RISCVISelDAGToDAG.cpp 20.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
//===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the RISCV target.
//
//===----------------------------------------------------------------------===//

#include "RISCVISelDAGToDAG.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "Utils/RISCVMatInt.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "riscv-isel"

void RISCVDAGToDAGISel::PostprocessISelDAG() {
  doPeepholeLoadStoreADDI();
}

static SDNode *selectImm(SelectionDAG *CurDAG, const SDLoc &DL, int64_t Imm,
                         MVT XLenVT) {
  RISCVMatInt::InstSeq Seq;
  RISCVMatInt::generateInstSeq(Imm, XLenVT == MVT::i64, Seq);

  SDNode *Result = nullptr;
  SDValue SrcReg = CurDAG->getRegister(RISCV::X0, XLenVT);
  for (RISCVMatInt::Inst &Inst : Seq) {
    SDValue SDImm = CurDAG->getTargetConstant(Inst.Imm, DL, XLenVT);
    if (Inst.Opc == RISCV::LUI)
      Result = CurDAG->getMachineNode(RISCV::LUI, DL, XLenVT, SDImm);
    else
      Result = CurDAG->getMachineNode(Inst.Opc, DL, XLenVT, SrcReg, SDImm);

    // Only the first instruction has X0 as its source.
    SrcReg = SDValue(Result, 0);
  }

  return Result;
}

// Returns true if the Node is an ISD::AND with a constant argument. If so,
// set Mask to that constant value.
static bool isConstantMask(SDNode *Node, uint64_t &Mask) {
  if (Node->getOpcode() == ISD::AND &&
      Node->getOperand(1).getOpcode() == ISD::Constant) {
    Mask = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    return true;
  }
  return false;
}

void RISCVDAGToDAGISel::Select(SDNode *Node) {
  // If we have a custom node, we have already selected.
  if (Node->isMachineOpcode()) {
    LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
    Node->setNodeId(-1);
    return;
  }

  // Instruction Selection not handled by the auto-generated tablegen selection
  // should be handled here.
  unsigned Opcode = Node->getOpcode();
  MVT XLenVT = Subtarget->getXLenVT();
  SDLoc DL(Node);
  EVT VT = Node->getValueType(0);

  switch (Opcode) {
  case ISD::ADD: {
    // Optimize (add r, imm) to (addi (addi r, imm0) imm1) if applicable. The
    // immediate must be in specific ranges and have a single use.
    if (auto *ConstOp = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
      if (!(ConstOp->hasOneUse()))
        break;
      // The imm must be in range [-4096,-2049] or [2048,4094].
      int64_t Imm = ConstOp->getSExtValue();
      if (!(-4096 <= Imm && Imm <= -2049) && !(2048 <= Imm && Imm <= 4094))
        break;
      // Break the imm to imm0+imm1.
      SDLoc DL(Node);
      EVT VT = Node->getValueType(0);
      const SDValue ImmOp0 = CurDAG->getTargetConstant(Imm - Imm / 2, DL, VT);
      const SDValue ImmOp1 = CurDAG->getTargetConstant(Imm / 2, DL, VT);
      auto *NodeAddi0 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
                                               Node->getOperand(0), ImmOp0);
      auto *NodeAddi1 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
                                               SDValue(NodeAddi0, 0), ImmOp1);
      ReplaceNode(Node, NodeAddi1);
      return;
    }
    break;
  }
  case ISD::Constant: {
    auto ConstNode = cast<ConstantSDNode>(Node);
    if (VT == XLenVT && ConstNode->isNullValue()) {
      SDValue New = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
                                           RISCV::X0, XLenVT);
      ReplaceNode(Node, New.getNode());
      return;
    }
    int64_t Imm = ConstNode->getSExtValue();
    if (XLenVT == MVT::i64) {
      ReplaceNode(Node, selectImm(CurDAG, SDLoc(Node), Imm, XLenVT));
      return;
    }
    break;
  }
  case ISD::FrameIndex: {
    SDValue Imm = CurDAG->getTargetConstant(0, DL, XLenVT);
    int FI = cast<FrameIndexSDNode>(Node)->getIndex();
    SDValue TFI = CurDAG->getTargetFrameIndex(FI, VT);
    ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ADDI, DL, VT, TFI, Imm));
    return;
  }
  case ISD::SRL: {
    if (!Subtarget->is64Bit())
      break;
    SDNode *Op0 = Node->getOperand(0).getNode();
    uint64_t Mask;
    // Match (srl (and val, mask), imm) where the result would be a
    // zero-extended 32-bit integer. i.e. the mask is 0xffffffff or the result
    // is equivalent to this (SimplifyDemandedBits may have removed lower bits
    // from the mask that aren't necessary due to the right-shifting).
    if (isa<ConstantSDNode>(Node->getOperand(1)) && isConstantMask(Op0, Mask)) {
      uint64_t ShAmt = Node->getConstantOperandVal(1);

