X86AsmParser.cpp
163 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86IntelInstPrinter.h"
#include "MCTargetDesc/X86MCExpr.h"
#include "MCTargetDesc/X86TargetStreamer.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86AsmParserCommon.h"
#include "X86Operand.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
using namespace llvm;
static cl::opt<bool> LVIInlineAsmHardening(
"x86-experimental-lvi-inline-asm-hardening",
cl::desc("Harden inline assembly code that may be vulnerable to Load Value"
" Injection (LVI). This feature is experimental."), cl::Hidden);
static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
return true;
}
return false;
}
namespace {
static const char OpPrecedence[] = {
0, // IC_OR
1, // IC_XOR
2, // IC_AND
3, // IC_LSHIFT
3, // IC_RSHIFT
4, // IC_PLUS
4, // IC_MINUS
5, // IC_MULTIPLY
5, // IC_DIVIDE
5, // IC_MOD
6, // IC_NOT
7, // IC_NEG
8, // IC_RPAREN
9, // IC_LPAREN
0, // IC_IMM
0 // IC_REGISTER
};
class X86AsmParser : public MCTargetAsmParser {
ParseInstructionInfo *InstInfo;
bool Code16GCC;
enum VEXEncoding {
VEXEncoding_Default,
VEXEncoding_VEX,
VEXEncoding_VEX3,
VEXEncoding_EVEX,
};
VEXEncoding ForcedVEXEncoding = VEXEncoding_Default;
enum DispEncoding {
DispEncoding_Default,
DispEncoding_Disp8,
DispEncoding_Disp32,
};
DispEncoding ForcedDispEncoding = DispEncoding_Default;
private:
SMLoc consumeToken() {
MCAsmParser &Parser = getParser();
SMLoc Result = Parser.getTok().getLoc();
Parser.Lex();
return Result;
}
X86TargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<X86TargetStreamer &>(TS);
}
unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
uint64_t &ErrorInfo, FeatureBitset &MissingFeatures,
bool matchingInlineAsm, unsigned VariantID = 0) {
// In Code16GCC mode, match as 32-bit.
if (Code16GCC)
SwitchMode(X86::Mode32Bit);
unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MissingFeatures, matchingInlineAsm,
VariantID);
if (Code16GCC)
SwitchMode(X86::Mode16Bit);
return rv;
}
enum InfixCalculatorTok {
IC_OR = 0,
IC_XOR,
IC_AND,
IC_LSHIFT,
IC_RSHIFT,
IC_PLUS,
IC_MINUS,
IC_MULTIPLY,
IC_DIVIDE,
IC_MOD,
IC_NOT,
IC_NEG,
IC_RPAREN,
IC_LPAREN,
IC_IMM,
IC_REGISTER
};
enum IntelOperatorKind {
IOK_INVALID = 0,
IOK_LENGTH,
IOK_SIZE,
IOK_TYPE,
};
enum MasmOperatorKind {
MOK_INVALID = 0,
MOK_LENGTHOF,
MOK_SIZEOF,
MOK_TYPE,
};
class InfixCalculator {
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
SmallVector<ICToken, 4> PostfixStack;
bool isUnaryOperator(const InfixCalculatorTok Op) {
return Op == IC_NEG || Op == IC_NOT;
}
public:
int64_t popOperand() {
assert (!PostfixStack.empty() && "Poped an empty stack!");
ICToken Op = PostfixStack.pop_back_val();
if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
return -1; // The invalid Scale value will be caught later by checkScale
return Op.second;
}
void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
assert ((Op == IC_IMM || Op == IC_REGISTER) &&
"Unexpected operand!");
PostfixStack.push_back(std::make_pair(Op, Val));
}
void popOperator() { InfixOperatorStack.pop_back(); }
void pushOperator(InfixCalculatorTok Op) {
// Push the new operator if the stack is empty.
if (InfixOperatorStack.empty()) {
InfixOperatorStack.push_back(Op);
return;
}
// Push the new operator if it has a higher precedence than the operator
// on the top of the stack or the operator on the top of the stack is a
// left parentheses.
unsigned Idx = InfixOperatorStack.size() - 1;
InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
InfixOperatorStack.push_back(Op);
return;
}
// The operator on the top of the stack has higher precedence than the
// new operator.
unsigned ParenCount = 0;
while (1) {
// Nothing to process.
if (InfixOperatorStack.empty())
break;
Idx = InfixOperatorStack.size() - 1;
StackOp = InfixOperatorStack[Idx];
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
break;
// If we have an even parentheses count and we see a left parentheses,
// then stop processing.
if (!ParenCount && StackOp == IC_LPAREN)
break;
if (StackOp == IC_RPAREN) {
++ParenCount;
InfixOperatorStack.pop_back();
} else if (StackOp == IC_LPAREN) {
--ParenCount;
InfixOperatorStack.pop_back();
} else {
InfixOperatorStack.pop_back();
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
}
// Push the new operator.
InfixOperatorStack.push_back(Op);
}
int64_t execute() {
// Push any remaining operators onto the postfix stack.
while (!InfixOperatorStack.empty()) {
InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
if (PostfixStack.empty())
return 0;
SmallVector<ICToken, 16> OperandStack;
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
ICToken Op = PostfixStack[i];
if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
OperandStack.push_back(Op);
} else if (isUnaryOperator(Op.first)) {
assert (OperandStack.size() > 0 && "Too few operands.");
ICToken Operand = OperandStack.pop_back_val();
assert (Operand.first == IC_IMM &&
"Unary operation with a register!");
switch (Op.first) {
default:
report_fatal_error("Unexpected operator!");
break;
case IC_NEG:
OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
break;
case IC_NOT:
OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
break;
}
} else {
assert (OperandStack.size() > 1 && "Too few operands.");
int64_t Val;
ICToken Op2 = OperandStack.pop_back_val();
ICToken Op1 = OperandStack.pop_back_val();
switch (Op.first) {
default:
report_fatal_error("Unexpected operator!");
break;
case IC_PLUS:
Val = Op1.second + Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MINUS:
Val = Op1.second - Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MULTIPLY:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Multiply operation with an immediate and a register!");
Val = Op1.second * Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_DIVIDE:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Divide operation with an immediate and a register!");
assert (Op2.second != 0 && "Division by zero!");
Val = Op1.second / Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MOD:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Modulo operation with an immediate and a register!");
Val = Op1.second % Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_OR:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Or operation with an immediate and a register!");
Val = Op1.second | Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_XOR:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Xor operation with an immediate and a register!");
Val = Op1.second ^ Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_AND:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"And operation with an immediate and a register!");
Val = Op1.second & Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_LSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Left shift operation with an immediate and a register!");
Val = Op1.second << Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_RSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Right shift operation with an immediate and a register!");
Val = Op1.second >> Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
}
}
}
assert (OperandStack.size() == 1 && "Expected a single result.");
return OperandStack.pop_back_val().second;
}
};
enum IntelExprState {
IES_INIT,
IES_OR,
IES_XOR,
IES_AND,
IES_LSHIFT,
IES_RSHIFT,
IES_PLUS,
IES_MINUS,
IES_OFFSET,
IES_CAST,
IES_NOT,
IES_MULTIPLY,
IES_DIVIDE,
IES_MOD,
IES_LBRAC,
IES_RBRAC,
IES_LPAREN,
IES_RPAREN,
IES_REGISTER,
IES_INTEGER,
IES_IDENTIFIER,
IES_ERROR
};
class IntelExprStateMachine {
IntelExprState State, PrevState;
unsigned BaseReg, IndexReg, TmpReg, Scale;
int64_t Imm;
const MCExpr *Sym;
StringRef SymName;
InfixCalculator IC;
InlineAsmIdentifierInfo Info;
short BracCount;
bool MemExpr;
bool OffsetOperator;
SMLoc OffsetOperatorLoc;
AsmTypeInfo CurType;
bool setSymRef(const MCExpr *Val, StringRef ID, StringRef &ErrMsg) {
if (Sym) {
ErrMsg = "cannot use more than one symbol in memory operand";
return true;
}
Sym = Val;
SymName = ID;
return false;
}
public:
IntelExprStateMachine()
: State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
MemExpr(false), OffsetOperator(false) {}
void addImm(int64_t imm) { Imm += imm; }
short getBracCount() { return BracCount; }
bool isMemExpr() { return MemExpr; }
bool isOffsetOperator() { return OffsetOperator; }
SMLoc getOffsetLoc() { return OffsetOperatorLoc; }
unsigned getBaseReg() { return BaseReg; }
unsigned getIndexReg() { return IndexReg; }
unsigned getScale() { return Scale; }
const MCExpr *getSym() { return Sym; }
StringRef getSymName() { return SymName; }
StringRef getType() { return CurType.Name; }
unsigned getSize() { return CurType.Size; }
unsigned getElementSize() { return CurType.ElementSize; }
unsigned getLength() { return CurType.Length; }
int64_t getImm() { return Imm + IC.execute(); }
bool isValidEndState() {
return State == IES_RBRAC || State == IES_INTEGER;
}
bool hadError() { return State == IES_ERROR; }
InlineAsmIdentifierInfo &getIdentifierInfo() { return Info; }
void onOr() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_OR;
IC.pushOperator(IC_OR);
break;
}
PrevState = CurrState;
}
void onXor() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_XOR;
IC.pushOperator(IC_XOR);
break;
}
PrevState = CurrState;
}
void onAnd() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_AND;
IC.pushOperator(IC_AND);
break;
}
PrevState = CurrState;
}
void onLShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_LSHIFT;
IC.pushOperator(IC_LSHIFT);
break;
}
PrevState = CurrState;
}
void onRShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_RSHIFT;
IC.pushOperator(IC_RSHIFT);
break;
}
PrevState = CurrState;
}
bool onPlus(StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
case IES_OFFSET:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// no explicit scale.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
IndexReg = TmpReg;
Scale = 0;
}
}
break;
}
PrevState = CurrState;
return false;
}
bool onMinus(StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_PLUS:
case IES_NOT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_MOD:
case IES_LPAREN:
case IES_RPAREN:
case IES_LBRAC:
case IES_RBRAC:
case IES_INTEGER:
case IES_REGISTER:
case IES_INIT:
case IES_OFFSET:
State = IES_MINUS;
// push minus operator if it is not a negate operator
if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
CurrState == IES_INTEGER || CurrState == IES_RBRAC ||
CurrState == IES_OFFSET)
IC.pushOperator(IC_MINUS);
else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
// We have negate operator for Scale: it's illegal
ErrMsg = "Scale can't be negative";
return true;
} else
IC.pushOperator(IC_NEG);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// no explicit scale.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
IndexReg = TmpReg;
Scale = 0;
}
}
break;
}
PrevState = CurrState;
return false;
}
void onNot() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_MOD:
case IES_LPAREN:
case IES_LBRAC:
case IES_INIT:
State = IES_NOT;
IC.pushOperator(IC_NOT);
break;
}
PrevState = CurrState;
}
bool onRegister(unsigned Reg, StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_LPAREN:
case IES_LBRAC:
State = IES_REGISTER;
TmpReg = Reg;
IC.pushOperand(IC_REGISTER);
break;
case IES_MULTIPLY:
// Index Register - Scale * Register
if (PrevState == IES_INTEGER) {
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
State = IES_REGISTER;
IndexReg = Reg;
// Get the scale and replace the 'Scale * Register' with '0'.
Scale = IC.popOperand();
if (checkScale(Scale, ErrMsg))
return true;
IC.pushOperand(IC_IMM);
IC.popOperator();
} else {
State = IES_ERROR;
}
break;
}
PrevState = CurrState;
return false;
}
bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
const InlineAsmIdentifierInfo &IDInfo,
const AsmTypeInfo &Type, bool ParsingMSInlineAsm,
StringRef &ErrMsg) {
// InlineAsm: Treat an enum value as an integer
if (ParsingMSInlineAsm)
if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
// Treat a symbolic constant like an integer
if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
return onInteger(CE->getValue(), ErrMsg);
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_CAST:
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_INIT:
case IES_LBRAC:
case IES_LPAREN:
if (setSymRef(SymRef, SymRefName, ErrMsg))
return true;
MemExpr = true;
State = IES_INTEGER;
IC.pushOperand(IC_IMM);
if (ParsingMSInlineAsm)
Info = IDInfo;
setTypeInfo(Type);
break;
}
return false;
}
bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_DIVIDE:
case IES_MOD:
case IES_MULTIPLY:
case IES_LPAREN:
case IES_INIT:
case IES_LBRAC:
State = IES_INTEGER;
if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
// Index Register - Register * Scale
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
IndexReg = TmpReg;
Scale = TmpInt;
if (checkScale(Scale, ErrMsg))
return true;
// Get the scale and replace the 'Register * Scale' with '0'.
