToStack<64, 64>>
]>;
// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
// vector registers
def CC_X86_32_Vector_Standard : CallingConv<[
// SSE vector arguments are passed in XMM registers.
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
// AVX 256-bit vector arguments are passed in YMM registers.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()",
CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
// AVX 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
CCDelegateTo<CC_X86_32_Vector_Common>
]>;
// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
// vector registers.
def CC_X86_32_Vector_Darwin : CallingConv<[
// SSE vector arguments are passed in XMM registers.
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
// AVX 256-bit vector arguments are passed in YMM registers.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()",
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
// AVX 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
CCDelegateTo<CC_X86_32_Vector_Common>
]>;
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack.
def CC_X86_32_Common : CallingConv<[
// Handles byval/preallocated parameters.
CCIfByVal<CCPassByVal<4, 4>>,
CCIfPreallocated<CCPassByVal<4, 4>>,
// The first 3 float or double arguments, if marked 'inreg' and if the call
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
// The first 3 __m64 vector arguments are passed in mmx registers if the
// call is not a vararg call.
CCIfNotVarArg<CCIfType<[x86mmx],
CCAssignToReg<[MM0, MM1, MM2]>>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Doubles get 8-byte slots that are 4-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 4>>,
// Long doubles get slots whose size depends on the subtarget.
CCIfType<[f80], CCAssignToStack<0, 4>>,
// Boolean vectors of AVX-512 are passed in SIMD registers.
// The call from AVX to AVX-512 function should work,
// since the boolean types in AVX/AVX2 are promoted by default.
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
// passed in the parameter area.
CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
// Darwin passes vectors in a form that differs from the i386 psABI
CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
// Otherwise, drop to 'normal' X86-32 CC
CCDelegateTo<CC_X86_32_Vector_Standard>
]>;
def CC_X86_32_C : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in ECX.
CCIfNest<CCAssignToReg<[ECX]>>,
// The first 3 integer arguments, if marked 'inreg' and if the call is not
// a vararg call, are passed in integer registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_MCU : CallingConv<[
// Handles byval parameters. Note that, like FastCC, we can't rely on
// the delegation to CC_X86_32_Common because that happens after code that
// puts arguments in registers.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// If the call is not a vararg call, some arguments may be passed
// in integer registers.
CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_FastCall : CallingConv<[
// Promote i1 to i8.
CCIfType<[i1], CCPromoteToType<i8>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL, DL]>>>,
CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX, DX]>>>,
CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_Win32_VectorCall : CallingConv<[
// Pass floating point in XMMs
CCCustom<"CC_X86_32_VectorCall">,
// Delegate to fastcall to handle integer types.
CCDelegateTo<CC_X86_32_FastCall>
]>;
def CC_X86_32_ThisCall_Common : CallingConv<[
// The first integer argument is passed in ECX
CCIfType<[i32], CCAssignToReg<[ECX]>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_ThisCall_Mingw : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;
def CC_X86_32_ThisCall_Win : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// Pass sret arguments indirectly through stack.
CCIfSRet<CCAssignToStack<4, 4>>,
CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;
def CC_X86_32_ThisCall : CallingConv<[
CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
CCDelegateTo<CC_X86_32_ThisCall_Win>
]>;
def CC_X86_32_FastCC : CallingConv<[
// Handles byval parameters. Note that we can't rely on the delegation
// to CC_X86_32_Common for this because that happens after code that
// puts arguments in registers.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
// The first 3 float or double arguments, if the call is not a vararg
// call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
// Doubles get 8-byte slots that are 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_Win32_CFGuard_Check : CallingConv<[
// The CFGuard check call takes exactly one integer argument
// (i.e. the target function address), which is passed in ECX.
CCIfType<[i32], CCAssignToReg<[ECX]>>
]>;
def CC_X86_32_GHC : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in STG registers: Base, Sp, Hp, R1
CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
]>;
def CC_X86_32_HiPE : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>
]>;
// X86-64 Intel OpenCL built-ins calling convention.
def CC_Intel_OCL_BI : CallingConv<[
CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
CCIfType<[i32], CCAssignToStack<4, 4>>,
// The SSE vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// The 256-bit vector arguments are passed in YMM registers.
CCIfType<[v8f32, v4f64, v8i32, v4i64],
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
// The 512-bit vector arguments are passed in ZMM registers.
CCIfType<[v16f32, v8f64, v16i32, v8i64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
// Pass masks in mask registers
CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
CCDelegateTo<CC_X86_32_C>
]>;
//===----------------------------------------------------------------------===//
// X86 Root Argument Calling Conventions
//===----------------------------------------------------------------------===//
// This is the root argument convention for the X86-32 backend.
def CC_X86_32 : CallingConv<[
// X86_INTR calling convention is valid in MCU target and should override the
// MCU calling convention. Thus, this should be checked before isTargetMCU().
CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
// Otherwise, drop to normal X86-32 CC
CCDelegateTo<CC_X86_32_C>
]>;
// This is the root argument convention for the X86-64 backend.
def CC_X86_64 : CallingConv<[
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
CCIfCC<"CallingConv::X86_RegCall",
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<CC_X86_64_C>
]>;
// This is the argument convention used for the entire X86 backend.
let Entry = 1 in
def CC_X86 : CallingConv<[
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
CCDelegateTo<CC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// Callee-saved Registers.
//===----------------------------------------------------------------------===//
def CSR_NoRegs : CalleeSavedRegs<(add)>;
def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
(sequence "XMM%u", 6, 15))>;
def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
// The function used by Darwin to obtain the address of a thread-local variable
// uses rdi to pass a single parameter and rax for the return value. All other
// GPRs are preserved.
def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
R8, R9, R10, R11)>;
// CSRs that are handled by prologue, epilogue.
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
// CSRs that are handled explicitly via copies.
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
// All GPRs - except r11
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
R8, R9, R10, RSP)>;
// All registers - except r11
def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
(sequence "XMM%u", 0, 15))>;
def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
(sequence "YMM%u", 0, 15))>;
def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
R11, R12, R13, R14, R15, RBP,
(sequence "XMM%u", 0, 15))>;
def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
EDI)>;
def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
(sequence "XMM%u", 0, 7))>;
def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
(sequence "YMM%u", 0, 7))>;
def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
(sequence "ZMM%u", 0, 7),
(sequence "K%u", 0, 7))>;
def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
R10, R11, R12, R13, R14, R15, RBP)>;
def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
(sequence "YMM%u", 0, 15)),
(sequence "XMM%u", 0, 15))>;
def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
(sequence "ZMM%u", 0, 31),
(sequence "K%u", 0, 7)),
(sequence "XMM%u", 0, 15))>;
// Standard C + YMM6-15
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
R13, R14, R15,
(sequence "YMM%u", 6, 15))>;
def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
R12, R13, R14, R15,
(sequence "ZMM%u", 6, 21),
K4, K5, K6, K7)>;
//Standard C + XMM 8-15
def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
(sequence "XMM%u", 8, 15))>;
//Standard C + YMM 8-15
def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
(sequence "YMM%u", 8, 15))>;
def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
(sequence "ZMM%u", 16, 31),
K4, K5, K6, K7)>;
// Only R12 is preserved for PHP calls in HHVM.
def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
// Register calling convention preserves few GPR and XMM8-15
def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
(sequence "XMM%u", 4, 7))>;
def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
def CSR_Win32_CFGuard_Check : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
(sequence "R%u", 10, 15))>;
def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
(sequence "XMM%u", 8, 15))>;
def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
(sequence "R%u", 12, 15))>;
def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
(sequence "XMM%u", 8, 15))>;