SystemZTargetTransformInfo.cpp 43.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a TargetTransformInfo analysis pass specific to the
// SystemZ target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//

#include "SystemZTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

#define DEBUG_TYPE "systemztti"

//===----------------------------------------------------------------------===//
//
// SystemZ cost model.
//
//===----------------------------------------------------------------------===//

int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                                  TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    // Constants loaded via lgfi.
    if (isInt<32>(Imm.getSExtValue()))
      return TTI::TCC_Basic;
    // Constants loaded via llilf.
    if (isUInt<32>(Imm.getZExtValue()))
      return TTI::TCC_Basic;
    // Constants loaded via llihf:
    if ((Imm.getZExtValue() & 0xffffffff) == 0)
      return TTI::TCC_Basic;

    return 2 * TTI::TCC_Basic;
  }

  return 4 * TTI::TCC_Basic;
}

int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                      const APInt &Imm, Type *Ty,
                                      TTI::TargetCostKind CostKind,
                                      Instruction *Inst) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    if (Idx == 0 && Imm.getBitWidth() <= 64) {
      // Any 8-bit immediate store can by implemented via mvi.
      if (BitSize == 8)
        return TTI::TCC_Free;
      // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
      if (isInt<16>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::ICmp:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Comparisons against signed 32-bit immediates implemented via cgfi.
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
      // Comparisons against unsigned 32-bit immediates implemented via clgfi.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Add:
  case Instruction::Sub:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      // Or their negation, by swapping addition vs. subtraction.
      if (isUInt<32>(-Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Mul:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // We use msgfi to multiply by 32-bit signed immediates.
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Or:
  case Instruction::Xor:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Masks supported by oilf/xilf.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      // Masks supported by oihf/xihf.
      if ((Imm.getZExtValue() & 0xffffffff) == 0)
        return TTI::TCC_Free;
    }
    break;
  case Instruction::And:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Any 32-bit AND operation can by implemented via nilf.
      if (BitSize <= 32)
        return TTI::TCC_Free;
      // 64-bit masks supported by nilf.
      if (isUInt<32>(~Imm.getZExtValue()))
        return TTI::TCC_Free;
      // 64-bit masks supported by nilh.
      if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
        return TTI::TCC_Free;
      // Some 64-bit AND operations can be implemented via risbg.
      const SystemZInstrInfo *TII = ST->getInstrInfo();
      unsigned Start, End;
      if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    // Always return TCC_Free for the shift value of a shift instruction.
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                        const APInt &Imm, Type *Ty,
                                        TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    // These get expanded to include a normal addition/subtraction.
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      if (isUInt<32>(-Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    // These get expanded to include a normal multiplication.
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

TargetTransformInfo::PopcntSupportKind
SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
  if (ST->hasPopulationCount() && TyWidth <= 64)
    return TTI::PSK_FastHardware;
  return TTI::PSK_Software;
}

void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  // Find out if L contains a call, what the machine instruction count
  // estimate is, and how many stores there are.
  bool HasCall = false;
  unsigned NumStores = 0;
  for (auto &BB : L->blocks())
    for (auto &I : *BB) {
      if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (isLoweredToCall(F))
            HasCall = true;
          if (F->getIntrinsicID() == Intrinsic::memcpy ||
              F->getIntrinsicID() == Intrinsic::memset)
            NumStores++;
        } else { // indirect call.
          HasCall = true;
        }
      }
      if (isa<StoreInst>(&I)) {
        Type *MemAccessTy = I.getOperand(0)->getType();
        NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0,
                                     TTI::TCK_RecipThroughput);
      }
    }

  // The z13 processor will run out of store tags if too many stores
  // are fed into it too quickly. Therefore make sure there are not
  // too many stores in the resulting unrolled loop.
  unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);

  if (HasCall) {
    // Only allow full unrolling if loop has any calls.
    UP.FullUnrollMaxCount = Max;
    UP.MaxCount = 1;
    return;
  }

  UP.MaxCount = Max;
  if (UP.MaxCount <= 1)
    return;

  // Allow partial and runtime trip count unrolling.
  UP.Partial = UP.Runtime = true;

  UP.PartialThreshold = 75;
  UP.DefaultUnrollRuntimeCount = 4;

  // Allow expensive instructions in the pre-header of the loop.
  UP.AllowExpensiveTripCount = true;