IC.popOperator();
} else {
IC.pushOperand(IC_IMM, TmpInt);
}
break;
}
PrevState = CurrState;
return false;
}
void onStar() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_MULTIPLY;
IC.pushOperator(IC_MULTIPLY);
break;
}
}
void onDivide() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
State = IES_DIVIDE;
IC.pushOperator(IC_DIVIDE);
break;
}
}
void onMod() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
State = IES_MOD;
IC.pushOperator(IC_MOD);
break;
}
}
bool onLBrac() {
if (BracCount)
return true;
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_RBRAC:
case IES_INTEGER:
case IES_RPAREN:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
CurType.Length = 1;
CurType.Size = CurType.ElementSize;
break;
case IES_INIT:
case IES_CAST:
assert(!BracCount && "BracCount should be zero on parsing's start");
State = IES_LBRAC;
break;
}
MemExpr = true;
BracCount++;
return false;
}
bool onRBrac() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_OFFSET:
case IES_REGISTER:
case IES_RPAREN:
if (BracCount-- != 1)
return true;
State = IES_RBRAC;
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// no explicit scale.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 0;
}
}
break;
}
PrevState = CurrState;
return false;
}
void onLParen() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_MOD:
case IES_LPAREN:
case IES_INIT:
case IES_LBRAC:
State = IES_LPAREN;
IC.pushOperator(IC_LPAREN);
break;
}
PrevState = CurrState;
}
void onRParen() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_OFFSET:
case IES_REGISTER:
case IES_RBRAC:
case IES_RPAREN:
State = IES_RPAREN;
IC.pushOperator(IC_RPAREN);
break;
}
}
bool onOffset(const MCExpr *Val, SMLoc OffsetLoc, StringRef ID,
const InlineAsmIdentifierInfo &IDInfo,
bool ParsingMSInlineAsm, StringRef &ErrMsg) {
PrevState = State;
switch (State) {
default:
ErrMsg = "unexpected offset operator expression";
return true;
case IES_PLUS:
case IES_INIT:
case IES_LBRAC:
if (setSymRef(Val, ID, ErrMsg))
return true;
OffsetOperator = true;
OffsetOperatorLoc = OffsetLoc;
State = IES_OFFSET;
// As we cannot yet resolve the actual value (offset), we retain
// the requested semantics by pushing a '0' to the operands stack
IC.pushOperand(IC_IMM);
if (ParsingMSInlineAsm) {
Info = IDInfo;
}
break;
}
return false;
}
void onCast(AsmTypeInfo Info) {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_LPAREN:
setTypeInfo(Info);
State = IES_CAST;
break;
}
}
void setTypeInfo(AsmTypeInfo Type) { CurType = Type; }
};
bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
bool MatchingInlineAsm = false) {
MCAsmParser &Parser = getParser();
if (MatchingInlineAsm) {
if (!getLexer().isAtStartOfStatement())
Parser.eatToEndOfStatement();
return false;
}
return Parser.Error(L, Msg, Range);
}
bool MatchRegisterByName(unsigned &RegNo, StringRef RegName, SMLoc StartLoc,
SMLoc EndLoc);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
bool RestoreOnFailure);
std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
bool IsSIReg(unsigned Reg);
unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
void
AddDefaultSrcDestOperands(OperandVector &Operands,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
OperandVector &FinalOperands);
bool ParseOperand(OperandVector &Operands);
bool ParseATTOperand(OperandVector &Operands);
bool ParseIntelOperand(OperandVector &Operands);
bool ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
InlineAsmIdentifierInfo &Info, SMLoc &End);
bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
unsigned IdentifyMasmOperator(StringRef Name);
bool ParseMasmOperator(unsigned OpKind, int64_t &Val);
bool ParseRoundingModeOp(SMLoc Start, OperandVector &Operands);
bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM,
bool &ParseError, SMLoc &End);
void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
SMLoc End);
bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End,
bool IsParsingOffsetOperator = false);
bool ParseMemOperand(unsigned SegReg, const MCExpr *Disp, SMLoc StartLoc,
SMLoc EndLoc, OperandVector &Operands);
X86::CondCode ParseConditionCode(StringRef CCode);
bool ParseIntelMemoryOperandSize(unsigned &Size);
bool CreateMemForMSInlineAsm(unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End,
unsigned Size, StringRef Identifier,
const InlineAsmIdentifierInfo &Info,
OperandVector &Operands);
bool parseDirectiveArch();
bool parseDirectiveNops(SMLoc L);
bool parseDirectiveEven(SMLoc L);
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
/// CodeView FPO data directives.
bool parseDirectiveFPOProc(SMLoc L);
bool parseDirectiveFPOSetFrame(SMLoc L);
bool parseDirectiveFPOPushReg(SMLoc L);
bool parseDirectiveFPOStackAlloc(SMLoc L);
bool parseDirectiveFPOStackAlign(SMLoc L);
bool parseDirectiveFPOEndPrologue(SMLoc L);
bool parseDirectiveFPOEndProc(SMLoc L);
bool parseDirectiveFPOData(SMLoc L);
/// SEH directives.
bool parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo);
bool parseDirectiveSEHPushReg(SMLoc);
bool parseDirectiveSEHSetFrame(SMLoc);
bool parseDirectiveSEHSaveReg(SMLoc);
bool parseDirectiveSEHSaveXMM(SMLoc);
bool parseDirectiveSEHPushFrame(SMLoc);
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
bool processInstruction(MCInst &Inst, const OperandVector &Ops);
// Load Value Injection (LVI) Mitigations for machine code
void emitWarningForSpecialLVIInstruction(SMLoc Loc);
void applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out);
void applyLVILoadHardeningMitigation(MCInst &Inst, MCStreamer &Out);
/// Wrapper around MCStreamer::emitInstruction(). Possibly adds
/// instrumentation around Inst.
void emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
MCStreamer &Out, bool MatchingInlineAsm);
bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures,
bool MatchingInlineAsm);
bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool OmitRegisterFromClobberLists(unsigned RegNo) override;
/// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
/// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
/// return false if no parsing errors occurred, true otherwise.
bool HandleAVX512Operand(OperandVector &Operands);
bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
bool is64BitMode() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[X86::Mode64Bit];
}
bool is32BitMode() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[X86::Mode32Bit];
}
bool is16BitMode() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[X86::Mode16Bit];
}
void SwitchMode(unsigned mode) {
MCSubtargetInfo &STI = copySTI();
FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
FeatureBitset FB = ComputeAvailableFeatures(
STI.ToggleFeature(OldMode.flip(mode)));
setAvailableFeatures(FB);
assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
}
unsigned getPointerWidth() {
if (is16BitMode()) return 16;
if (is32BitMode()) return 32;
if (is64BitMode()) return 64;
llvm_unreachable("invalid mode");
}
bool isParsingIntelSyntax() {
return getParser().getAssemblerDialect();
}
/// @name Auto-generated Matcher Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"
/// }
public:
enum X86MatchResultTy {
Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "X86GenAsmMatcher.inc"
};
X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
const MCInstrInfo &mii, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti, mii), InstInfo(nullptr),
Code16GCC(false) {
Parser.addAliasForDirective(".word", ".2byte");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
unsigned Scale, bool Is64BitMode,
StringRef &ErrMsg) {
// If we have both a base register and an index register make sure they are
// both 64-bit or 32-bit registers.
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
if (BaseReg != 0 &&
!(BaseReg == X86::RIP || BaseReg == X86::EIP ||
X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
ErrMsg = "invalid base+index expression";
return true;
}
if (IndexReg != 0 &&
!(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
ErrMsg = "invalid base+index expression";
return true;
}
if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
IndexReg == X86::EIP || IndexReg == X86::RIP ||
IndexReg == X86::ESP || IndexReg == X86::RSP) {
ErrMsg = "invalid base+index expression";
return true;
}
// Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
// and then only in non-64-bit modes.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
(Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
BaseReg != X86::SI && BaseReg != X86::DI))) {
ErrMsg = "invalid 16-bit base register";
return true;
}
if (BaseReg == 0 &&
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
ErrMsg = "16-bit memory operand may not include only index register";
return true;
}
if (BaseReg != 0 && IndexReg != 0) {
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
IndexReg == X86::EIZ)) {
ErrMsg = "base register is 64-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
IndexReg == X86::RIZ)) {
ErrMsg = "base register is 32-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
ErrMsg = "base register is 16-bit, but index register is not";
return true;
}
if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
(IndexReg != X86::SI && IndexReg != X86::DI)) {
ErrMsg = "invalid 16-bit base/index register combination";
return true;
}
}
}
// RIP/EIP-relative addressing is only supported in 64-bit mode.
if (!Is64BitMode && BaseReg != 0 &&
(BaseReg == X86::RIP || BaseReg == X86::EIP)) {
ErrMsg = "IP-relative addressing requires 64-bit mode";
return true;
}
return checkScale(Scale, ErrMsg);
}
bool X86AsmParser::MatchRegisterByName(unsigned &RegNo, StringRef RegName,
SMLoc StartLoc, SMLoc EndLoc) {
// If we encounter a %, ignore it. This code handles registers with and
// without the prefix, unprefixed registers can occur in cfi directives.
RegName.consume_front("%");
RegNo = MatchRegisterName(RegName);
// If the match failed, try the register name as lowercase.
if (RegNo == 0)
RegNo = MatchRegisterName(RegName.lower());
// The "flags" and "mxcsr" registers cannot be referenced directly.
// Treat it as an identifier instead.
if (isParsingMSInlineAsm() && isParsingIntelSyntax() &&
(RegNo == X86::EFLAGS || RegNo == X86::MXCSR))
RegNo = 0;
if (!is64BitMode()) {
// FIXME: This should be done using Requires<Not64BitMode> and
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
// checked.
// FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
// REX prefix.
if (RegNo == X86::RIZ || RegNo == X86::RIP ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
X86II::isX86_64NonExtLowByteReg(RegNo) ||
X86II::isX86_64ExtendedReg(RegNo)) {
return Error(StartLoc,
"register %" + RegName + " is only available in 64-bit mode",
SMRange(StartLoc, EndLoc));
}
}
// If this is "db[0-15]", match it as an alias
// for dr[0-15].
if (RegNo == 0 && RegName.startswith("db")) {
if (RegName.size() == 3) {
switch (RegName[2]) {
case '0':
RegNo = X86::DR0;
break;
case '1':
RegNo = X86::DR1;
break;
case '2':
RegNo = X86::DR2;
break;
case '3':
RegNo = X86::DR3;
break;
case '4':
RegNo = X86::DR4;
break;
case '5':
RegNo = X86::DR5;
break;
case '6':
RegNo = X86::DR6;
break;
case '7':
RegNo = X86::DR7;
break;
case '8':
RegNo = X86::DR8;
break;
case '9':
RegNo = X86::DR9;
break;
}
} else if (RegName.size() == 4 && RegName[2] == '1') {
switch (RegName[3]) {
case '0':
RegNo = X86::DR10;
break;
case '1':
RegNo = X86::DR11;
break;
case '2':
RegNo = X86::DR12;
break;
case '3':
RegNo = X86::DR13;
break;
case '4':
RegNo = X86::DR14;
break;
case '5':
RegNo = X86::DR15;
break;
}
}
}
if (RegNo == 0) {
if (isParsingIntelSyntax())
return true;
return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc));
}
return false;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc, bool RestoreOnFailure) {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
RegNo = 0;
SmallVector<AsmToken, 5> Tokens;
auto OnFailure = [RestoreOnFailure, &Lexer, &Tokens]() {
if (RestoreOnFailure) {
while (!Tokens.empty()) {
Lexer.UnLex(Tokens.pop_back_val());
}
}
};
const AsmToken &PercentTok = Parser.getTok();
StartLoc = PercentTok.getLoc();
// If we encounter a %, ignore it. This code handles registers with and
// without the prefix, unprefixed registers can occur in cfi directives.
if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) {
Tokens.push_back(PercentTok);
Parser.Lex(); // Eat percent token.
}
const AsmToken &Tok = Parser.getTok();
EndLoc = Tok.getEndLoc();
if (Tok.isNot(AsmToken::Identifier)) {
OnFailure();
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
if (MatchRegisterByName(RegNo, Tok.getString(), StartLoc, EndLoc)) {
OnFailure();
return true;
}
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
if (RegNo == X86::ST0) {
Tokens.push_back(Tok);
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (Lexer.isNot(AsmToken::LParen))
return false;
// Lex the paren.
Tokens.push_back(Parser.getTok());
Parser.Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer)) {
OnFailure();
return Error(IntTok.getLoc(), "expected stack index");
}
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default:
OnFailure();
return Error(IntTok.getLoc(), "invalid stack index");
}
// Lex IntTok
Tokens.push_back(IntTok);
Parser.Lex();
if (Lexer.isNot(AsmToken::RParen)) {
OnFailure();
return Error(Parser.getTok().getLoc(), "expected ')'");
}
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat ')'
return false;
}
EndLoc = Parser.getTok().getEndLoc();
if (RegNo == 0) {
OnFailure();
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
Parser.Lex(); // Eat identifier token.
return false;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
}
OperandMatchResultTy X86AsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
bool Result =
ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
bool PendingErrors = getParser().hasPendingError();
getParser().clearPendingErrors();
if (PendingErrors)
return MatchOperand_ParseFail;
if (Result)
return MatchOperand_NoMatch;
return MatchOperand_Success;
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
bool Parse32 = is32BitMode() || Code16GCC;
unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
bool Parse32 = is32BitMode() || Code16GCC;
unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
bool X86AsmParser::IsSIReg(unsigned Reg) {
switch (Reg) {
default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
case X86::RSI:
case X86::ESI:
case X86::SI:
return true;
case X86::RDI:
case X86::EDI:
case X86::DI:
return false;
}
}
unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
bool IsSIReg) {
switch (RegClassID) {
default: llvm_unreachable("Unexpected register class");
case X86::GR64RegClassID:
return IsSIReg ? X86::RSI : X86::RDI;
case X86::GR32RegClassID:
return IsSIReg ? X86::ESI : X86::EDI;
case X86::GR16RegClassID:
return IsSIReg ? X86::SI : X86::DI;
}
}
void X86AsmParser::AddDefaultSrcDestOperands(
OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
if (isParsingIntelSyntax()) {
Operands.push_back(std::move(Dst));
Operands.push_back(std::move(Src));
}
else {
Operands.push_back(std::move(Src));
Operands.push_back(std::move(Dst));
}
}
bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
OperandVector &FinalOperands) {
if (OrigOperands.size() > 1) {
// Check if sizes match, OrigOperands also contains the instruction name
assert(OrigOperands.size() == FinalOperands.size() + 1 &&
"Operand size mismatch");
SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
// Verify types match
int RegClassID = -1;
for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
if (FinalOp.isReg() &&
(!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
// Return false and let a normal complaint about bogus operands happen
return false;
if (FinalOp.isMem()) {
if (!OrigOp.isMem())
// Return false and let a normal complaint about bogus operands happen
return false;
unsigned OrigReg = OrigOp.Mem.BaseReg;
unsigned FinalReg = FinalOp.Mem.BaseReg;
// If we've already encounterd a register class, make sure all register
// bases are of the same register class
if (RegClassID != -1 &&
!X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
return Error(OrigOp.getStartLoc(),
"mismatching source and destination index registers");
}
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
RegClassID = X86::GR64RegClassID;
else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
RegClassID = X86::GR32RegClassID;
else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
RegClassID = X86::GR16RegClassID;
else
// Unexpected register class type
// Return false and let a normal complaint about bogus operands happen
return false;
bool IsSI = IsSIReg(FinalReg);
FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
if (FinalReg != OrigReg) {
std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
Warnings.push_back(std::make_pair(
OrigOp.getStartLoc(),
"memory operand is only for determining the size, " + RegName +
" will be used for the location"));
}
FinalOp.Mem.Size = OrigOp.Mem.Size;
FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
FinalOp.Mem.BaseReg = FinalReg;
}
}
// Produce warnings only if all the operands passed the adjustment - prevent
// legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
for (auto &WarningMsg : Warnings) {
Warning(WarningMsg.first, WarningMsg.second);
}
// Remove old operands
for (unsigned int i = 0; i < FinalOperands.size(); ++i)
OrigOperands.pop_back();
}
// OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
for (unsigned int i = 0; i < FinalOperands.size(); ++i)
OrigOperands.push_back(std::move(FinalOperands[i]));
return false;
}
bool X86AsmParser::ParseOperand(OperandVector &Operands) {
if (isParsingIntelSyntax())
return ParseIntelOperand(Operands);
return ParseATTOperand(Operands);
}
bool X86AsmParser::CreateMemForMSInlineAsm(
unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
const InlineAsmIdentifierInfo &Info, OperandVector &Operands) {
// If we found a decl other than a VarDecl, then assume it is a FuncDecl or
// some other label reference.
if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
// Insert an explicit size if the user didn't have one.
if (!Size) {
Size = getPointerWidth();
InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
/*Len=*/0, Size);
}
// Create an absolute memory reference in order to match against
// instructions taking a PC relative operand.