      if ((Mask | maskTrailingOnes<uint64_t>(ShAmt)) == 0xffffffff) {
        SDValue ShAmtVal =
            CurDAG->getTargetConstant(ShAmt, SDLoc(Node), XLenVT);
        CurDAG->SelectNodeTo(Node, RISCV::SRLIW, XLenVT, Op0->getOperand(0),
                             ShAmtVal);
        return;
      }
    }
    // Match (srl (shl val, 32), imm).
    if (Op0->getOpcode() == ISD::SHL &&
        isa<ConstantSDNode>(Op0->getOperand(1)) &&
        isa<ConstantSDNode>(Node->getOperand(1))) {
      uint64_t ShlAmt = Op0->getConstantOperandVal(1);
      uint64_t SrlAmt = Node->getConstantOperandVal(1);
      if (ShlAmt == 32 && SrlAmt > 32) {
        SDValue SrlAmtSub32Val =
            CurDAG->getTargetConstant(SrlAmt - 32, SDLoc(Node), XLenVT);
        CurDAG->SelectNodeTo(Node, RISCV::SRLIW, XLenVT, Op0->getOperand(0),
                             SrlAmtSub32Val);
        return;
      }
    }
    break;
  }
  case RISCVISD::READ_CYCLE_WIDE:
    assert(!Subtarget->is64Bit() && "READ_CYCLE_WIDE is only used on riscv32");

    ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ReadCycleWide, DL, MVT::i32,
                                             MVT::i32, MVT::Other,
                                             Node->getOperand(0)));
    return;
  }

  // Select the default instruction.
  SelectCode(Node);
}

bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand(
    const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
  switch (ConstraintID) {
  case InlineAsm::Constraint_m:
    // We just support simple memory operands that have a single address
    // operand and need no special handling.
    OutOps.push_back(Op);
    return false;
  case InlineAsm::Constraint_A:
    OutOps.push_back(Op);
    return false;
  default:
    break;
  }

  return true;
}

bool RISCVDAGToDAGISel::SelectAddrFI(SDValue Addr, SDValue &Base) {
  if (auto FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
    Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT());
    return true;
  }
  return false;
}

// Check that it is a SLOI (Shift Left Ones Immediate). We first check that
// it is the right node tree:
//
//  (OR (SHL RS1, VC2), VC1)
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
//  VC1 == maskTrailingOnes<uint64_t>(VC2)

bool RISCVDAGToDAGISel::SelectSLOI(SDValue N, SDValue &RS1, SDValue &Shamt) {
  MVT XLenVT = Subtarget->getXLenVT();
  if (N.getOpcode() == ISD::OR) {
    SDValue Or = N;
    if (Or.getOperand(0).getOpcode() == ISD::SHL) {
      SDValue Shl = Or.getOperand(0);
      if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
          isa<ConstantSDNode>(Or.getOperand(1))) {
        if (XLenVT == MVT::i64) {
          uint64_t VC1 = Or.getConstantOperandVal(1);
          uint64_t VC2 = Shl.getConstantOperandVal(1);
          if (VC1 == maskTrailingOnes<uint64_t>(VC2)) {
            RS1 = Shl.getOperand(0);
            Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                           Shl.getOperand(1).getValueType());
            return true;
          }
        }
        if (XLenVT == MVT::i32) {
          uint32_t VC1 = Or.getConstantOperandVal(1);
          uint32_t VC2 = Shl.getConstantOperandVal(1);
          if (VC1 == maskTrailingOnes<uint32_t>(VC2)) {
            RS1 = Shl.getOperand(0);
            Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                           Shl.getOperand(1).getValueType());
            return true;
          }
        }
      }
    }
  }
  return false;
}