  UP.Force = true;
}

void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                           TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                                   TargetTransformInfo::LSRCost &C2) {
  // SystemZ specific: check instruction count (first), and don't care about
  // ImmCost, since offsets are checked explicitly.
  return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
                  C1.NumIVMuls, C1.NumBaseAdds,
                  C1.ScaleCost, C1.SetupCost) <
    std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
             C2.NumIVMuls, C2.NumBaseAdds,
             C2.ScaleCost, C2.SetupCost);
}

unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
  bool Vector = (ClassID == 1);
  if (!Vector)
    // Discount the stack pointer.  Also leave out %r0, since it can't
    // be used in an address.
    return 14;
  if (ST->hasVector())
    return 32;
  return 0;
}

unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
  if (!Vector)
    return 64;
  if (ST->hasVector())
    return 128;
  return 0;
}

unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
                                              unsigned NumStridedMemAccesses,
                                              unsigned NumPrefetches,
                                              bool HasCall) const {
  // Don't prefetch a loop with many far apart accesses.
  if (NumPrefetches > 16)
    return UINT_MAX;

  // Emit prefetch instructions for smaller strides in cases where we think
  // the hardware prefetcher might not be able to keep up.
  if (NumStridedMemAccesses > 32 &&
      NumStridedMemAccesses == NumMemAccesses && !HasCall)
    return 1;

  return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
}

bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
  EVT VT = TLI->getValueType(DL, DataType);
  return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
}

// Return the bit size for the scalar type or vector element
// type. getScalarSizeInBits() returns 0 for a pointer type.
static unsigned getScalarSizeInBits(Type *Ty) {
  unsigned Size =
    (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
  assert(Size > 0 && "Element must have non-zero size.");
  return Size;
}

// getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
// type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
// 3.
static unsigned getNumVectorRegs(Type *Ty) {
  auto *VTy = cast<FixedVectorType>(Ty);
  unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
  assert(WideBits > 0 && "Could not compute size of vector");
  return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
}

int SystemZTTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    TTI::OperandValueKind Op1Info,
    TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
    const Instruction *CxtI) {

  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info, Opd1PropInfo,
                                         Opd2PropInfo, Args, CxtI);

  // TODO: return a good value for BB-VECTORIZER that includes the
  // immediate loads, which we do not want to count for the loop
  // vectorizer, since they are hopefully hoisted out of the loop. This
  // would require a new parameter 'InLoop', but not sure if constant
  // args are common enough to motivate this.

  unsigned ScalarBits = Ty->getScalarSizeInBits();

  // There are thre cases of division and remainder: Dividing with a register
  // needs a divide instruction. A divisor which is a power of two constant
  // can be implemented with a sequence of shifts. Any other constant needs a
  // multiply and shifts.
  const unsigned DivInstrCost = 20;
  const unsigned DivMulSeqCost = 10;
  const unsigned SDivPow2Cost = 4;

  bool SignedDivRem =
      Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
  bool UnsignedDivRem =
      Opcode == Instruction::UDiv || Opcode == Instruction::URem;

  // Check for a constant divisor.
  bool DivRemConst = false;
  bool DivRemConstPow2 = false;
  if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
    if (const Constant *C = dyn_cast<Constant>(Args[1])) {
      const ConstantInt *CVal =
          (C->getType()->isVectorTy()
               ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
               : dyn_cast<const ConstantInt>(C));
      if (CVal != nullptr &&
          (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
        DivRemConstPow2 = true;
      else
        DivRemConst = true;
    }
  }

  if (!Ty->isVectorTy()) {
    // These FP operations are supported with a dedicated instruction for
    // float, double and fp128 (base implementation assumes float generally
    // costs 2).
    if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
        Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
      return 1;

    // There is no native support for FRem.
    if (Opcode == Instruction::FRem)
      return LIBCALL_COST;

    // Give discount for some combined logical operations if supported.
    if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) {
      if (Opcode == Instruction::Xor) {
        for (const Value *A : Args) {
          if (const Instruction *I = dyn_cast<Instruction>(A))
            if (I->hasOneUse() &&
                (I->getOpcode() == Instruction::And ||
                 I->getOpcode() == Instruction::Or ||
                 I->getOpcode() == Instruction::Xor))
              return 0;
        }
      }
      else if (Opcode == Instruction::Or || Opcode == Instruction::And) {
        for (const Value *A : Args) {
          if (const Instruction *I = dyn_cast<Instruction>(A))
            if (I->hasOneUse() && I->getOpcode() == Instruction::Xor)
              return 0;
        }
      }
    }