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), Disp, Start,
End, Size, Identifier,
Info.Label.Decl));
return false;
}
// We either have a direct symbol reference, or an offset from a symbol. The
// parser always puts the symbol on the LHS, so look there for size
// calculation purposes.
unsigned FrontendSize = 0;
void *Decl = nullptr;
bool IsGlobalLV = false;
if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
// Size is in terms of bits in this context.
FrontendSize = Info.Var.Type * 8;
Decl = Info.Var.Decl;
IsGlobalLV = Info.Var.IsGlobalLV;
}
// It is widely common for MS InlineAsm to use a global variable and one/two
// registers in a mmory expression, and though unaccessible via rip/eip.
if (IsGlobalLV && (BaseReg || IndexReg)) {
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, Start, End));
return false;
}
// Otherwise, we set the base register to a non-zero value
// if we don't know the actual value at this time. This is necessary to
// get the matching correct in some cases.
BaseReg = BaseReg ? BaseReg : 1;
Operands.push_back(X86Operand::CreateMem(
getPointerWidth(), SegReg, Disp, BaseReg, IndexReg, Scale, Start, End,
Size,
/*DefaultBaseReg=*/X86::RIP, Identifier, Decl, FrontendSize));
return false;
}
// Some binary bitwise operators have a named synonymous
// Query a candidate string for being such a named operator
// and if so - invoke the appropriate handler
bool X86AsmParser::ParseIntelNamedOperator(StringRef Name,
IntelExprStateMachine &SM,
bool &ParseError, SMLoc &End) {
// A named operator should be either lower or upper case, but not a mix
if (Name.compare(Name.lower()) && Name.compare(Name.upper()))
return false;
if (Name.equals_lower("not")) {
SM.onNot();
} else if (Name.equals_lower("or")) {
SM.onOr();
} else if (Name.equals_lower("shl")) {
SM.onLShift();
} else if (Name.equals_lower("shr")) {
SM.onRShift();
} else if (Name.equals_lower("xor")) {
SM.onXor();
} else if (Name.equals_lower("and")) {
SM.onAnd();
} else if (Name.equals_lower("mod")) {
SM.onMod();
} else if (Name.equals_lower("offset")) {
SMLoc OffsetLoc = getTok().getLoc();
const MCExpr *Val = nullptr;
StringRef ID;
InlineAsmIdentifierInfo Info;
ParseError = ParseIntelOffsetOperator(Val, ID, Info, End);
if (ParseError)
return true;
StringRef ErrMsg;
ParseError =
SM.onOffset(Val, OffsetLoc, ID, Info, isParsingMSInlineAsm(), ErrMsg);
if (ParseError)
return Error(SMLoc::getFromPointer(Name.data()), ErrMsg);
} else {
return false;
}
if (!Name.equals_lower("offset"))
End = consumeToken();
return true;
}
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
StringRef ErrMsg;
AsmToken::TokenKind PrevTK = AsmToken::Error;
bool Done = false;
while (!Done) {
bool UpdateLocLex = true;
AsmToken::TokenKind TK = getLexer().getKind();
switch (TK) {
default:
if ((Done = SM.isValidEndState()))
break;
return Error(Tok.getLoc(), "unknown token in expression");
case AsmToken::Error:
return Error(getLexer().getErrLoc(), getLexer().getErr());
break;
case AsmToken::EndOfStatement:
Done = true;
break;
case AsmToken::Real:
// DotOperator: [ebx].0
UpdateLocLex = false;
if (ParseIntelDotOperator(SM, End))
return true;
break;
case AsmToken::Dot:
if (!Parser.isParsingMasm()) {
if ((Done = SM.isValidEndState()))
break;
return Error(Tok.getLoc(), "unknown token in expression");
}
// MASM allows spaces around the dot operator (e.g., "var . x")
Lex();
UpdateLocLex = false;
if (ParseIntelDotOperator(SM, End))
return true;
break;
case AsmToken::Dollar:
if (!Parser.isParsingMasm()) {
if ((Done = SM.isValidEndState()))
break;
return Error(Tok.getLoc(), "unknown token in expression");
}
LLVM_FALLTHROUGH;
case AsmToken::At:
case AsmToken::String:
case AsmToken::Identifier: {
SMLoc IdentLoc = Tok.getLoc();
StringRef Identifier = Tok.getString();
UpdateLocLex = false;
if (Parser.isParsingMasm()) {
size_t DotOffset = Identifier.find_first_of('.');
if (DotOffset != StringRef::npos) {
consumeToken();
StringRef LHS = Identifier.slice(0, DotOffset);
StringRef Dot = Identifier.slice(DotOffset, DotOffset + 1);
StringRef RHS = Identifier.slice(DotOffset + 1, StringRef::npos);
if (!RHS.empty()) {
getLexer().UnLex(AsmToken(AsmToken::Identifier, RHS));
}
getLexer().UnLex(AsmToken(AsmToken::Dot, Dot));
if (!LHS.empty()) {
getLexer().UnLex(AsmToken(AsmToken::Identifier, LHS));
}
break;
}
}
// (MASM only) <TYPE> PTR operator
if (Parser.isParsingMasm()) {
const AsmToken &NextTok = getLexer().peekTok();
if (NextTok.is(AsmToken::Identifier) &&
NextTok.getIdentifier().equals_lower("ptr")) {
AsmTypeInfo Info;
if (Parser.lookUpType(Identifier, Info))
return Error(Tok.getLoc(), "unknown type");
SM.onCast(Info);
// Eat type and PTR.
consumeToken();
End = consumeToken();
break;
}
}
// Register, or (MASM only) <register>.<field>
unsigned Reg;
if (Tok.is(AsmToken::Identifier)) {
if (!ParseRegister(Reg, IdentLoc, End, /*RestoreOnFailure=*/true)) {
if (SM.onRegister(Reg, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
if (Parser.isParsingMasm()) {
const std::pair<StringRef, StringRef> IDField =
Tok.getString().split('.');
const StringRef ID = IDField.first, Field = IDField.second;
SMLoc IDEndLoc = SMLoc::getFromPointer(ID.data() + ID.size());
if (!Field.empty() &&
!MatchRegisterByName(Reg, ID, IdentLoc, IDEndLoc)) {
if (SM.onRegister(Reg, ErrMsg))
return Error(IdentLoc, ErrMsg);
AsmFieldInfo Info;
SMLoc FieldStartLoc = SMLoc::getFromPointer(Field.data());
if (Parser.lookUpField(Field, Info))
return Error(FieldStartLoc, "unknown offset");
else if (SM.onPlus(ErrMsg))
return Error(getTok().getLoc(), ErrMsg);
else if (SM.onInteger(Info.Offset, ErrMsg))
return Error(IdentLoc, ErrMsg);
SM.setTypeInfo(Info.Type);
End = consumeToken();
break;
}
}
}
// Operator synonymous ("not", "or" etc.)
bool ParseError = false;
if (ParseIntelNamedOperator(Identifier, SM, ParseError, End)) {
if (ParseError)
return true;
break;
}
// Symbol reference, when parsing assembly content
InlineAsmIdentifierInfo Info;
AsmFieldInfo FieldInfo;
const MCExpr *Val;
if (isParsingMSInlineAsm() || Parser.isParsingMasm()) {
// MS Dot Operator expression
if (Identifier.count('.') &&
(PrevTK == AsmToken::RBrac || PrevTK == AsmToken::RParen)) {
if (ParseIntelDotOperator(SM, End))
return true;
break;
}
}
if (isParsingMSInlineAsm()) {
// MS InlineAsm operators (TYPE/LENGTH/SIZE)
if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
if (SM.onInteger(Val, ErrMsg))
return Error(IdentLoc, ErrMsg);
} else {
return true;
}
break;
}
// MS InlineAsm identifier
// Call parseIdentifier() to combine @ with the identifier behind it.
if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
return Error(IdentLoc, "expected identifier");
if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
return true;
else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type,
true, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
if (Parser.isParsingMasm()) {
if (unsigned OpKind = IdentifyMasmOperator(Identifier)) {
int64_t Val;
if (ParseMasmOperator(OpKind, Val))
return true;
if (SM.onInteger(Val, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
if (!getParser().lookUpType(Identifier, FieldInfo.Type)) {
// Field offset immediate; <TYPE>.<field specification>
Lex(); // eat type
bool EndDot = parseOptionalToken(AsmToken::Dot);
while (EndDot || (getTok().is(AsmToken::Identifier) &&
getTok().getString().startswith("."))) {
getParser().parseIdentifier(Identifier);
if (!EndDot)
Identifier.consume_front(".");
EndDot = Identifier.consume_back(".");
if (getParser().lookUpField(FieldInfo.Type.Name, Identifier,
FieldInfo)) {
SMLoc IDEnd =
SMLoc::getFromPointer(Identifier.data() + Identifier.size());
return Error(IdentLoc, "Unable to lookup field reference!",
SMRange(IdentLoc, IDEnd));
}
if (!EndDot)
EndDot = parseOptionalToken(AsmToken::Dot);
}
if (SM.onInteger(FieldInfo.Offset, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
}
if (getParser().parsePrimaryExpr(Val, End, &FieldInfo.Type)) {
return Error(Tok.getLoc(), "Unexpected identifier!");
} else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type,
false, ErrMsg)) {
return Error(IdentLoc, ErrMsg);
}
break;
}
case AsmToken::Integer: {
// Look for 'b' or 'f' following an Integer as a directional label
SMLoc Loc = getTok().getLoc();
int64_t IntVal = getTok().getIntVal();
End = consumeToken();
UpdateLocLex = false;
if (getLexer().getKind() == AsmToken::Identifier) {
StringRef IDVal = getTok().getString();
if (IDVal == "f" || IDVal == "b") {
MCSymbol *Sym =
getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
const MCExpr *Val =
MCSymbolRefExpr::create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined())
return Error(Loc, "invalid reference to undefined symbol");
StringRef Identifier = Sym->getName();
InlineAsmIdentifierInfo Info;
AsmTypeInfo Type;
if (SM.onIdentifierExpr(Val, Identifier, Info, Type,
isParsingMSInlineAsm(), ErrMsg))
return Error(Loc, ErrMsg);
End = consumeToken();
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
break;
}
case AsmToken::Plus:
if (SM.onPlus(ErrMsg))
return Error(getTok().getLoc(), ErrMsg);
break;
case AsmToken::Minus:
if (SM.onMinus(ErrMsg))
return Error(getTok().getLoc(), ErrMsg);
break;
case AsmToken::Tilde: SM.onNot(); break;
case AsmToken::Star: SM.onStar(); break;
case AsmToken::Slash: SM.onDivide(); break;
case AsmToken::Percent: SM.onMod(); break;
case AsmToken::Pipe: SM.onOr(); break;
case AsmToken::Caret: SM.onXor(); break;
case AsmToken::Amp: SM.onAnd(); break;
case AsmToken::LessLess:
SM.onLShift(); break;
case AsmToken::GreaterGreater:
SM.onRShift(); break;
case AsmToken::LBrac:
if (SM.onLBrac())
return Error(Tok.getLoc(), "unexpected bracket encountered");
break;
case AsmToken::RBrac:
if (SM.onRBrac())
return Error(Tok.getLoc(), "unexpected bracket encountered");
break;
case AsmToken::LParen: SM.onLParen(); break;
case AsmToken::RParen: SM.onRParen(); break;
}
if (SM.hadError())
return Error(Tok.getLoc(), "unknown token in expression");
if (!Done && UpdateLocLex)
End = consumeToken();
PrevTK = TK;
}
return false;
}
void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
SMLoc Start, SMLoc End) {
SMLoc Loc = Start;
unsigned ExprLen = End.getPointer() - Start.getPointer();
// Skip everything before a symbol displacement (if we have one)
if (SM.getSym() && !SM.isOffsetOperator()) {
StringRef SymName = SM.getSymName();
if (unsigned Len = SymName.data() - Start.getPointer())
InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
ExprLen = End.getPointer() - (SymName.data() + SymName.size());
// If we have only a symbol than there's no need for complex rewrite,
// simply skip everything after it
if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
if (ExprLen)
InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
return;
}
}
// Build an Intel Expression rewrite
StringRef BaseRegStr;
StringRef IndexRegStr;
StringRef OffsetNameStr;
if (SM.getBaseReg())
BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
if (SM.getIndexReg())
IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
if (SM.isOffsetOperator())
OffsetNameStr = SM.getSymName();
// Emit it
IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), OffsetNameStr,
SM.getImm(), SM.isMemExpr());
InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
}
// Inline assembly may use variable names with namespace alias qualifiers.
bool X86AsmParser::ParseIntelInlineAsmIdentifier(
const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator) {
MCAsmParser &Parser = getParser();
assert(isParsingMSInlineAsm() && "Expected to be parsing inline assembly.");
Val = nullptr;
StringRef LineBuf(Identifier.data());
SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
const AsmToken &Tok = Parser.getTok();
SMLoc Loc = Tok.getLoc();
// Advance the token stream until the end of the current token is
// after the end of what the frontend claimed.
const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
do {
End = Tok.getEndLoc();
getLexer().Lex();
} while (End.getPointer() < EndPtr);
Identifier = LineBuf;
// The frontend should end parsing on an assembler token boundary, unless it
// failed parsing.
assert((End.getPointer() == EndPtr ||
Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
"frontend claimed part of a token?");
// If the identifier lookup was unsuccessful, assume that we are dealing with
// a label.
if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
StringRef InternalName =
SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
Loc, false);
assert(InternalName.size() && "We should have an internal name here.");
// Push a rewrite for replacing the identifier name with the internal name,
// unless we are parsing the operand of an offset operator
if (!IsParsingOffsetOperator)
InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
InternalName);
else
Identifier = InternalName;
} else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
return false;
// Create the symbol reference.
