SystemZMachineScheduler.cpp
8.76 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// -------------------------- Post RA scheduling ---------------------------- //
// SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
// the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
// implementation that looks to optimize decoder grouping and balance the
// usage of processor resources. Scheduler states are saved for the end
// region of each MBB, so that a successor block can learn from it.
//===----------------------------------------------------------------------===//
#include "SystemZMachineScheduler.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
using namespace llvm;
#define DEBUG_TYPE "machine-scheduler"
#ifndef NDEBUG
// Print the set of SUs
void SystemZPostRASchedStrategy::SUSet::
dump(SystemZHazardRecognizer &HazardRec) const {
dbgs() << "{";
for (auto &SU : *this) {
HazardRec.dumpSU(SU, dbgs());
if (SU != *rbegin())
dbgs() << ", ";
}
dbgs() << "}\n";
}
#endif
// Try to find a single predecessor that would be interesting for the
// scheduler in the top-most region of MBB.
static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
const MachineLoop *Loop) {
MachineBasicBlock *PredMBB = nullptr;
if (MBB->pred_size() == 1)
PredMBB = *MBB->pred_begin();
// The loop header has two predecessors, return the latch, but not for a
// single block loop.
if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
for (auto I = MBB->pred_begin(); I != MBB->pred_end(); ++I)
if (Loop->contains(*I))
PredMBB = (*I == MBB ? nullptr : *I);
}
assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
&& "Loop MBB should not consider predecessor outside of loop.");
return PredMBB;
}
void SystemZPostRASchedStrategy::
advanceTo(MachineBasicBlock::iterator NextBegin) {
MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
MachineBasicBlock::iterator I =
((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
std::next(LastEmittedMI) : MBB->begin());
for (; I != NextBegin; ++I) {
if (I->isPosition() || I->isDebugInstr())
continue;
HazardRec->emitInstruction(&*I);
}
}
void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
LLVM_DEBUG(HazardRec->dumpState(););
}
void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
"Entering MBB twice?");
LLVM_DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));
MBB = NextMBB;
/// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
/// point to it.
HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
LLVM_DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
if (Loop && Loop->getHeader() == MBB) dbgs() << " (Loop header)";
dbgs() << ":\n";);
// Try to take over the state from a single predecessor, if it has been
// scheduled. If this is not possible, we are done.
MachineBasicBlock *SinglePredMBB =
getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
if (SinglePredMBB == nullptr ||
SchedStates.find(SinglePredMBB) == SchedStates.end())
return;
LLVM_DEBUG(dbgs() << "** Continued scheduling from "
<< printMBBReference(*SinglePredMBB) << "\n";);
HazardRec->copyState(SchedStates[SinglePredMBB]);
LLVM_DEBUG(HazardRec->dumpState(););
// Emit incoming terminator(s). Be optimistic and assume that branch
// prediction will generally do "the right thing".
for (MachineBasicBlock::iterator I = SinglePredMBB->getFirstTerminator();
I != SinglePredMBB->end(); I++) {
LLVM_DEBUG(dbgs() << "** Emitting incoming branch: "; I->dump(););
bool TakenBranch = (I->isBranch() &&
(TII->getBranchInfo(*I).isIndirect() ||
TII->getBranchInfo(*I).getMBBTarget() == MBB));
HazardRec->emitInstruction(&*I, TakenBranch);
if (TakenBranch)
break;
}
}
void SystemZPostRASchedStrategy::leaveMBB() {
LLVM_DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);
// Advance to first terminator. The successor block will handle terminators
// dependent on CFG layout (T/NT branch etc).
advanceTo(MBB->getFirstTerminator());
}
SystemZPostRASchedStrategy::
SystemZPostRASchedStrategy(const MachineSchedContext *C)
: MLI(C->MLI),
TII(static_cast<const SystemZInstrInfo *>
(C->MF->getSubtarget().getInstrInfo())),
MBB(nullptr), HazardRec(nullptr) {
const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
SchedModel.init(ST);
}
SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
// Delete hazard recognizers kept around for each MBB.
for (auto I : SchedStates) {
SystemZHazardRecognizer *hazrec = I.second;
delete hazrec;
}
}
void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
unsigned NumRegionInstrs) {
// Don't emit the terminators.
if (Begin->isTerminator())
return;
// Emit any instructions before start of region.
advanceTo(Begin);
}
// Pick the next node to schedule.
SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
// Only scheduling top-down.
IsTopNode = true;
if (Available.empty())
return nullptr;
// If only one choice, return it.
if (Available.size() == 1) {
LLVM_DEBUG(dbgs() << "** Only one: ";
HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
return *Available.begin();
}
// All nodes that are possible to schedule are stored in the Available set.
LLVM_DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););
Candidate Best;
for (auto *SU : Available) {
// SU is the next candidate to be compared against current Best.
Candidate c(SU, *HazardRec);
// Remeber which SU is the best candidate.
if (Best.SU == nullptr || c < Best) {
Best = c;
LLVM_DEBUG(dbgs() << "** Best so far: ";);
} else
LLVM_DEBUG(dbgs() << "** Tried : ";);
LLVM_DEBUG(HazardRec->dumpSU(c.SU, dbgs()); c.dumpCosts();
dbgs() << " Height:" << c.SU->getHeight(); dbgs() << "\n";);
// Once we know we have seen all SUs that affect grouping or use unbuffered
// resources, we can stop iterating if Best looks good.
if (!SU->isScheduleHigh && Best.noCost())
break;
}
assert (Best.SU != nullptr);
return Best.SU;
}
SystemZPostRASchedStrategy::Candidate::
Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
SU = SU_;
// Check the grouping cost. For a node that must begin / end a
// group, it is positive if it would do so prematurely, or negative
// if it would fit naturally into the schedule.
GroupingCost = HazardRec.groupingCost(SU);
// Check the resources cost for this SU.
ResourcesCost = HazardRec.resourcesCost(SU);
}
bool SystemZPostRASchedStrategy::Candidate::
operator<(const Candidate &other) {
// Check decoder grouping.
if (GroupingCost < other.GroupingCost)
return true;
if (GroupingCost > other.GroupingCost)
return false;
// Compare the use of resources.
if (ResourcesCost < other.ResourcesCost)
return true;
if (ResourcesCost > other.ResourcesCost)
return false;
// Higher SU is otherwise generally better.
if (SU->getHeight() > other.SU->getHeight())
return true;
if (SU->getHeight() < other.SU->getHeight())
return false;
// If all same, fall back to original order.
if (SU->NodeNum < other.SU->NodeNum)
return true;
return false;
}
void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
LLVM_DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
if (Available.size() == 1) dbgs() << "(only one) ";
Candidate c(SU, *HazardRec); c.dumpCosts(); dbgs() << "\n";);
// Remove SU from Available set and update HazardRec.
Available.erase(SU);
HazardRec->EmitInstruction(SU);
}
void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
// Set isScheduleHigh flag on all SUs that we want to consider first in
// pickNode().
const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);
// Put all released SUs in the Available set.
Available.insert(SU);
}