    // Or requires one instruction, although it has custom handling for i64.
    if (Opcode == Instruction::Or)
      return 1;

    if (Opcode == Instruction::Xor && ScalarBits == 1) {
      if (ST->hasLoadStoreOnCond2())
        return 5; // 2 * (li 0; loc 1); xor
      return 7; // 2 * ipm sequences ; xor ; shift ; compare
    }

    if (DivRemConstPow2)
      return (SignedDivRem ? SDivPow2Cost : 1);
    if (DivRemConst)
      return DivMulSeqCost;
    if (SignedDivRem || UnsignedDivRem)
      return DivInstrCost;
  }
  else if (ST->hasVector()) {
    auto *VTy = cast<FixedVectorType>(Ty);
    unsigned VF = VTy->getNumElements();
    unsigned NumVectors = getNumVectorRegs(Ty);

    // These vector operations are custom handled, but are still supported
    // with one instruction per vector, regardless of element size.
    if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
        Opcode == Instruction::AShr) {
      return NumVectors;
    }

    if (DivRemConstPow2)
      return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
    if (DivRemConst)
      return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args);
    if ((SignedDivRem || UnsignedDivRem) && VF > 4)
      // Temporary hack: disable high vectorization factors with integer
      // division/remainder, which will get scalarized and handled with
      // GR128 registers. The mischeduler is not clever enough to avoid
      // spilling yet.
      return 1000;

    // These FP operations are supported with a single vector instruction for
    // double (base implementation assumes float generally costs 2). For
    // FP128, the scalar cost is 1, and there is no overhead since the values
    // are already in scalar registers.
    if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
        Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
      switch (ScalarBits) {
      case 32: {
        // The vector enhancements facility 1 provides v4f32 instructions.
        if (ST->hasVectorEnhancements1())
          return NumVectors;
        // Return the cost of multiple scalar invocation plus the cost of
        // inserting and extracting the values.
        unsigned ScalarCost =
            getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
        unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(VTy, Args);
        // FIXME: VF 2 for these FP operations are currently just as
        // expensive as for VF 4.
        if (VF == 2)
          Cost *= 2;
        return Cost;
      }
      case 64:
      case 128:
        return NumVectors;
      default:
        break;
      }
    }

    // There is no native support for FRem.
    if (Opcode == Instruction::FRem) {
      unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args);
      // FIXME: VF 2 for float is currently just as expensive as for VF 4.
      if (VF == 2 && ScalarBits == 32)
        Cost *= 2;
      return Cost;
    }
  }

  // Fallback to the default implementation.
  return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
}

int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
                                   int Index, VectorType *SubTp) {
  if (ST->hasVector()) {
    unsigned NumVectors = getNumVectorRegs(Tp);

    // TODO: Since fp32 is expanded, the shuffle cost should always be 0.

    // FP128 values are always in scalar registers, so there is no work
    // involved with a shuffle, except for broadcast. In that case register
    // moves are done with a single instruction per element.
    if (Tp->getScalarType()->isFP128Ty())
      return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);

    switch (Kind) {
    case  TargetTransformInfo::SK_ExtractSubvector:
      // ExtractSubvector Index indicates start offset.

      // Extracting a subvector from first index is a noop.
      return (Index == 0 ? 0 : NumVectors);

    case TargetTransformInfo::SK_Broadcast:
      // Loop vectorizer calls here to figure out the extra cost of
      // broadcasting a loaded value to all elements of a vector. Since vlrep
      // loads and replicates with a single instruction, adjust the returned
      // value.
      return NumVectors - 1;

    default:

      // SystemZ supports single instruction permutation / replication.
      return NumVectors;
    }
  }

  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}

// Return the log2 difference of the element sizes of the two vector types.
static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
  unsigned Bits0 = Ty0->getScalarSizeInBits();
  unsigned Bits1 = Ty1->getScalarSizeInBits();

  if (Bits1 >  Bits0)
    return (Log2_32(Bits1) - Log2_32(Bits0));

  return (Log2_32(Bits0) - Log2_32(Bits1));
}

// Return the number of instructions needed to truncate SrcTy to DstTy.
unsigned SystemZTTIImpl::
getVectorTruncCost(Type *SrcTy, Type *DstTy) {
  assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
  assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
          "Packing must reduce size of vector type.");
  assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
             cast<FixedVectorType>(DstTy)->getNumElements() &&
         "Packing should not change number of elements.");