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
return false;
}
//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
bool X86AsmParser::ParseRoundingModeOp(SMLoc Start, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
if (Tok.isNot(AsmToken::Identifier))
return Error(Tok.getLoc(), "Expected an identifier after {");
if (Tok.getIdentifier().startswith("r")){
int rndMode = StringSwitch<int>(Tok.getIdentifier())
.Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
.Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
.Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
.Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
.Default(-1);
if (-1 == rndMode)
return Error(Tok.getLoc(), "Invalid rounding mode.");
Parser.Lex(); // Eat "r*" of r*-sae
if (!getLexer().is(AsmToken::Minus))
return Error(Tok.getLoc(), "Expected - at this point");
Parser.Lex(); // Eat "-"
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return Error(Tok.getLoc(), "Expected } at this point");
SMLoc End = Tok.getEndLoc();
Parser.Lex(); // Eat "}"
const MCExpr *RndModeOp =
MCConstantExpr::create(rndMode, Parser.getContext());
Operands.push_back(X86Operand::CreateImm(RndModeOp, Start, End));
return false;
}
if(Tok.getIdentifier().equals("sae")){
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return Error(Tok.getLoc(), "Expected } at this point");
Parser.Lex(); // Eat "}"
Operands.push_back(X86Operand::CreateToken("{sae}", consumedToken));
return false;
}
return Error(Tok.getLoc(), "unknown token in expression");
}
/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM,
SMLoc &End) {
const AsmToken &Tok = getTok();
AsmFieldInfo Info;
// Drop the optional '.'.
StringRef DotDispStr = Tok.getString();
if (DotDispStr.startswith("."))
DotDispStr = DotDispStr.drop_front(1);
StringRef TrailingDot;
// .Imm gets lexed as a real.
if (Tok.is(AsmToken::Real)) {
APInt DotDisp;
DotDispStr.getAsInteger(10, DotDisp);
Info.Offset = DotDisp.getZExtValue();
} else if ((isParsingMSInlineAsm() || getParser().isParsingMasm()) &&
Tok.is(AsmToken::Identifier)) {
if (DotDispStr.endswith(".")) {
TrailingDot = DotDispStr.substr(DotDispStr.size() - 1);
DotDispStr = DotDispStr.drop_back(1);
}
const std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
const StringRef Base = BaseMember.first, Member = BaseMember.second;
if (getParser().lookUpField(SM.getType(), DotDispStr, Info) &&
getParser().lookUpField(SM.getSymName(), DotDispStr, Info) &&
getParser().lookUpField(DotDispStr, Info) &&
(!SemaCallback ||
SemaCallback->LookupInlineAsmField(Base, Member, Info.Offset)))
return Error(Tok.getLoc(), "Unable to lookup field reference!");
} else {
return Error(Tok.getLoc(), "Unexpected token type!");
}
// Eat the DotExpression and update End
End = SMLoc::getFromPointer(DotDispStr.data());
const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
while (Tok.getLoc().getPointer() < DotExprEndLoc)
Lex();
if (!TrailingDot.empty())
getLexer().UnLex(AsmToken(AsmToken::Dot, TrailingDot));
SM.addImm(Info.Offset);
SM.setTypeInfo(Info.Type);
return false;
}
/// Parse the 'offset' operator.
/// This operator is used to specify the location of a given operand
bool X86AsmParser::ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
InlineAsmIdentifierInfo &Info,
SMLoc &End) {
// Eat offset, mark start of identifier.
SMLoc Start = Lex().getLoc();
ID = getTok().getString();
if (!isParsingMSInlineAsm()) {
if ((getTok().isNot(AsmToken::Identifier) &&
getTok().isNot(AsmToken::String)) ||
getParser().parsePrimaryExpr(Val, End, nullptr))
return Error(Start, "unexpected token!");
} else if (ParseIntelInlineAsmIdentifier(Val, ID, Info, false, End, true)) {
return Error(Start, "unable to lookup expression");
} else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) {
return Error(Start, "offset operator cannot yet handle constants");
}
return false;
}
// Query a candidate string for being an Intel assembly operator
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
return StringSwitch<unsigned>(Name)
.Cases("TYPE","type",IOK_TYPE)
.Cases("SIZE","size",IOK_SIZE)
.Cases("LENGTH","length",IOK_LENGTH)
.Default(IOK_INVALID);
}
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
/// returns the number of elements in an array. It returns the value 1 for
/// non-array variables. The SIZE operator returns the size of a C or C++
/// variable. A variable's size is the product of its LENGTH and TYPE. The
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
Parser.Lex(); // Eat operator.
const MCExpr *Val = nullptr;
InlineAsmIdentifierInfo Info;
SMLoc Start = Tok.getLoc(), End;
StringRef Identifier = Tok.getString();
if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
/*Unevaluated=*/true, End))
return 0;
if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
Error(Start, "unable to lookup expression");
return 0;
}
unsigned CVal = 0;
switch(OpKind) {
default: llvm_unreachable("Unexpected operand kind!");
case IOK_LENGTH: CVal = Info.Var.Length; break;
case IOK_SIZE: CVal = Info.Var.Size; break;
case IOK_TYPE: CVal = Info.Var.Type; break;
}
return CVal;
}
// Query a candidate string for being an Intel assembly operator
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
unsigned X86AsmParser::IdentifyMasmOperator(StringRef Name) {
return StringSwitch<unsigned>(Name.lower())
.Case("type", MOK_TYPE)
.Cases("size", "sizeof", MOK_SIZEOF)
.Cases("length", "lengthof", MOK_LENGTHOF)
.Default(MOK_INVALID);
}
/// Parse the 'LENGTHOF', 'SIZEOF', and 'TYPE' operators. The LENGTHOF operator
/// returns the number of elements in an array. It returns the value 1 for
/// non-array variables. The SIZEOF operator returns the size of a type or
/// variable in bytes. A variable's size is the product of its LENGTH and TYPE.
/// The TYPE operator returns the size of a variable. If the variable is an
/// array, TYPE returns the size of a single element.
bool X86AsmParser::ParseMasmOperator(unsigned OpKind, int64_t &Val) {
MCAsmParser &Parser = getParser();
SMLoc OpLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat operator.
Val = 0;
if (OpKind == MOK_SIZEOF || OpKind == MOK_TYPE) {
// Check for SIZEOF(<type>) and TYPE(<type>).
bool InParens = Parser.getTok().is(AsmToken::LParen);
const AsmToken &IDTok = InParens ? getLexer().peekTok() : Parser.getTok();
AsmTypeInfo Type;
if (IDTok.is(AsmToken::Identifier) &&
!Parser.lookUpType(IDTok.getIdentifier(), Type)) {
Val = Type.Size;
// Eat tokens.
if (InParens)
parseToken(AsmToken::LParen);
parseToken(AsmToken::Identifier);
if (InParens)
parseToken(AsmToken::RParen);
}
}
if (!Val) {
IntelExprStateMachine SM;
SMLoc End, Start = Parser.getTok().getLoc();
if (ParseIntelExpression(SM, End))
return true;
switch (OpKind) {
default:
llvm_unreachable("Unexpected operand kind!");
case MOK_SIZEOF:
Val = SM.getSize();
break;
case MOK_LENGTHOF:
Val = SM.getLength();
break;
case MOK_TYPE:
Val = SM.getElementSize();
break;
}
if (!Val)
return Error(OpLoc, "expression has unknown type", SMRange(Start, End));
}
return false;
}
bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
Size = StringSwitch<unsigned>(getTok().getString())
.Cases("BYTE", "byte", 8)
.Cases("WORD", "word", 16)
.Cases("DWORD", "dword", 32)
.Cases("FLOAT", "float", 32)
.Cases("LONG", "long", 32)
.Cases("FWORD", "fword", 48)
.Cases("DOUBLE", "double", 64)
.Cases("QWORD", "qword", 64)
.Cases("MMWORD","mmword", 64)
.Cases("XWORD", "xword", 80)
.Cases("TBYTE", "tbyte", 80)
.Cases("XMMWORD", "xmmword", 128)
.Cases("YMMWORD", "ymmword", 256)
.Cases("ZMMWORD", "zmmword", 512)
.Default(0);
if (Size) {
const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
Lex(); // Eat ptr.
}
return false;
}
bool X86AsmParser::ParseIntelOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc Start, End;
// Parse optional Size directive.
unsigned Size;
if (ParseIntelMemoryOperandSize(Size))
return true;
bool PtrInOperand = bool(Size);
Start = Tok.getLoc();
// Rounding mode operand.
if (getLexer().is(AsmToken::LCurly))
return ParseRoundingModeOp(Start, Operands);
// Register operand.
unsigned RegNo = 0;
if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
if (RegNo == X86::RIP)
return Error(Start, "rip can only be used as a base register");
// A Register followed by ':' is considered a segment override
if (Tok.isNot(AsmToken::Colon)) {
if (PtrInOperand)
return Error(Start, "expected memory operand after 'ptr', "
"found register operand instead");
Operands.push_back(X86Operand::CreateReg(RegNo, Start, End));
return false;
}
// An alleged segment override. check if we have a valid segment register
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
return Error(Start, "invalid segment register");
// Eat ':' and update Start location
Start = Lex().getLoc();
}
// Immediates and Memory
IntelExprStateMachine SM;
if (ParseIntelExpression(SM, End))
return true;
if (isParsingMSInlineAsm())
RewriteIntelExpression(SM, Start, Tok.getLoc());
int64_t Imm = SM.getImm();
const MCExpr *Disp = SM.getSym();
const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
if (Disp && Imm)
Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
if (!Disp)
Disp = ImmDisp;
// RegNo != 0 specifies a valid segment register,
// and we are parsing a segment override
if (!SM.isMemExpr() && !RegNo) {
if (isParsingMSInlineAsm() && SM.isOffsetOperator()) {
const InlineAsmIdentifierInfo Info = SM.getIdentifierInfo();
if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
// Disp includes the address of a variable; make sure this is recorded
// for later handling.
Operands.push_back(X86Operand::CreateImm(Disp, Start, End,
SM.getSymName(), Info.Var.Decl,
Info.Var.IsGlobalLV));
return false;
}
}
Operands.push_back(X86Operand::CreateImm(Disp, Start, End));
return false;
}
StringRef ErrMsg;
unsigned BaseReg = SM.getBaseReg();
unsigned IndexReg = SM.getIndexReg();
unsigned Scale = SM.getScale();
if (!PtrInOperand)
Size = SM.getElementSize() << 3;
if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
(IndexReg == X86::ESP || IndexReg == X86::RSP))
std::swap(BaseReg, IndexReg);
// If BaseReg is a vector register and IndexReg is not, swap them unless
// Scale was specified in which case it would be an error.
if (Scale == 0 &&
!(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
(X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
std::swap(BaseReg, IndexReg);
if (Scale != 0 &&
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
return Error(Start, "16-bit addresses cannot have a scale");
// If there was no explicit scale specified, change it to 1.
if (Scale == 0)
Scale = 1;
// If this is a 16-bit addressing mode with the base and index in the wrong
// order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
// shared with att syntax where order matters.
if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
(IndexReg == X86::BX || IndexReg == X86::BP))
std::swap(BaseReg, IndexReg);
if ((BaseReg || IndexReg) &&
CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
ErrMsg))
return Error(Start, ErrMsg);
if (isParsingMSInlineAsm())
return CreateMemForMSInlineAsm(RegNo, Disp, BaseReg, IndexReg, Scale, Start,
End, Size, SM.getSymName(),
SM.getIdentifierInfo(), Operands);
// When parsing x64 MS-style assembly, all memory operands default to
// RIP-relative when interpreted as non-absolute references.
if (Parser.isParsingMasm() && is64BitMode()) {
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
BaseReg, IndexReg, Scale, Start,
End, Size,
/*DefaultBaseReg=*/X86::RIP));
return false;
}
if ((BaseReg || IndexReg || RegNo))
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
BaseReg, IndexReg, Scale, Start,
End, Size));
else
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size));
return false;
}
bool X86AsmParser::ParseATTOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
case AsmToken::Dollar: {
// $42 or $ID -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
// This is an immediate, so we should not parse a register. Do a precheck
// for '%' to supercede intra-register parse errors.