// Check that it is a SROI (Shift Right Ones Immediate). We first check that
// it is the right node tree:
//
//  (OR (SRL RS1, VC2), VC1)
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
//  VC1 == maskLeadingOnes<uint64_t>(VC2)

bool RISCVDAGToDAGISel::SelectSROI(SDValue N, SDValue &RS1, SDValue &Shamt) {
  MVT XLenVT = Subtarget->getXLenVT();
  if (N.getOpcode() == ISD::OR) {
    SDValue Or = N;
    if (Or.getOperand(0).getOpcode() == ISD::SRL) {
      SDValue Srl = Or.getOperand(0);
      if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
          isa<ConstantSDNode>(Or.getOperand(1))) {
        if (XLenVT == MVT::i64) {
          uint64_t VC1 = Or.getConstantOperandVal(1);
          uint64_t VC2 = Srl.getConstantOperandVal(1);
          if (VC1 == maskLeadingOnes<uint64_t>(VC2)) {
            RS1 = Srl.getOperand(0);
            Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                           Srl.getOperand(1).getValueType());
            return true;
          }
        }
        if (XLenVT == MVT::i32) {
          uint32_t VC1 = Or.getConstantOperandVal(1);
          uint32_t VC2 = Srl.getConstantOperandVal(1);
          if (VC1 == maskLeadingOnes<uint32_t>(VC2)) {
            RS1 = Srl.getOperand(0);
            Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                           Srl.getOperand(1).getValueType());
            return true;
          }
        }
      }
    }
  }
  return false;
}

// Check that it is a RORI (Rotate Right Immediate). We first check that
// it is the right node tree:
//
//  (ROTL RS1, VC)
//
// The compiler translates immediate rotations to the right given by the call
// to the rotateright32/rotateright64 intrinsics as rotations to the left.
// Since the rotation to the left can be easily emulated as a rotation to the
// right by negating the constant, there is no encoding for ROLI.
// We then select the immediate left rotations as RORI by the complementary
// constant:
//
//  Shamt == XLen - VC

bool RISCVDAGToDAGISel::SelectRORI(SDValue N, SDValue &RS1, SDValue &Shamt) {
  MVT XLenVT = Subtarget->getXLenVT();
  if (N.getOpcode() == ISD::ROTL) {
    if (isa<ConstantSDNode>(N.getOperand(1))) {
      if (XLenVT == MVT::i64) {
        uint64_t VC = N.getConstantOperandVal(1);
        Shamt = CurDAG->getTargetConstant((64 - VC), SDLoc(N),
                                          N.getOperand(1).getValueType());
        RS1 = N.getOperand(0);
        return true;
      }
      if (XLenVT == MVT::i32) {
        uint32_t VC = N.getConstantOperandVal(1);
        Shamt = CurDAG->getTargetConstant((32 - VC), SDLoc(N),
                                          N.getOperand(1).getValueType());
        RS1 = N.getOperand(0);
        return true;
      }
    }
  }
  return false;
}


// Check that it is a SLLIUW (Shift Logical Left Immediate Unsigned i32
// on RV64).
// SLLIUW is the same as SLLI except for the fact that it clears the bits
// XLEN-1:32 of the input RS1 before shifting.
// We first check that it is the right node tree:
//
//  (AND (SHL RS1, VC2), VC1)
//
// We check that VC2, the shamt is less than 32, otherwise the pattern is
// exactly the same as SLLI and we give priority to that.
// Eventually we check that that VC1, the mask used to clear the upper 32 bits
// of RS1, is correct:
//
//  VC1 == (0xFFFFFFFF << VC2)

bool RISCVDAGToDAGISel::SelectSLLIUW(SDValue N, SDValue &RS1, SDValue &Shamt) {
  if (N.getOpcode() == ISD::AND && Subtarget->getXLenVT() == MVT::i64) {
    SDValue And = N;
    if (And.getOperand(0).getOpcode() == ISD::SHL) {
      SDValue Shl = And.getOperand(0);
      if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
          isa<ConstantSDNode>(And.getOperand(1))) {
        uint64_t VC1 = And.getConstantOperandVal(1);
        uint64_t VC2 = Shl.getConstantOperandVal(1);
        if (VC2 < 32 && VC1 == ((uint64_t)0xFFFFFFFF << VC2)) {
          RS1 = Shl.getOperand(0);
          Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                                            Shl.getOperand(1).getValueType());
          return true;
        }
      }
    }
  }
  return false;
}