  // TODO: Since fp32 is expanded, the extract cost should always be 0.

  unsigned NumParts = getNumVectorRegs(SrcTy);
  if (NumParts <= 2)
    // Up to 2 vector registers can be truncated efficiently with pack or
    // permute. The latter requires an immediate mask to be loaded, which
    // typically gets hoisted out of a loop.  TODO: return a good value for
    // BB-VECTORIZER that includes the immediate loads, which we do not want
    // to count for the loop vectorizer.
    return 1;

  unsigned Cost = 0;
  unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
  unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
  for (unsigned P = 0; P < Log2Diff; ++P) {
    if (NumParts > 1)
      NumParts /= 2;
    Cost += NumParts;
  }

  // Currently, a general mix of permutes and pack instructions is output by
  // isel, which follow the cost computation above except for this case which
  // is one instruction less:
  if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
      DstTy->getScalarSizeInBits() == 8)
    Cost--;

  return Cost;
}

// Return the cost of converting a vector bitmask produced by a compare
// (SrcTy), to the type of the select or extend instruction (DstTy).
unsigned SystemZTTIImpl::
getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
  assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
          "Should only be called with vector types.");

  unsigned PackCost = 0;
  unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
  unsigned DstScalarBits = DstTy->getScalarSizeInBits();
  unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
  if (SrcScalarBits > DstScalarBits)
    // The bitmask will be truncated.
    PackCost = getVectorTruncCost(SrcTy, DstTy);
  else if (SrcScalarBits < DstScalarBits) {
    unsigned DstNumParts = getNumVectorRegs(DstTy);
    // Each vector select needs its part of the bitmask unpacked.
    PackCost = Log2Diff * DstNumParts;
    // Extra cost for moving part of mask before unpacking.
    PackCost += DstNumParts - 1;
  }

  return PackCost;
}

// Return the type of the compared operands. This is needed to compute the
// cost for a Select / ZExt or SExt instruction.
static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
  Type *OpTy = nullptr;
  if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
    OpTy = CI->getOperand(0)->getType();
  else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
    if (LogicI->getNumOperands() == 2)
      if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
        if (isa<CmpInst>(LogicI->getOperand(1)))
          OpTy = CI0->getOperand(0)->getType();

  if (OpTy != nullptr) {
    if (VF == 1) {
      assert (!OpTy->isVectorTy() && "Expected scalar type");
      return OpTy;
    }
    // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
    // be either scalar or already vectorized with a same or lesser VF.
    Type *ElTy = OpTy->getScalarType();
    return FixedVectorType::get(ElTy, VF);
  }

  return nullptr;
}

// Get the cost of converting a boolean vector to a vector with same width
// and element size as Dst, plus the cost of zero extending if needed.
unsigned SystemZTTIImpl::
getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
                              const Instruction *I) {
  auto *DstVTy = cast<FixedVectorType>(Dst);
  unsigned VF = DstVTy->getNumElements();
  unsigned Cost = 0;
  // If we know what the widths of the compared operands, get any cost of
  // converting it to match Dst. Otherwise assume same widths.
  Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
  if (CmpOpTy != nullptr)
    Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
  if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
    // One 'vn' per dst vector with an immediate mask.
    Cost += getNumVectorRegs(Dst);
  return Cost;
}

int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                     TTI::CastContextHint CCH,
                                     TTI::TargetCostKind CostKind,
                                     const Instruction *I) {
  // FIXME: Can the logic below also be used for these cost kinds?
  if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
    int BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
    return BaseCost == 0 ? BaseCost : 1;
  }

  unsigned DstScalarBits = Dst->getScalarSizeInBits();
  unsigned SrcScalarBits = Src->getScalarSizeInBits();

  if (!Src->isVectorTy()) {
    assert (!Dst->isVectorTy());

    if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
      if (SrcScalarBits >= 32 ||
          (I != nullptr && isa<LoadInst>(I->getOperand(0))))
        return 1;
      return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
    }

    if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
        Src->isIntegerTy(1)) {
      if (ST->hasLoadStoreOnCond2())
        return 2; // li 0; loc 1