SMLoc L = Parser.getTok().getLoc();
if (check(getLexer().is(AsmToken::Percent), L,
"expected immediate expression") ||
getParser().parseExpression(Val, End) ||
check(isa<X86MCExpr>(Val), L, "expected immediate expression"))
return true;
Operands.push_back(X86Operand::CreateImm(Val, Start, End));
return false;
}
case AsmToken::LCurly: {
SMLoc Start = Parser.getTok().getLoc();
return ParseRoundingModeOp(Start, Operands);
}
default: {
// This a memory operand or a register. We have some parsing complications
// as a '(' may be part of an immediate expression or the addressing mode
// block. This is complicated by the fact that an assembler-level variable
// may refer either to a register or an immediate expression.
SMLoc Loc = Parser.getTok().getLoc(), EndLoc;
const MCExpr *Expr = nullptr;
unsigned Reg = 0;
if (getLexer().isNot(AsmToken::LParen)) {
// No '(' so this is either a displacement expression or a register.
if (Parser.parseExpression(Expr, EndLoc))
return true;
if (auto *RE = dyn_cast<X86MCExpr>(Expr)) {
// Segment Register. Reset Expr and copy value to register.
Expr = nullptr;
Reg = RE->getRegNo();
// Sanity check register.
if (Reg == X86::EIZ || Reg == X86::RIZ)
return Error(
Loc, "%eiz and %riz can only be used as index registers",
SMRange(Loc, EndLoc));
if (Reg == X86::RIP)
return Error(Loc, "%rip can only be used as a base register",
SMRange(Loc, EndLoc));
// Return register that are not segment prefixes immediately.
if (!Parser.parseOptionalToken(AsmToken::Colon)) {
Operands.push_back(X86Operand::CreateReg(Reg, Loc, EndLoc));
return false;
}
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg))
return Error(Loc, "invalid segment register");
// Accept a '*' absolute memory reference after the segment. Place it
// before the full memory operand.
if (getLexer().is(AsmToken::Star))
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
}
}
// This is a Memory operand.
return ParseMemOperand(Reg, Expr, Loc, EndLoc, Operands);
}
}
}
// X86::COND_INVALID if not a recognized condition code or alternate mnemonic,
// otherwise the EFLAGS Condition Code enumerator.
X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) {
return StringSwitch<X86::CondCode>(CC)
.Case("o", X86::COND_O) // Overflow
.Case("no", X86::COND_NO) // No Overflow
.Cases("b", "nae", X86::COND_B) // Below/Neither Above nor Equal
.Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below
.Cases("e", "z", X86::COND_E) // Equal/Zero
.Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero
.Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above
.Cases("a", "nbe", X86::COND_A) // Above/Neither Below nor Equal
.Case("s", X86::COND_S) // Sign
.Case("ns", X86::COND_NS) // No Sign
.Cases("p", "pe", X86::COND_P) // Parity/Parity Even
.Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd
.Cases("l", "nge", X86::COND_L) // Less/Neither Greater nor Equal
.Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less
.Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater
.Cases("g", "nle", X86::COND_G) // Greater/Neither Less nor Equal
.Default(X86::COND_INVALID);
}
// true on failure, false otherwise
// If no {z} mark was found - Parser doesn't advance
bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
const SMLoc &StartLoc) {
MCAsmParser &Parser = getParser();
// Assuming we are just pass the '{' mark, quering the next token
// Searched for {z}, but none was found. Return false, as no parsing error was
// encountered
if (!(getLexer().is(AsmToken::Identifier) &&
(getLexer().getTok().getIdentifier() == "z")))
return false;
Parser.Lex(); // Eat z
// Query and eat the '}' mark
if (!getLexer().is(AsmToken::RCurly))
return Error(getLexer().getLoc(), "Expected } at this point");
Parser.Lex(); // Eat '}'
// Assign Z with the {z} mark opernad
Z = X86Operand::CreateToken("{z}", StartLoc);
return false;
}
// true on failure, false otherwise
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LCurly)) {
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
// Distinguish {1to<NUM>} from {%k<NUM>}.
if(getLexer().is(AsmToken::Integer)) {
// Parse memory broadcasting ({1to<NUM>}).
if (getLexer().getTok().getIntVal() != 1)
return TokError("Expected 1to<NUM> at this point");
StringRef Prefix = getLexer().getTok().getString();
Parser.Lex(); // Eat first token of 1to8
if (!getLexer().is(AsmToken::Identifier))
return TokError("Expected 1to<NUM> at this point");
// Recognize only reasonable suffixes.
SmallVector<char, 5> BroadcastVector;
StringRef BroadcastString = (Prefix + getLexer().getTok().getIdentifier())
.toStringRef(BroadcastVector);
if (!BroadcastString.startswith("1to"))
return TokError("Expected 1to<NUM> at this point");
const char *BroadcastPrimitive =
StringSwitch<const char *>(BroadcastString)
.Case("1to2", "{1to2}")
.Case("1to4", "{1to4}")
.Case("1to8", "{1to8}")
.Case("1to16", "{1to16}")
.Default(nullptr);
if (!BroadcastPrimitive)
return TokError("Invalid memory broadcast primitive.");
Parser.Lex(); // Eat trailing token of 1toN
if (!getLexer().is(AsmToken::RCurly))
return TokError("Expected } at this point");
Parser.Lex(); // Eat "}"
Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
consumedToken));
// No AVX512 specific primitives can pass
// after memory broadcasting, so return.
return false;
} else {
// Parse either {k}{z}, {z}{k}, {k} or {z}
// last one have no meaning, but GCC accepts it
// Currently, we're just pass a '{' mark
std::unique_ptr<X86Operand> Z;
if (ParseZ(Z, consumedToken))
return true;
// Reaching here means that parsing of the allegadly '{z}' mark yielded
// no errors.
// Query for the need of further parsing for a {%k<NUM>} mark
if (!Z || getLexer().is(AsmToken::LCurly)) {
SMLoc StartLoc = Z ? consumeToken() : consumedToken;
// Parse an op-mask register mark ({%k<NUM>}), which is now to be
// expected
unsigned RegNo;
SMLoc RegLoc;
if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
if (RegNo == X86::K0)
return Error(RegLoc, "Register k0 can't be used as write mask");
if (!getLexer().is(AsmToken::RCurly))
return Error(getLexer().getLoc(), "Expected } at this point");
Operands.push_back(X86Operand::CreateToken("{", StartLoc));
Operands.push_back(
X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
} else
return Error(getLexer().getLoc(),
"Expected an op-mask register at this point");
// {%k<NUM>} mark is found, inquire for {z}
if (getLexer().is(AsmToken::LCurly) && !Z) {
// Have we've found a parsing error, or found no (expected) {z} mark
// - report an error
if (ParseZ(Z, consumeToken()) || !Z)
return Error(getLexer().getLoc(),
"Expected a {z} mark at this point");
}
// '{z}' on its own is meaningless, hence should be ignored.
// on the contrary - have it been accompanied by a K register,
// allow it.
if (Z)
Operands.push_back(std::move(Z));
}
}
}
return false;
}
/// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'. The '%ds:' prefix
/// has already been parsed if present. disp may be provided as well.
bool X86AsmParser::ParseMemOperand(unsigned SegReg, const MCExpr *Disp,
SMLoc StartLoc, SMLoc EndLoc,
OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc Loc;
// Based on the initial passed values, we may be in any of these cases, we are
// in one of these cases (with current position (*)):
// 1. seg : * disp (base-index-scale-expr)
// 2. seg : *(disp) (base-index-scale-expr)
// 3. seg : *(base-index-scale-expr)
// 4. disp *(base-index-scale-expr)
// 5. *(disp) (base-index-scale-expr)
// 6. *(base-index-scale-expr)
// 7. disp *
// 8. *(disp)
// If we do not have an displacement yet, check if we're in cases 4 or 6 by
// checking if the first object after the parenthesis is a register (or an
// identifier referring to a register) and parse the displacement or default
// to 0 as appropriate.
auto isAtMemOperand = [this]() {
if (this->getLexer().isNot(AsmToken::LParen))
return false;
AsmToken Buf[2];
StringRef Id;
auto TokCount = this->getLexer().peekTokens(Buf, true);
if (TokCount == 0)
return false;
switch (Buf[0].getKind()) {
case AsmToken::Percent:
case AsmToken::Comma:
return true;
// These lower cases are doing a peekIdentifier.
case AsmToken::At:
case AsmToken::Dollar:
if ((TokCount > 1) &&
(Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) &&
(Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer()))
Id = StringRef(Buf[0].getLoc().getPointer(),
Buf[1].getIdentifier().size() + 1);
break;
case AsmToken::Identifier:
case AsmToken::String:
Id = Buf[0].getIdentifier();
break;
default:
return false;
}
// We have an ID. Check if it is bound to a register.
if (!Id.empty()) {
MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id);
if (Sym->isVariable()) {
auto V = Sym->getVariableValue(/*SetUsed*/ false);
return isa<X86MCExpr>(V);
}
}
return false;
};
if (!Disp) {
// Parse immediate if we're not at a mem operand yet.
if (!isAtMemOperand()) {
if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc))
return true;
assert(!isa<X86MCExpr>(Disp) && "Expected non-register here.");
} else {
// Disp is implicitly zero if we haven't parsed it yet.
Disp = MCConstantExpr::create(0, Parser.getContext());
}
}
// We are now either at the end of the operand or at the '(' at the start of a
// base-index-scale-expr.
if (!parseOptionalToken(AsmToken::LParen)) {
if (SegReg == 0)
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc));
else
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
0, 0, 1, StartLoc, EndLoc));
return false;
}
// If we reached here, then eat the '(' and Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
SMLoc BaseLoc = getLexer().getLoc();
const MCExpr *E;
StringRef ErrMsg;
// Parse BaseReg if one is provided.
if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) {
if (Parser.parseExpression(E, EndLoc) ||
check(!isa<X86MCExpr>(E), BaseLoc, "expected register here"))
return true;
// Sanity check register.
BaseReg = cast<X86MCExpr>(E)->getRegNo();
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ)
return Error(BaseLoc, "eiz and riz can only be used as index registers",
SMRange(BaseLoc, EndLoc));
}
if (parseOptionalToken(AsmToken::Comma)) {
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Even though it would be completely consistent to support syntax like
// "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
if (getLexer().isNot(AsmToken::RParen)) {
if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc))
return true;
if (!isa<X86MCExpr>(E)) {
// We've parsed an unexpected Scale Value instead of an index
// register. Interpret it as an absolute.
int64_t ScaleVal;
if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr()))
return Error(Loc, "expected absolute expression");
if (ScaleVal != 1)
Warning(Loc, "scale factor without index register is ignored");
Scale = 1;
} else { // IndexReg Found.
IndexReg = cast<X86MCExpr>(E)->getRegNo();
if (BaseReg == X86::RIP)
return Error(Loc,
"%rip as base register can not have an index register");
if (IndexReg == X86::RIP)
return Error(Loc, "%rip is not allowed as an index register");
if (parseOptionalToken(AsmToken::Comma)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
// A scale amount without an index is ignored.
if (getLexer().isNot(AsmToken::RParen)) {
int64_t ScaleVal;
if (Parser.parseTokenLoc(Loc) ||
Parser.parseAbsoluteExpression(ScaleVal))
return Error(Loc, "expected scale expression");
Scale = (unsigned)ScaleVal;
// Validate the scale amount.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
Scale != 1)
return Error(Loc, "scale factor in 16-bit address must be 1");
if (checkScale(Scale, ErrMsg))
return Error(Loc, ErrMsg);
}
}
}
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
return true;
// This is to support otherwise illegal operand (%dx) found in various
// unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now
// be supported. Mark such DX variants separately fix only in special cases.
if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 &&
isa<MCConstantExpr>(Disp) &&
cast<MCConstantExpr>(Disp)->getValue() == 0) {
Operands.push_back(X86Operand::CreateDXReg(BaseLoc, BaseLoc));
return false;
}
if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
ErrMsg))
return Error(BaseLoc, ErrMsg);
if (SegReg || BaseReg || IndexReg)
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
BaseReg, IndexReg, Scale, StartLoc,
EndLoc));
else
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc));
return false;
}
// Parse either a standard primary expression or a register.
bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
MCAsmParser &Parser = getParser();
// See if this is a register first.
if (getTok().is(AsmToken::Percent) ||
(isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) &&
MatchRegisterName(Parser.getTok().getString()))) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned RegNo;
if (ParseRegister(RegNo, StartLoc, EndLoc))
return true;
Res = X86MCExpr::create(RegNo, Parser.getContext());
return false;
}
return Parser.parsePrimaryExpr(Res, EndLoc, nullptr);
}
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
InstInfo = &Info;
// Reset the forced VEX encoding.
ForcedVEXEncoding = VEXEncoding_Default;
ForcedDispEncoding = DispEncoding_Default;
// Parse pseudo prefixes.
while (1) {
if (Name == "{") {
if (getLexer().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "Unexpected token after '{'");
std::string Prefix = Parser.getTok().getString().lower();
Parser.Lex(); // Eat identifier.
if (getLexer().isNot(AsmToken::RCurly))
return Error(Parser.getTok().getLoc(), "Expected '}'");
Parser.Lex(); // Eat curly.
if (Prefix == "vex" || Prefix == "vex2")
ForcedVEXEncoding = VEXEncoding_VEX;
else if (Prefix == "vex3")
ForcedVEXEncoding = VEXEncoding_VEX3;
else if (Prefix == "evex")
ForcedVEXEncoding = VEXEncoding_EVEX;
else if (Prefix == "disp8")
ForcedDispEncoding = DispEncoding_Disp8;
else if (Prefix == "disp32")
ForcedDispEncoding = DispEncoding_Disp32;
else
return Error(NameLoc, "unknown prefix");
NameLoc = Parser.getTok().getLoc();
if (getLexer().is(AsmToken::LCurly)) {
Parser.Lex();
Name = "{";
} else {
if (getLexer().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "Expected identifier");
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
Parser.Lex();
}
continue;
}
break;
}
// Support the suffix syntax for overriding displacement size as well.
if (Name.consume_back(".d32")) {
ForcedDispEncoding = DispEncoding_Disp32;
} else if (Name.consume_back(".d8")) {
ForcedDispEncoding = DispEncoding_Disp8;
}
StringRef PatchedName = Name;
// Hack to skip "short" following Jcc.
if (isParsingIntelSyntax() &&
(PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" ||
PatchedName == "jcxz" || PatchedName == "jexcz" ||
(PatchedName.startswith("j") &&
ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) {
StringRef NextTok = Parser.getTok().getString();
if (NextTok == "short") {
SMLoc NameEndLoc =
NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
// Eat the short keyword.