// Check that it is a SLOIW (Shift Left Ones Immediate i32 on RV64).
// We first check that it is the right node tree:
//
//  (SIGN_EXTEND_INREG (OR (SHL RS1, VC2), VC1))
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
//  VC1 == maskTrailingOnes<uint32_t>(VC2)

bool RISCVDAGToDAGISel::SelectSLOIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
  if (Subtarget->getXLenVT() == MVT::i64 &&
      N.getOpcode() == ISD::SIGN_EXTEND_INREG &&
      cast<VTSDNode>(N.getOperand(1))->getVT() == MVT::i32) {
    if (N.getOperand(0).getOpcode() == ISD::OR) {
      SDValue Or = N.getOperand(0);
      if (Or.getOperand(0).getOpcode() == ISD::SHL) {
        SDValue Shl = Or.getOperand(0);
        if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
            isa<ConstantSDNode>(Or.getOperand(1))) {
          uint32_t VC1 = Or.getConstantOperandVal(1);
          uint32_t VC2 = Shl.getConstantOperandVal(1);
          if (VC1 == maskTrailingOnes<uint32_t>(VC2)) {
            RS1 = Shl.getOperand(0);
            Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                                              Shl.getOperand(1).getValueType());
            return true;
          }
        }
      }
    }
  }
  return false;
}

// Check that it is a SROIW (Shift Right Ones Immediate i32 on RV64).
// We first check that it is the right node tree:
//
//  (OR (SHL RS1, VC2), VC1)
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
//  VC1 == maskLeadingOnes<uint32_t>(VC2)

bool RISCVDAGToDAGISel::SelectSROIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
  if (N.getOpcode() == ISD::OR && Subtarget->getXLenVT() == MVT::i64) {
    SDValue Or = N;
    if (Or.getOperand(0).getOpcode() == ISD::SRL) {
      SDValue Srl = Or.getOperand(0);
      if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
          isa<ConstantSDNode>(Or.getOperand(1))) {
        uint32_t VC1 = Or.getConstantOperandVal(1);
        uint32_t VC2 = Srl.getConstantOperandVal(1);
        if (VC1 == maskLeadingOnes<uint32_t>(VC2)) {
          RS1 = Srl.getOperand(0);
          Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
                                            Srl.getOperand(1).getValueType());
          return true;
        }
      }
    }
  }
  return false;
}

// Check that it is a RORIW (i32 Right Rotate Immediate on RV64).
// We first check that it is the right node tree:
//
//  (SIGN_EXTEND_INREG (OR (SHL (AsserSext RS1, i32), VC2),
//                         (SRL (AND (AssertSext RS2, i32), VC3), VC1)))
//
// Then we check that the constant operands respect these constraints:
//
// VC2 == 32 - VC1
// VC3 == maskLeadingOnes<uint32_t>(VC2)
//
// being VC1 the Shamt we need, VC2 the complementary of Shamt over 32
// and VC3 a 32 bit mask of (32 - VC1) leading ones.

bool RISCVDAGToDAGISel::SelectRORIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
  if (N.getOpcode() == ISD::SIGN_EXTEND_INREG &&
      Subtarget->getXLenVT() == MVT::i64 &&
      cast<VTSDNode>(N.getOperand(1))->getVT() == MVT::i32) {
    if (N.getOperand(0).getOpcode() == ISD::OR) {
      SDValue Or = N.getOperand(0);
      if (Or.getOperand(0).getOpcode() == ISD::SHL &&
          Or.getOperand(1).getOpcode() == ISD::SRL) {
        SDValue Shl = Or.getOperand(0);
        SDValue Srl = Or.getOperand(1);
        if (Srl.getOperand(0).getOpcode() == ISD::AND) {
          SDValue And = Srl.getOperand(0);
          if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
              isa<ConstantSDNode>(Shl.getOperand(1)) &&
              isa<ConstantSDNode>(And.getOperand(1))) {
            uint32_t VC1 = Srl.getConstantOperandVal(1);
            uint32_t VC2 = Shl.getConstantOperandVal(1);
            uint32_t VC3 = And.getConstantOperandVal(1);
            if (VC2 == (32 - VC1) &&
                VC3 == maskLeadingOnes<uint32_t>(VC2)) {
              RS1 = Shl.getOperand(0);
              Shamt = CurDAG->getTargetConstant(VC1, SDLoc(N),
                                              Srl.getOperand(1).getValueType());
              return true;
            }
          }
        }
      }
    }
  }
  return false;
}

// Merge an ADDI into the offset of a load/store instruction where possible.
// (load (addi base, off1), off2) -> (load base, off1+off2)
// (store val, (addi base, off1), off2) -> (store val, base, off1+off2)
// This is possible when off1+off2 fits a 12-bit immediate.
void RISCVDAGToDAGISel::doPeepholeLoadStoreADDI() {
  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
  ++Position;

  while (Position != CurDAG->allnodes_begin()) {
    SDNode *N = &*--Position;
    // Skip dead nodes and any non-machine opcodes.
    if (N->use_empty() || !N->isMachineOpcode())
      continue;

    int OffsetOpIdx;
    int BaseOpIdx;