      // This should be extension of a compare i1 result, which is done with
      // ipm and a varying sequence of instructions.
      unsigned Cost = 0;
      if (Opcode == Instruction::SExt)
        Cost = (DstScalarBits < 64 ? 3 : 4);
      if (Opcode == Instruction::ZExt)
        Cost = 3;
      Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
      if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
        // If operands of an fp-type was compared, this costs +1.
        Cost++;
      return Cost;
    }
  }
  else if (ST->hasVector()) {
    auto *SrcVecTy = cast<FixedVectorType>(Src);
    auto *DstVecTy = cast<FixedVectorType>(Dst);
    unsigned VF = SrcVecTy->getNumElements();
    unsigned NumDstVectors = getNumVectorRegs(Dst);
    unsigned NumSrcVectors = getNumVectorRegs(Src);

    if (Opcode == Instruction::Trunc) {
      if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
        return 0; // Check for NOOP conversions.
      return getVectorTruncCost(Src, Dst);
    }

    if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
      if (SrcScalarBits >= 8) {
        // ZExt/SExt will be handled with one unpack per doubling of width.
        unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);

        // For types that spans multiple vector registers, some additional
        // instructions are used to setup the unpacking.
        unsigned NumSrcVectorOps =
          (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
                          : (NumDstVectors / 2));

        return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
      }
      else if (SrcScalarBits == 1)
        return getBoolVecToIntConversionCost(Opcode, Dst, I);
    }

    if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
        Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
      // TODO: Fix base implementation which could simplify things a bit here
      // (seems to miss on differentiating on scalar/vector types).

      // Only 64 bit vector conversions are natively supported before z15.
      if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
        if (SrcScalarBits == DstScalarBits)
          return NumDstVectors;

        if (SrcScalarBits == 1)
          return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
      }

      // Return the cost of multiple scalar invocation plus the cost of
      // inserting and extracting the values. Base implementation does not
      // realize float->int gets scalarized.
      unsigned ScalarCost = getCastInstrCost(
          Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
      unsigned TotCost = VF * ScalarCost;
      bool NeedsInserts = true, NeedsExtracts = true;
      // FP128 registers do not get inserted or extracted.
      if (DstScalarBits == 128 &&
          (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
        NeedsInserts = false;
      if (SrcScalarBits == 128 &&
          (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
        NeedsExtracts = false;

      TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts);
      TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false);

      // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
      if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
        TotCost *= 2;

      return TotCost;
    }

    if (Opcode == Instruction::FPTrunc) {
      if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
        return VF /*ldxbr/lexbr*/ +
               getScalarizationOverhead(DstVecTy, true, false);
      else // double -> float
        return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
    }

    if (Opcode == Instruction::FPExt) {
      if (SrcScalarBits == 32 && DstScalarBits == 64) {
        // float -> double is very rare and currently unoptimized. Instead of
        // using vldeb, which can do two at a time, all conversions are
        // scalarized.
        return VF * 2;
      }
      // -> fp128.  VF * lxdb/lxeb + extraction of elements.
      return VF + getScalarizationOverhead(SrcVecTy, false, true);
    }
  }

  return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}

// Scalar i8 / i16 operations will typically be made after first extending
// the operands to i32.
static unsigned getOperandsExtensionCost(const Instruction *I) {
  unsigned ExtCost = 0;
  for (Value *Op : I->operands())
    // A load of i8 or i16 sign/zero extends to i32.
    if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
      ExtCost++;

  return ExtCost;
}

int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                       Type *CondTy,
                                       TTI::TargetCostKind CostKind,
                                       const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind);

  if (!ValTy->isVectorTy()) {
    switch (Opcode) {
    case Instruction::ICmp: {
      // A loaded value compared with 0 with multiple users becomes Load and
      // Test. The load is then not foldable, so return 0 cost for the ICmp.
      unsigned ScalarBits = ValTy->getScalarSizeInBits();
      if (I != nullptr && ScalarBits >= 32)
        if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
          if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
            if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
                C->isZero())
              return 0;

      unsigned Cost = 1;
      if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
        Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
      return Cost;
    }
    case Instruction::Select:
      if (ValTy->isFloatingPointTy())
        return 4; // No load on condition for FP - costs a conditional jump.
      return 1; // Load On Condition / Select Register.
    }
  }
  else if (ST->hasVector()) {
    unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();