Parser.Lex();
// MS and GAS ignore the short keyword; they both determine the jmp type
// based on the distance of the label. (NASM does emit different code with
// and without "short," though.)
InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
NextTok.size() + 1);
}
}
// FIXME: Hack to recognize setneb as setne.
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
PatchedName != "setb" && PatchedName != "setnb")
PatchedName = PatchedName.substr(0, Name.size()-1);
unsigned ComparisonPredicate = ~0U;
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
bool IsVCMP = PatchedName[0] == 'v';
unsigned CCIdx = IsVCMP ? 4 : 3;
unsigned CC = StringSwitch<unsigned>(
PatchedName.slice(CCIdx, PatchedName.size() - 2))
.Case("eq", 0x00)
.Case("eq_oq", 0x00)
.Case("lt", 0x01)
.Case("lt_os", 0x01)
.Case("le", 0x02)
.Case("le_os", 0x02)
.Case("unord", 0x03)
.Case("unord_q", 0x03)
.Case("neq", 0x04)
.Case("neq_uq", 0x04)
.Case("nlt", 0x05)
.Case("nlt_us", 0x05)
.Case("nle", 0x06)
.Case("nle_us", 0x06)
.Case("ord", 0x07)
.Case("ord_q", 0x07)
/* AVX only from here */
.Case("eq_uq", 0x08)
.Case("nge", 0x09)
.Case("nge_us", 0x09)
.Case("ngt", 0x0A)
.Case("ngt_us", 0x0A)
.Case("false", 0x0B)
.Case("false_oq", 0x0B)
.Case("neq_oq", 0x0C)
.Case("ge", 0x0D)
.Case("ge_os", 0x0D)
.Case("gt", 0x0E)
.Case("gt_os", 0x0E)
.Case("true", 0x0F)
.Case("true_uq", 0x0F)
.Case("eq_os", 0x10)
.Case("lt_oq", 0x11)
.Case("le_oq", 0x12)
.Case("unord_s", 0x13)
.Case("neq_us", 0x14)
.Case("nlt_uq", 0x15)
.Case("nle_uq", 0x16)
.Case("ord_s", 0x17)
.Case("eq_us", 0x18)
.Case("nge_uq", 0x19)
.Case("ngt_uq", 0x1A)
.Case("false_os", 0x1B)
.Case("neq_os", 0x1C)
.Case("ge_oq", 0x1D)
.Case("gt_oq", 0x1E)
.Case("true_us", 0x1F)
.Default(~0U);
if (CC != ~0U && (IsVCMP || CC < 8)) {
if (PatchedName.endswith("ss"))
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
else if (PatchedName.endswith("sd"))
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
else if (PatchedName.endswith("ps"))
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
else if (PatchedName.endswith("pd"))
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
else
llvm_unreachable("Unexpected suffix!");
ComparisonPredicate = CC;
}
}
// FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcmp") &&
(PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned CC = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - SuffixSize))
.Case("eq", 0x0) // Only allowed on unsigned. Checked below.
.Case("lt", 0x1)
.Case("le", 0x2)
//.Case("false", 0x3) // Not a documented alias.
.Case("neq", 0x4)
.Case("nlt", 0x5)
.Case("nle", 0x6)
//.Case("true", 0x7) // Not a documented alias.
.Default(~0U);
if (CC != ~0U && (CC != 0 || SuffixSize == 2)) {
switch (PatchedName.back()) {
default: llvm_unreachable("Unexpected character!");
case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break;
case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break;
case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break;
case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break;
}
// Set up the immediate to push into the operands later.
ComparisonPredicate = CC;
}
}
// FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcom") &&
(PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned CC = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - SuffixSize))
.Case("lt", 0x0)
.Case("le", 0x1)
.Case("gt", 0x2)
.Case("ge", 0x3)
.Case("eq", 0x4)
.Case("neq", 0x5)
.Case("false", 0x6)
.Case("true", 0x7)
.Default(~0U);
if (CC != ~0U) {
switch (PatchedName.back()) {
default: llvm_unreachable("Unexpected character!");
case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break;
case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break;
case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break;
case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break;
}
// Set up the immediate to push into the operands later.
ComparisonPredicate = CC;
}
}
// Determine whether this is an instruction prefix.
// FIXME:
// Enhance prefixes integrity robustness. for example, following forms
// are currently tolerated:
// repz repnz <insn> ; GAS errors for the use of two similar prefixes
// lock addq %rax, %rbx ; Destination operand must be of memory type
// xacquire <insn> ; xacquire must be accompanied by 'lock'
bool isPrefix = StringSwitch<bool>(Name)
.Cases("rex64", "data32", "data16", true)
.Cases("xacquire", "xrelease", true)
.Cases("acquire", "release", isParsingIntelSyntax())
.Default(false);
auto isLockRepeatNtPrefix = [](StringRef N) {
return StringSwitch<bool>(N)
.Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
.Default(false);
};
bool CurlyAsEndOfStatement = false;
unsigned Flags = X86::IP_NO_PREFIX;
while (isLockRepeatNtPrefix(Name.lower())) {
unsigned Prefix =
StringSwitch<unsigned>(Name)
.Cases("lock", "lock", X86::IP_HAS_LOCK)
.Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
.Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
.Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
.Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
Flags |= Prefix;
if (getLexer().is(AsmToken::EndOfStatement)) {
// We don't have real instr with the given prefix
// let's use the prefix as the instr.
// TODO: there could be several prefixes one after another
Flags = X86::IP_NO_PREFIX;
break;
}
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
Parser.Lex(); // eat the prefix
// Hack: we could have something like "rep # some comment" or
// "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
while (Name.startswith(";") || Name.startswith("\n") ||
Name.startswith("#") || Name.startswith("\t") ||
Name.startswith("/")) {
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
Parser.Lex(); // go to next prefix or instr
}
}
if (Flags)
PatchedName = Name;
// Hacks to handle 'data16' and 'data32'
if (PatchedName == "data16" && is16BitMode()) {
return Error(NameLoc, "redundant data16 prefix");
}
if (PatchedName == "data32") {
if (is32BitMode())
return Error(NameLoc, "redundant data32 prefix");
if (is64BitMode())
return Error(NameLoc, "'data32' is not supported in 64-bit mode");
// Hack to 'data16' for the table lookup.
PatchedName = "data16";
if (getLexer().isNot(AsmToken::EndOfStatement)) {
StringRef Next = Parser.getTok().getString();
// Parse data32 call as calll.
if (Next == "call" || Next == "callw") {
getLexer().Lex();
Name = "calll";
PatchedName = Name;
isPrefix = false;
}
}
}
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
// Push the immediate if we extracted one from the mnemonic.
if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) {
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
}
// This does the actual operand parsing. Don't parse any more if we have a
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
// just want to parse the "lock" as the first instruction and the "incl" as
// the next one.
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star))
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
// Read the operands.
while(1) {
if (ParseOperand(Operands))
return true;
if (HandleAVX512Operand(Operands))
return true;
// check for comma and eat it
if (getLexer().is(AsmToken::Comma))
Parser.Lex();
else
break;
}
// In MS inline asm curly braces mark the beginning/end of a block,
// therefore they should be interepreted as end of statement
CurlyAsEndOfStatement =
isParsingIntelSyntax() && isParsingMSInlineAsm() &&
(getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
return TokError("unexpected token in argument list");
}
// Push the immediate if we extracted one from the mnemonic.
if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) {
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
}
// Consume the EndOfStatement or the prefix separator Slash
if (getLexer().is(AsmToken::EndOfStatement) ||
(isPrefix && getLexer().is(AsmToken::Slash)))
Parser.Lex();
else if (CurlyAsEndOfStatement)
// Add an actual EndOfStatement before the curly brace
Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
getLexer().getTok().getLoc(), 0);
// This is for gas compatibility and cannot be done in td.
// Adding "p" for some floating point with no argument.
// For example: fsub --> fsubp
bool IsFp =
Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
if (IsFp && Operands.size() == 1) {
const char *Repl = StringSwitch<const char *>(Name)
.Case("fsub", "fsubp")
.Case("fdiv", "fdivp")
.Case("fsubr", "fsubrp")
.Case("fdivr", "fdivrp");
static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
}
if ((Name == "mov" || Name == "movw" || Name == "movl") &&
(Operands.size() == 3)) {
X86Operand &Op1 = (X86Operand &)*Operands[1];
X86Operand &Op2 = (X86Operand &)*Operands[2];
SMLoc Loc = Op1.getEndLoc();
// Moving a 32 or 16 bit value into a segment register has the same
// behavior. Modify such instructions to always take shorter form.
if (Op1.isReg() && Op2.isReg() &&
X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
Op2.getReg()) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
// Change instruction name to match new instruction.
if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
Name = is16BitMode() ? "movw" : "movl";
Operands[0] = X86Operand::CreateToken(Name, NameLoc);
}
// Select the correct equivalent 16-/32-bit source register.
unsigned Reg =
getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
}
}
// This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
// documented form in various unofficial manuals, so a lot of code uses it.
if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands.back();
if (Op.isDXReg())
Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
Op.getEndLoc());
}
// Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
if (Op.isDXReg())
Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
Op.getEndLoc());
}
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
bool HadVerifyError = false;
// Append default arguments to "ins[bwld]"
if (Name.startswith("ins") &&
(Operands.size() == 1 || Operands.size() == 3) &&
(Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
Name == "ins")) {
AddDefaultSrcDestOperands(TmpOperands,
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Append default arguments to "outs[bwld]"
if (Name.startswith("outs") &&
(Operands.size() == 1 || Operands.size() == 3) &&
(Name == "outsb" || Name == "outsw" || Name == "outsl" ||
Name == "outsd" || Name == "outs")) {
AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
// values of $SIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("lods") &&
(Operands.size() == 1 || Operands.size() == 2) &&
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("stos") &&
(Operands.size() == 1 || Operands.size() == 2) &&
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
Name == "stosl" || Name == "stosd" || Name == "stosq")) {
TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("scas") &&
(Operands.size() == 1 || Operands.size() == 2) &&
(Name == "scas" || Name == "scasb" || Name == "scasw" ||
Name == "scasl" || Name == "scasd" || Name == "scasq")) {
TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Add default SI and DI operands to "cmps[bwlq]".
if (Name.startswith("cmps") &&
(Operands.size() == 1 || Operands.size() == 3) &&
(Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
DefaultMemSIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Add default SI and DI operands to "movs[bwlq]".
if (((Name.startswith("movs") &&
(Name == "movs" || Name == "movsb" || Name == "movsw" ||
Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
(Name.startswith("smov") &&
(Name == "smov" || Name == "smovb" || Name == "smovw" ||
Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
(Operands.size() == 1 || Operands.size() == 3)) {
if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Check if we encountered an error for one the string insturctions
if (HadVerifyError) {
return HadVerifyError;
}
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
// "shift <op>".
if ((Name.startswith("shr") || Name.startswith("sar") ||
Name.startswith("shl") || Name.startswith("sal") ||
Name.startswith("rcl") || Name.startswith("rcr") ||
Name.startswith("rol") || Name.startswith("ror")) &&
Operands.size() == 3) {
if (isParsingIntelSyntax()) {
// Intel syntax
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
Operands.pop_back();
} else {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
Operands.erase(Operands.begin() + 1);
}
}
// Transforms "int $3" into "int3" as a size optimization. We can't write an
// instalias with an immediate operand yet.
if (Name == "int" && Operands.size() == 2) {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isImm())
if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
if (CE->getValue() == 3) {
Operands.erase(Operands.begin() + 1);
static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
}
}
// Transforms "xlat mem8" into "xlatb"
if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isMem8()) {
Warning(Op1.getStartLoc(), "memory operand is only for determining the "
"size, (R|E)BX will be used for the location");
Operands.pop_back();
static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
}
}
if (Flags)
Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
return false;
}
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
switch (Inst.getOpcode()) {
default: return false;
case X86::JMP_1:
// {disp32} forces a larger displacement as if the instruction was relaxed.
// NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}.
// This matches GNU assembler.
if (ForcedDispEncoding == DispEncoding_Disp32) {
Inst.setOpcode(is16BitMode() ? X86::JMP_2 : X86::JMP_4);
return true;
}
return false;
case X86::JCC_1:
// {disp32} forces a larger displacement as if the instruction was relaxed.
// NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}.