    // Only attempt this optimisation for I-type loads and S-type stores.
    switch (N->getMachineOpcode()) {
    default:
      continue;
    case RISCV::LB:
    case RISCV::LH:
    case RISCV::LW:
    case RISCV::LBU:
    case RISCV::LHU:
    case RISCV::LWU:
    case RISCV::LD:
    case RISCV::FLW:
    case RISCV::FLD:
      BaseOpIdx = 0;
      OffsetOpIdx = 1;
      break;
    case RISCV::SB:
    case RISCV::SH:
    case RISCV::SW:
    case RISCV::SD:
    case RISCV::FSW:
    case RISCV::FSD:
      BaseOpIdx = 1;
      OffsetOpIdx = 2;
      break;
    }

    if (!isa<ConstantSDNode>(N->getOperand(OffsetOpIdx)))
      continue;

    SDValue Base = N->getOperand(BaseOpIdx);

    // If the base is an ADDI, we can merge it in to the load/store.
    if (!Base.isMachineOpcode() || Base.getMachineOpcode() != RISCV::ADDI)
      continue;

    SDValue ImmOperand = Base.getOperand(1);
    uint64_t Offset2 = N->getConstantOperandVal(OffsetOpIdx);

    if (auto Const = dyn_cast<ConstantSDNode>(ImmOperand)) {
      int64_t Offset1 = Const->getSExtValue();
      int64_t CombinedOffset = Offset1 + Offset2;
      if (!isInt<12>(CombinedOffset))
        continue;
      ImmOperand = CurDAG->getTargetConstant(CombinedOffset, SDLoc(ImmOperand),
                                             ImmOperand.getValueType());
    } else if (auto GA = dyn_cast<GlobalAddressSDNode>(ImmOperand)) {
      // If the off1 in (addi base, off1) is a global variable's address (its
      // low part, really), then we can rely on the alignment of that variable
      // to provide a margin of safety before off1 can overflow the 12 bits.
      // Check if off2 falls within that margin; if so off1+off2 can't overflow.
      const DataLayout &DL = CurDAG->getDataLayout();
      Align Alignment = GA->getGlobal()->getPointerAlignment(DL);
      if (Offset2 != 0 && Alignment <= Offset2)
        continue;
      int64_t Offset1 = GA->getOffset();
      int64_t CombinedOffset = Offset1 + Offset2;
      ImmOperand = CurDAG->getTargetGlobalAddress(
          GA->getGlobal(), SDLoc(ImmOperand), ImmOperand.getValueType(),
          CombinedOffset, GA->getTargetFlags());
    } else if (auto CP = dyn_cast<ConstantPoolSDNode>(ImmOperand)) {
      // Ditto.
      Align Alignment = CP->getAlign();
      if (Offset2 != 0 && Alignment <= Offset2)
        continue;
      int64_t Offset1 = CP->getOffset();
      int64_t CombinedOffset = Offset1 + Offset2;
      ImmOperand = CurDAG->getTargetConstantPool(
          CP->getConstVal(), ImmOperand.getValueType(), CP->getAlign(),
          CombinedOffset, CP->getTargetFlags());
    } else {
      continue;
    }

    LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
    LLVM_DEBUG(Base->dump(CurDAG));
    LLVM_DEBUG(dbgs() << "\nN: ");
    LLVM_DEBUG(N->dump(CurDAG));
    LLVM_DEBUG(dbgs() << "\n");

    // Modify the offset operand of the load/store.
    if (BaseOpIdx == 0) // Load
      CurDAG->UpdateNodeOperands(N, Base.getOperand(0), ImmOperand,
                                 N->getOperand(2));
    else // Store
      CurDAG->UpdateNodeOperands(N, N->getOperand(0), Base.getOperand(0),
                                 ImmOperand, N->getOperand(3));

    // The add-immediate may now be dead, in which case remove it.
    if (Base.getNode()->use_empty())
      CurDAG->RemoveDeadNode(Base.getNode());
  }
}

// This pass converts a legalized DAG into a RISCV-specific DAG, ready
// for instruction scheduling.
FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM) {
  return new RISCVDAGToDAGISel(TM);
}