    // Called with a compare instruction.
    if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
      unsigned PredicateExtraCost = 0;
      if (I != nullptr) {
        // Some predicates cost one or two extra instructions.
        switch (cast<CmpInst>(I)->getPredicate()) {
        case CmpInst::Predicate::ICMP_NE:
        case CmpInst::Predicate::ICMP_UGE:
        case CmpInst::Predicate::ICMP_ULE:
        case CmpInst::Predicate::ICMP_SGE:
        case CmpInst::Predicate::ICMP_SLE:
          PredicateExtraCost = 1;
          break;
        case CmpInst::Predicate::FCMP_ONE:
        case CmpInst::Predicate::FCMP_ORD:
        case CmpInst::Predicate::FCMP_UEQ:
        case CmpInst::Predicate::FCMP_UNO:
          PredicateExtraCost = 2;
          break;
        default:
          break;
        }
      }

      // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
      // floats.  FIXME: <2 x float> generates same code as <4 x float>.
      unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
      unsigned NumVecs_cmp = getNumVectorRegs(ValTy);

      unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
      return Cost;
    }
    else { // Called with a select instruction.
      assert (Opcode == Instruction::Select);

      // We can figure out the extra cost of packing / unpacking if the
      // instruction was passed and the compare instruction is found.
      unsigned PackCost = 0;
      Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
      if (CmpOpTy != nullptr)
        PackCost =
          getVectorBitmaskConversionCost(CmpOpTy, ValTy);

      return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
    }
  }

  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind);
}

int SystemZTTIImpl::
getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
  // vlvgp will insert two grs into a vector register, so only count half the
  // number of instructions.
  if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
    return ((Index % 2 == 0) ? 1 : 0);

  if (Opcode == Instruction::ExtractElement) {
    int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);

    // Give a slight penalty for moving out of vector pipeline to FXU unit.
    if (Index == 0 && Val->isIntOrIntVectorTy())
      Cost += 1;

    return Cost;
  }

  return BaseT::getVectorInstrCost(Opcode, Val, Index);
}

// Check if a load may be folded as a memory operand in its user.
bool SystemZTTIImpl::
isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
  if (!Ld->hasOneUse())
    return false;
  FoldedValue = Ld;
  const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
  unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
  unsigned TruncBits = 0;
  unsigned SExtBits = 0;
  unsigned ZExtBits = 0;
  if (UserI->hasOneUse()) {
    unsigned UserBits = UserI->getType()->getScalarSizeInBits();
    if (isa<TruncInst>(UserI))
      TruncBits = UserBits;
    else if (isa<SExtInst>(UserI))
      SExtBits = UserBits;
    else if (isa<ZExtInst>(UserI))
      ZExtBits = UserBits;
  }
  if (TruncBits || SExtBits || ZExtBits) {
    FoldedValue = UserI;
    UserI = cast<Instruction>(*UserI->user_begin());
    // Load (single use) -> trunc/extend (single use) -> UserI
  }
  if ((UserI->getOpcode() == Instruction::Sub ||
       UserI->getOpcode() == Instruction::SDiv ||
       UserI->getOpcode() == Instruction::UDiv) &&
      UserI->getOperand(1) != FoldedValue)
    return false; // Not commutative, only RHS foldable.
  // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
  // extension was made of the load.
  unsigned LoadOrTruncBits =
      ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
  switch (UserI->getOpcode()) {
  case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
  case Instruction::Sub:
  case Instruction::ICmp:
    if (LoadedBits == 32 && ZExtBits == 64)
      return true;
    LLVM_FALLTHROUGH;
  case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
    if (UserI->getOpcode() != Instruction::ICmp) {
      if (LoadedBits == 16 &&
          (SExtBits == 32 ||
           (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
        return true;
      if (LoadOrTruncBits == 16)
        return true;
    }
    LLVM_FALLTHROUGH;
  case Instruction::SDiv:// SE: 32->64
    if (LoadedBits == 32 && SExtBits == 64)
      return true;
    LLVM_FALLTHROUGH;
  case Instruction::UDiv:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // This also makes sense for float operations, but disabled for now due
    // to regressions.
    // case Instruction::FCmp:
    // case Instruction::FAdd:
    // case Instruction::FSub:
    // case Instruction::FMul:
    // case Instruction::FDiv:

    // All possible extensions of memory checked above.