// This matches GNU assembler.
if (ForcedDispEncoding == DispEncoding_Disp32) {
Inst.setOpcode(is16BitMode() ? X86::JCC_2 : X86::JCC_4);
return true;
}
return false;
case X86::VMOVZPQILo2PQIrr:
case X86::VMOVAPDrr:
case X86::VMOVAPDYrr:
case X86::VMOVAPSrr:
case X86::VMOVAPSYrr:
case X86::VMOVDQArr:
case X86::VMOVDQAYrr:
case X86::VMOVDQUrr:
case X86::VMOVDQUYrr:
case X86::VMOVUPDrr:
case X86::VMOVUPDYrr:
case X86::VMOVUPSrr:
case X86::VMOVUPSYrr: {
// We can get a smaller encoding by using VEX.R instead of VEX.B if one of
// the registers is extended, but other isn't.
if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8)
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
// We can get a smaller encoding by using VEX.R instead of VEX.B if one of
// the registers is extended, but other isn't.
if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8)
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
}
}
bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
switch (Inst.getOpcode()) {
case X86::VGATHERDPDYrm:
case X86::VGATHERDPDrm:
case X86::VGATHERDPSYrm:
case X86::VGATHERDPSrm:
case X86::VGATHERQPDYrm:
case X86::VGATHERQPDrm:
case X86::VGATHERQPSYrm:
case X86::VGATHERQPSrm:
case X86::VPGATHERDDYrm:
case X86::VPGATHERDDrm:
case X86::VPGATHERDQYrm:
case X86::VPGATHERDQrm:
case X86::VPGATHERQDYrm:
case X86::VPGATHERQDrm:
case X86::VPGATHERQQYrm:
case X86::VPGATHERQQrm: {
unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
unsigned Index =
MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
if (Dest == Mask || Dest == Index || Mask == Index)
return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
"registers should be distinct");
break;
}
case X86::VGATHERDPDZ128rm:
case X86::VGATHERDPDZ256rm:
case X86::VGATHERDPDZrm:
case X86::VGATHERDPSZ128rm:
case X86::VGATHERDPSZ256rm:
case X86::VGATHERDPSZrm:
case X86::VGATHERQPDZ128rm:
case X86::VGATHERQPDZ256rm:
case X86::VGATHERQPDZrm:
case X86::VGATHERQPSZ128rm:
case X86::VGATHERQPSZ256rm:
case X86::VGATHERQPSZrm:
case X86::VPGATHERDDZ128rm:
case X86::VPGATHERDDZ256rm:
case X86::VPGATHERDDZrm:
case X86::VPGATHERDQZ128rm:
case X86::VPGATHERDQZ256rm:
case X86::VPGATHERDQZrm:
case X86::VPGATHERQDZ128rm:
case X86::VPGATHERQDZ256rm:
case X86::VPGATHERQDZrm:
case X86::VPGATHERQQZ128rm:
case X86::VPGATHERQQZ256rm:
case X86::VPGATHERQQZrm: {
unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
unsigned Index =
MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
if (Dest == Index)
return Warning(Ops[0]->getStartLoc(), "index and destination registers "
"should be distinct");
break;
}
case X86::V4FMADDPSrm:
case X86::V4FMADDPSrmk:
case X86::V4FMADDPSrmkz:
case X86::V4FMADDSSrm:
case X86::V4FMADDSSrmk:
case X86::V4FMADDSSrmkz:
case X86::V4FNMADDPSrm:
case X86::V4FNMADDPSrmk:
case X86::V4FNMADDPSrmkz:
case X86::V4FNMADDSSrm:
case X86::V4FNMADDSSrmk:
case X86::V4FNMADDSSrmkz:
case X86::VP4DPWSSDSrm:
case X86::VP4DPWSSDSrmk:
case X86::VP4DPWSSDSrmkz:
case X86::VP4DPWSSDrm:
case X86::VP4DPWSSDrmk:
case X86::VP4DPWSSDrmkz: {
unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
X86::AddrNumOperands - 1).getReg();
unsigned Src2Enc = MRI->getEncodingValue(Src2);
if (Src2Enc % 4 != 0) {
StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
unsigned GroupStart = (Src2Enc / 4) * 4;
unsigned GroupEnd = GroupStart + 3;
return Warning(Ops[0]->getStartLoc(),
"source register '" + RegName + "' implicitly denotes '" +
RegName.take_front(3) + Twine(GroupStart) + "' to '" +
RegName.take_front(3) + Twine(GroupEnd) +
"' source group");
}
break;
}
}
return false;
}
static const char *getSubtargetFeatureName(uint64_t Val);
void X86AsmParser::emitWarningForSpecialLVIInstruction(SMLoc Loc) {
Warning(Loc, "Instruction may be vulnerable to LVI and "
"requires manual mitigation");
Note(SMLoc(), "See https://software.intel.com/"
"security-software-guidance/insights/"
"deep-dive-load-value-injection#specialinstructions"
" for more information");
}
/// RET instructions and also instructions that indirect calls/jumps from memory
/// combine a load and a branch within a single instruction. To mitigate these
/// instructions against LVI, they must be decomposed into separate load and
/// branch instructions, with an LFENCE in between. For more details, see:
/// - X86LoadValueInjectionRetHardening.cpp
/// - X86LoadValueInjectionIndirectThunks.cpp
/// - https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
///
/// Returns `true` if a mitigation was applied or warning was emitted.
void X86AsmParser::applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out) {
// Information on control-flow instructions that require manual mitigation can
// be found here:
// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
switch (Inst.getOpcode()) {
case X86::RETW:
case X86::RETL:
case X86::RETQ:
case X86::RETIL:
case X86::RETIQ:
case X86::RETIW: {
MCInst ShlInst, FenceInst;
bool Parse32 = is32BitMode() || Code16GCC;
unsigned Basereg =
is64BitMode() ? X86::RSP : (Parse32 ? X86::ESP : X86::SP);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
auto ShlMemOp = X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/Basereg, /*IndexReg=*/0,
/*Scale=*/1, SMLoc{}, SMLoc{}, 0);
ShlInst.setOpcode(X86::SHL64mi);
ShlMemOp->addMemOperands(ShlInst, 5);
ShlInst.addOperand(MCOperand::createImm(0));
FenceInst.setOpcode(X86::LFENCE);
Out.emitInstruction(ShlInst, getSTI());
Out.emitInstruction(FenceInst, getSTI());
return;
}
case X86::JMP16m:
case X86::JMP32m:
case X86::JMP64m:
case X86::CALL16m:
case X86::CALL32m:
case X86::CALL64m:
emitWarningForSpecialLVIInstruction(Inst.getLoc());
return;
}
}
/// To mitigate LVI, every instruction that performs a load can be followed by
/// an LFENCE instruction to squash any potential mis-speculation. There are
/// some instructions that require additional considerations, and may requre
/// manual mitigation. For more details, see:
/// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
///
/// Returns `true` if a mitigation was applied or warning was emitted.
void X86AsmParser::applyLVILoadHardeningMitigation(MCInst &Inst,
MCStreamer &Out) {
auto Opcode = Inst.getOpcode();
auto Flags = Inst.getFlags();
if ((Flags & X86::IP_HAS_REPEAT) || (Flags & X86::IP_HAS_REPEAT_NE)) {
// Information on REP string instructions that require manual mitigation can
// be found here:
// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
switch (Opcode) {
case X86::CMPSB:
case X86::CMPSW:
case X86::CMPSL:
case X86::CMPSQ:
case X86::SCASB:
case X86::SCASW:
case X86::SCASL:
case X86::SCASQ:
emitWarningForSpecialLVIInstruction(Inst.getLoc());
return;
}
} else if (Opcode == X86::REP_PREFIX || Opcode == X86::REPNE_PREFIX) {
// If a REP instruction is found on its own line, it may or may not be
// followed by a vulnerable instruction. Emit a warning just in case.
emitWarningForSpecialLVIInstruction(Inst.getLoc());
return;
}
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
// Can't mitigate after terminators or calls. A control flow change may have
// already occurred.
if (MCID.isTerminator() || MCID.isCall())
return;
// LFENCE has the mayLoad property, don't double fence.
if (MCID.mayLoad() && Inst.getOpcode() != X86::LFENCE) {
MCInst FenceInst;
FenceInst.setOpcode(X86::LFENCE);
Out.emitInstruction(FenceInst, getSTI());
}
}
void X86AsmParser::emitInstruction(MCInst &Inst, OperandVector &Operands,
MCStreamer &Out) {
if (LVIInlineAsmHardening &&
getSTI().getFeatureBits()[X86::FeatureLVIControlFlowIntegrity])
applyLVICFIMitigation(Inst, Out);
Out.emitInstruction(Inst, getSTI());
if (LVIInlineAsmHardening &&
getSTI().getFeatureBits()[X86::FeatureLVILoadHardening])
applyLVILoadHardeningMitigation(Inst, Out);
}
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
if (isParsingIntelSyntax())
return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
}
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
OperandVector &Operands, MCStreamer &Out,
bool MatchingInlineAsm) {
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
// call.
const char *Repl = StringSwitch<const char *>(Op.getToken())
.Case("finit", "fninit")
.Case("fsave", "fnsave")
.Case("fstcw", "fnstcw")
.Case("fstcww", "fnstcw")
.Case("fstenv", "fnstenv")
.Case("fstsw", "fnstsw")
.Case("fstsww", "fnstsw")
.Case("fclex", "fnclex")
.Default(nullptr);
if (Repl) {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
}
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc,
const FeatureBitset &MissingFeatures,
bool MatchingInlineAsm) {
assert(MissingFeatures.any() && "Unknown missing feature!");
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "instruction requires:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i])
OS << ' ' << getSubtargetFeatureName(i);
}
return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
}
static unsigned getPrefixes(OperandVector &Operands) {
unsigned Result = 0;
X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
if (Prefix.isPrefix()) {
Result = Prefix.getPrefix();
Operands.pop_back();
}
return Result;
}
unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) {
unsigned Opc = Inst.getOpcode();
const MCInstrDesc &MCID = MII.get(Opc);
if (ForcedVEXEncoding == VEXEncoding_EVEX &&
(MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX)
return Match_Unsupported;
if ((ForcedVEXEncoding == VEXEncoding_VEX ||
ForcedVEXEncoding == VEXEncoding_VEX3) &&
(MCID.TSFlags & X86II::EncodingMask) != X86II::VEX)
return Match_Unsupported;
// These instructions match ambiguously with their VEX encoded counterparts
// and appear first in the matching table. Reject them unless we're forcing
// EVEX encoding.
// FIXME: We really need a way to break the ambiguity.
switch (Opc) {
case X86::VCVTSD2SIZrm_Int:
case X86::VCVTSD2SI64Zrm_Int:
case X86::VCVTSS2SIZrm_Int:
case X86::VCVTSS2SI64Zrm_Int:
case X86::VCVTTSD2SIZrm: case X86::VCVTTSD2SIZrm_Int:
case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int:
case X86::VCVTTSS2SIZrm: case X86::VCVTTSS2SIZrm_Int:
case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int:
if (ForcedVEXEncoding != VEXEncoding_EVEX)
return Match_Unsupported;
break;
}
return Match_Success;
}
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
SMRange EmptyRange = None;
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands,
Out, MatchingInlineAsm);
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
unsigned Prefixes = getPrefixes(Operands);
MCInst Inst;
// If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
// encoder.
if (ForcedVEXEncoding == VEXEncoding_VEX3)
Prefixes |= X86::IP_USE_VEX3;
// Set encoded flags for {disp8} and {disp32}.
if (ForcedDispEncoding == DispEncoding_Disp8)
Prefixes |= X86::IP_USE_DISP8;
else if (ForcedDispEncoding == DispEncoding_Disp32)
Prefixes |= X86::IP_USE_DISP32;
if (Prefixes)
Inst.setFlags(Prefixes);
// First, try a direct match.
FeatureBitset MissingFeatures;
unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo,
MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax());
switch (OriginalError) {
default: llvm_unreachable("Unexpected match result!");
case Match_Success:
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
case Match_InvalidImmUnsignedi4: {
SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
EmptyRange, MatchingInlineAsm);
}
case Match_MissingFeature:
return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm);
case Match_InvalidOperand:
case Match_MnemonicFail:
case Match_Unsupported:
break;
}
if (Op.getToken().empty()) {
Error(IDLoc, "instruction must have size higher than 0", EmptyRange,
MatchingInlineAsm);
return true;
}
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
StringRef Base = Op.getToken();
SmallString<16> Tmp;
Tmp += Base;
Tmp += ' ';
Op.setTokenValue(Tmp);
// If this instruction starts with an 'f', then it is a floating point stack
// instruction. These come in up to three forms for 32-bit, 64-bit, and
// 80-bit floating point, which use the suffixes s,l,t respectively.
//
// Otherwise, we assume that this may be an integer instruction, which comes
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// MemSize corresponding to Suffixes. { 8, 16, 32, 64 } { 32, 64, 80, 0 }
const char *MemSize = Base[0] != 'f' ? "\x08\x10\x20\x40" : "\x20\x40\x50\0";
// Check for the various suffix matches.
uint64_t ErrorInfoIgnore;
FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings.
unsigned Match[4];
// Some instruction like VPMULDQ is NOT the variant of VPMULD but a new one.
// So we should make sure the suffix matcher only works for memory variant
// that has the same size with the suffix.
// FIXME: This flag is a workaround for legacy instructions that didn't
// declare non suffix variant assembly.
bool HasVectorReg = false;
X86Operand *MemOp = nullptr;
for (const auto &Op : Operands) {
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
if (X86Op->isVectorReg())
HasVectorReg = true;
else if (X86Op->isMem()) {
MemOp = X86Op;
assert(MemOp->Mem.Size == 0 && "Memory size always 0 under ATT syntax");
// Have we found an unqualified memory operand,
// break. IA allows only one memory operand.
break;
}
}
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
Tmp.back() = Suffixes[I];
if (MemOp && HasVectorReg)
MemOp->Mem.Size = MemSize[I];
Match[I] = Match_MnemonicFail;
if (MemOp || !HasVectorReg) {
Match[I] =
MatchInstruction(Operands, Inst, ErrorInfoIgnore, MissingFeatures,
MatchingInlineAsm, isParsingIntelSyntax());
// If this returned as a missing feature failure, remember that.
if (Match[I] == Match_MissingFeature)
ErrorInfoMissingFeatures = MissingFeatures;
}
}
// Restore the old token.
Op.setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
}
// Otherwise, the match failed, try to produce a decent error message.
// If we had multiple suffix matches, then identify this as an ambiguous
// match.
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
if (Match[I] == Match_Success)
MatchChars[NumMatches++] = Suffixes[I];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "ambiguous instructions require an explicit suffix (could be ";
for (unsigned i = 0; i != NumMatches; ++i) {
if (i != 0)
OS << ", ";
if (i + 1 == NumMatches)
OS << "or ";
OS << "'" << Base << MatchChars[i] << "'";
}
OS << ")";
Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
return true;
}
// Okay, we know that none of the variants matched successfully.