    // Comparison between memory and immediate.
    if (UserI->getOpcode() == Instruction::ICmp)
      if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
        if (CI->getValue().isIntN(16))
          return true;
    return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
    break;
  }
  return false;
}

static bool isBswapIntrinsicCall(const Value *V) {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    if (auto *CI = dyn_cast<CallInst>(I))
      if (auto *F = CI->getCalledFunction())
        if (F->getIntrinsicID() == Intrinsic::bswap)
          return true;
  return false;
}

int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                    MaybeAlign Alignment, unsigned AddressSpace,
                                    TTI::TargetCostKind CostKind,
                                    const Instruction *I) {
  assert(!Src->isVoidTy() && "Invalid type");

  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return 1;

  if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
    // Store the load or its truncated or extended value in FoldedValue.
    const Instruction *FoldedValue = nullptr;
    if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
      const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
      assert (UserI->getNumOperands() == 2 && "Expected a binop.");

      // UserI can't fold two loads, so in that case return 0 cost only
      // half of the time.
      for (unsigned i = 0; i < 2; ++i) {
        if (UserI->getOperand(i) == FoldedValue)
          continue;

        if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
          LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
          if (!OtherLoad &&
              (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
               isa<ZExtInst>(OtherOp)))
            OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
          if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
            return i == 0; // Both operands foldable.
        }
      }

      return 0; // Only I is foldable in user.
    }
  }

  unsigned NumOps =
    (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));

  // Store/Load reversed saves one instruction.
  if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
      I != nullptr) {
    if (Opcode == Instruction::Load && I->hasOneUse()) {
      const Instruction *LdUser = cast<Instruction>(*I->user_begin());
      // In case of load -> bswap -> store, return normal cost for the load.
      if (isBswapIntrinsicCall(LdUser) &&
          (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
        return 0;
    }
    else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
      const Value *StoredVal = SI->getValueOperand();
      if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
        return 0;
    }
  }

  if (Src->getScalarSizeInBits() == 128)
    // 128 bit scalars are held in a pair of two 64 bit registers.
    NumOps *= 2;

  return  NumOps;
}

// The generic implementation of getInterleavedMemoryOpCost() is based on
// adding costs of the memory operations plus all the extracts and inserts
// needed for using / defining the vector operands. The SystemZ version does
// roughly the same but bases the computations on vector permutations
// instead.
int SystemZTTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  if (UseMaskForCond || UseMaskForGaps)
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                             Alignment, AddressSpace, CostKind,
                                             UseMaskForCond, UseMaskForGaps);
  assert(isa<VectorType>(VecTy) &&
         "Expect a vector type for interleaved memory op");

  // Return the ceiling of dividing A by B.
  auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };

  unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
  assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
  unsigned VF = NumElts / Factor;
  unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
  unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
  unsigned NumPermutes = 0;

  if (Opcode == Instruction::Load) {
    // Loading interleave groups may have gaps, which may mean fewer
    // loads. Find out how many vectors will be loaded in total, and in how
    // many of them each value will be in.
    BitVector UsedInsts(NumVectorMemOps, false);
    std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
    for (unsigned Index : Indices)
      for (unsigned Elt = 0; Elt < VF; ++Elt) {
        unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
        UsedInsts.set(Vec);
        ValueVecs[Index].set(Vec);
      }
    NumVectorMemOps = UsedInsts.count();

    for (unsigned Index : Indices) {
      // Estimate that each loaded source vector containing this Index
      // requires one operation, except that vperm can handle two input
      // registers first time for each dst vector.
      unsigned NumSrcVecs = ValueVecs[Index].count();
      unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
      assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
      NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
    }
  } else {
    // Estimate the permutes for each stored vector as the smaller of the
    // number of elements and the number of source vectors. Subtract one per
    // dst vector for vperm (S.A.).
    unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
    unsigned NumDstVecs = NumVectorMemOps;
    assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
    NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
  }

  // Cost of load/store operations and the permutations needed.
  return NumVectorMemOps + NumPermutes;
}

static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
  if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
    return getNumVectorRegs(RetTy); // VPERM
  return -1;
}

int SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                          TTI::TargetCostKind CostKind) {
  int Cost = getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType());
  if (Cost != -1)
    return Cost;
  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}