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
if (OriginalError == Match_MnemonicFail)
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
Op.getLocRange(), MatchingInlineAsm);
if (OriginalError == Match_Unsupported)
return Error(IDLoc, "unsupported instruction", EmptyRange,
MatchingInlineAsm);
assert(OriginalError == Match_InvalidOperand && "Unexpected error");
// Recover location info for the operand if we know which was the problem.
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction", EmptyRange,
MatchingInlineAsm);
X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
if (Operand.getStartLoc().isValid()) {
SMRange OperandRange = Operand.getLocRange();
return Error(Operand.getStartLoc(), "invalid operand for instruction",
OperandRange, MatchingInlineAsm);
}
}
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
MatchingInlineAsm);
}
// If one instruction matched as unsupported, report this as unsupported.
if (std::count(std::begin(Match), std::end(Match),
Match_Unsupported) == 1) {
return Error(IDLoc, "unsupported instruction", EmptyRange,
MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = Match_MissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
EmptyRange, MatchingInlineAsm);
return true;
}
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken();
SMRange EmptyRange = None;
StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken();
unsigned Prefixes = getPrefixes(Operands);
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm);
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
MCInst Inst;
// If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
// encoder.
if (ForcedVEXEncoding == VEXEncoding_VEX3)
Prefixes |= X86::IP_USE_VEX3;
// Set encoded flags for {disp8} and {disp32}.
if (ForcedDispEncoding == DispEncoding_Disp8)
Prefixes |= X86::IP_USE_DISP8;
else if (ForcedDispEncoding == DispEncoding_Disp32)
Prefixes |= X86::IP_USE_DISP32;
if (Prefixes)
Inst.setFlags(Prefixes);
// Find one unsized memory operand, if present.
X86Operand *UnsizedMemOp = nullptr;
for (const auto &Op : Operands) {
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
if (X86Op->isMemUnsized()) {
UnsizedMemOp = X86Op;
// Have we found an unqualified memory operand,
// break. IA allows only one memory operand.
break;
}
}
// Allow some instructions to have implicitly pointer-sized operands. This is
// compatible with gas.
if (UnsizedMemOp) {
static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
for (const char *Instr : PtrSizedInstrs) {
if (Mnemonic == Instr) {
UnsizedMemOp->Mem.Size = getPointerWidth();
break;
}
}
}
SmallVector<unsigned, 8> Match;
FeatureBitset ErrorInfoMissingFeatures;
FeatureBitset MissingFeatures;
// If unsized push has immediate operand we should default the default pointer
// size for the size.
if (Mnemonic == "push" && Operands.size() == 2) {
auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
if (X86Op->isImm()) {
// If it's not a constant fall through and let remainder take care of it.
const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
unsigned Size = getPointerWidth();
if (CE &&
(isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
SmallString<16> Tmp;
Tmp += Base;
Tmp += (is64BitMode())
? "q"
: (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
Op.setTokenValue(Tmp);
// Do match in ATT mode to allow explicit suffix usage.
Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
MissingFeatures, MatchingInlineAsm,
false /*isParsingIntelSyntax()*/));
Op.setTokenValue(Base);
}
}
}
// If an unsized memory operand is present, try to match with each memory
// operand size. In Intel assembly, the size is not part of the instruction
// mnemonic.
if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
for (unsigned Size : MopSizes) {
UnsizedMemOp->Mem.Size = Size;
uint64_t ErrorInfoIgnore;
unsigned LastOpcode = Inst.getOpcode();
unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax());
if (Match.empty() || LastOpcode != Inst.getOpcode())
Match.push_back(M);
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeatures = MissingFeatures;
}
// Restore the size of the unsized memory operand if we modified it.
UnsizedMemOp->Mem.Size = 0;
}
// If we haven't matched anything yet, this is not a basic integer or FPU
// operation. There shouldn't be any ambiguity in our mnemonic table, so try
// matching with the unsized operand.
if (Match.empty()) {
Match.push_back(MatchInstruction(
Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax()));
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeatures = MissingFeatures;
}
// Restore the size of the unsized memory operand if we modified it.
if (UnsizedMemOp)
UnsizedMemOp->Mem.Size = 0;
// If it's a bad mnemonic, all results will be the same.
if (Match.back() == Match_MnemonicFail) {
return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
Op.getLocRange(), MatchingInlineAsm);
}
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
// If matching was ambiguous and we had size information from the frontend,
// try again with that. This handles cases like "movxz eax, m8/m16".
if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
UnsizedMemOp->getMemFrontendSize()) {
UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
unsigned M = MatchInstruction(
Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax());
if (M == Match_Success)
NumSuccessfulMatches = 1;
// Add a rewrite that encodes the size information we used from the
// frontend.
InstInfo->AsmRewrites->emplace_back(
AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
/*Len=*/0, UnsizedMemOp->getMemFrontendSize());
}
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
if (NumSuccessfulMatches == 1) {
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the individual
// transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
} else if (NumSuccessfulMatches > 1) {
assert(UnsizedMemOp &&
"multiple matches only possible with unsized memory operands");
return Error(UnsizedMemOp->getStartLoc(),
"ambiguous operand size for instruction '" + Mnemonic + "\'",
UnsizedMemOp->getLocRange());
}
// If one instruction matched as unsupported, report this as unsupported.
if (std::count(std::begin(Match), std::end(Match),
Match_Unsupported) == 1) {
return Error(IDLoc, "unsupported instruction", EmptyRange,
MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = Match_MissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
MatchingInlineAsm);
}
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidImmUnsignedi4) == 1) {
SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
EmptyRange, MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
MatchingInlineAsm);
}
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
}
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal.startswith(".arch"))
return parseDirectiveArch();
if (IDVal.startswith(".code"))
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
else if (IDVal.startswith(".att_syntax")) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "prefix")
Parser.Lex();
else if (Parser.getTok().getString() == "noprefix")
return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
"supported: registers must have a "
"'%' prefix in .att_syntax");
}
getParser().setAssemblerDialect(0);
return false;
} else if (IDVal.startswith(".intel_syntax")) {
getParser().setAssemblerDialect(1);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "noprefix")
Parser.Lex();
else if (Parser.getTok().getString() == "prefix")
return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
"supported: registers must not have "
"a '%' prefix in .intel_syntax");
}
return false;
} else if (IDVal == ".nops")
return parseDirectiveNops(DirectiveID.getLoc());
else if (IDVal == ".even")
return parseDirectiveEven(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_proc")
return parseDirectiveFPOProc(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_setframe")
return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_pushreg")
return parseDirectiveFPOPushReg(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_stackalloc")
return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_stackalign")
return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_endprologue")
return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_endproc")
return parseDirectiveFPOEndProc(DirectiveID.getLoc());
else if (IDVal == ".seh_pushreg" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".pushreg")))
return parseDirectiveSEHPushReg(DirectiveID.getLoc());
else if (IDVal == ".seh_setframe" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".setframe")))
return parseDirectiveSEHSetFrame(DirectiveID.getLoc());
else if (IDVal == ".seh_savereg" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".savereg")))
return parseDirectiveSEHSaveReg(DirectiveID.getLoc());
else if (IDVal == ".seh_savexmm" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".savexmm128")))
return parseDirectiveSEHSaveXMM(DirectiveID.getLoc());
else if (IDVal == ".seh_pushframe" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".pushframe")))
return parseDirectiveSEHPushFrame(DirectiveID.getLoc());
return true;
}
bool X86AsmParser::parseDirectiveArch() {
// Ignore .arch for now.
getParser().parseStringToEndOfStatement();
return false;
}
/// parseDirectiveNops
/// ::= .nops size[, control]
bool X86AsmParser::parseDirectiveNops(SMLoc L) {
int64_t NumBytes = 0, Control = 0;
SMLoc NumBytesLoc, ControlLoc;
const MCSubtargetInfo STI = getSTI();
NumBytesLoc = getTok().getLoc();
if (getParser().checkForValidSection() ||
getParser().parseAbsoluteExpression(NumBytes))
return true;
if (parseOptionalToken(AsmToken::Comma)) {
ControlLoc = getTok().getLoc();
if (getParser().parseAbsoluteExpression(Control))
return true;
}
if (getParser().parseToken(AsmToken::EndOfStatement,
"unexpected token in '.nops' directive"))
return true;
if (NumBytes <= 0) {
Error(NumBytesLoc, "'.nops' directive with non-positive size");
return false;
}
if (Control < 0) {
Error(ControlLoc, "'.nops' directive with negative NOP size");
return false;
}
/// Emit nops
getParser().getStreamer().emitNops(NumBytes, Control, L);
return false;
}
/// parseDirectiveEven
/// ::= .even
bool X86AsmParser::parseDirectiveEven(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return false;
const MCSection *Section = getStreamer().getCurrentSectionOnly();
if (!Section) {
getStreamer().InitSections(false);
Section = getStreamer().getCurrentSectionOnly();
}
if (Section->UseCodeAlign())
getStreamer().emitCodeAlignment(2, 0);
else
getStreamer().emitValueToAlignment(2, 0, 1, 0);
return false;
}
/// ParseDirectiveCode
/// ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
MCAsmParser &Parser = getParser();
Code16GCC = false;
if (IDVal == ".code16") {
Parser.Lex();
if (!is16BitMode()) {
SwitchMode(X86::Mode16Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
}
} else if (IDVal == ".code16gcc") {
// .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
Parser.Lex();
Code16GCC = true;
if (!is16BitMode()) {
SwitchMode(X86::Mode16Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
}
} else if (IDVal == ".code32") {
Parser.Lex();
if (!is32BitMode()) {
SwitchMode(X86::Mode32Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
}
} else if (IDVal == ".code64") {
Parser.Lex();
if (!is64BitMode()) {
SwitchMode(X86::Mode64Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code64);
}
} else {
Error(L, "unknown directive " + IDVal);
return false;
}
return false;
}
// .cv_fpo_proc foo
bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
MCAsmParser &Parser = getParser();
StringRef ProcName;
int64_t ParamsSize;
if (Parser.parseIdentifier(ProcName))
return Parser.TokError("expected symbol name");
if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
return true;
if (!isUIntN(32, ParamsSize))
return Parser.TokError("parameters size out of range");
if (Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_proc' directive");
MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
}
// .cv_fpo_setframe ebp
bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
MCAsmParser &Parser = getParser();
unsigned Reg;
SMLoc DummyLoc;
if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_setframe' directive");
return getTargetStreamer().emitFPOSetFrame(Reg, L);
}
// .cv_fpo_pushreg ebx
bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
MCAsmParser &Parser = getParser();
unsigned Reg;
SMLoc DummyLoc;
if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
return getTargetStreamer().emitFPOPushReg(Reg, L);
}
// .cv_fpo_stackalloc 20
bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
MCAsmParser &Parser = getParser();
int64_t Offset;
if (Parser.parseIntToken(Offset, "expected offset") ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
return getTargetStreamer().emitFPOStackAlloc(Offset, L);
}
// .cv_fpo_stackalign 8
bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
MCAsmParser &Parser = getParser();
int64_t Offset;
if (Parser.parseIntToken(Offset, "expected offset") ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
return getTargetStreamer().emitFPOStackAlign(Offset, L);
}
// .cv_fpo_endprologue
bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
return getTargetStreamer().emitFPOEndPrologue(L);
}
// .cv_fpo_endproc
bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_endproc' directive");
return getTargetStreamer().emitFPOEndProc(L);
}
bool X86AsmParser::parseSEHRegisterNumber(unsigned RegClassID,
unsigned &RegNo) {
SMLoc startLoc = getLexer().getLoc();
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
// Try parsing the argument as a register first.
if (getLexer().getTok().isNot(AsmToken::Integer)) {
SMLoc endLoc;
if (ParseRegister(RegNo, startLoc, endLoc))
return true;
if (!X86MCRegisterClasses[RegClassID].contains(RegNo)) {
return Error(startLoc,
"register is not supported for use with this directive");
}
} else {
// Otherwise, an integer number matching the encoding of the desired
// register may appear.
int64_t EncodedReg;
if (getParser().parseAbsoluteExpression(EncodedReg))
return true;
// The SEH register number is the same as the encoding register number. Map
// from the encoding back to the LLVM register number.
RegNo = 0;
for (MCPhysReg Reg : X86MCRegisterClasses[RegClassID]) {
if (MRI->getEncodingValue(Reg) == EncodedReg) {
RegNo = Reg;
break;
}
}
if (RegNo == 0) {
return Error(startLoc,
"incorrect register number for use with this directive");
}
}
return false;
}
bool X86AsmParser::parseDirectiveSEHPushReg(SMLoc Loc) {
unsigned Reg = 0;
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFIPushReg(Reg, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHSetFrame(SMLoc Loc) {
unsigned Reg = 0;
int64_t Off;
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("you must specify a stack pointer offset");
getParser().Lex();
if (getParser().parseAbsoluteExpression(Off))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFISetFrame(Reg, Off, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHSaveReg(SMLoc Loc) {
unsigned Reg = 0;
int64_t Off;
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("you must specify an offset on the stack");
getParser().Lex();
if (getParser().parseAbsoluteExpression(Off))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFISaveReg(Reg, Off, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHSaveXMM(SMLoc Loc) {
unsigned Reg = 0;
int64_t Off;
if (parseSEHRegisterNumber(X86::VR128XRegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("you must specify an offset on the stack");
getParser().Lex();
if (getParser().parseAbsoluteExpression(Off))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFISaveXMM(Reg, Off, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHPushFrame(SMLoc Loc) {
bool Code = false;
StringRef CodeID;
if (getLexer().is(AsmToken::At)) {
SMLoc startLoc = getLexer().getLoc();
getParser().Lex();
if (!getParser().parseIdentifier(CodeID)) {
if (CodeID != "code")
return Error(startLoc, "expected @code");
Code = true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFIPushFrame(Code, Loc);
return false;
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmParser() {
RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_SUBTARGET_FEATURE_NAME
#include "X86GenAsmMatcher.inc"