README.txt
69.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
Target Independent Opportunities:
//===---------------------------------------------------------------------===//
We should recognized various "overflow detection" idioms and translate them into
llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom:
unsigned int mul(unsigned int a,unsigned int b) {
if ((unsigned long long)a*b>0xffffffff)
exit(0);
return a*b;
}
The legalization code for mul-with-overflow needs to be made more robust before
this can be implemented though.
//===---------------------------------------------------------------------===//
Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
safe in general, even on darwin. See the libm implementation of hypot for
examples (which special case when x/y are exactly zero to get signed zeros etc
right).
//===---------------------------------------------------------------------===//
On targets with expensive 64-bit multiply, we could LSR this:
for (i = ...; ++i) {
x = 1ULL << i;
into:
long long tmp = 1;
for (i = ...; ++i, tmp+=tmp)
x = tmp;
This would be a win on ppc32, but not x86 or ppc64.
//===---------------------------------------------------------------------===//
Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
//===---------------------------------------------------------------------===//
Reassociate should turn things like:
int factorial(int X) {
return X*X*X*X*X*X*X*X;
}
into llvm.powi calls, allowing the code generator to produce balanced
multiplication trees.
First, the intrinsic needs to be extended to support integers, and second the
code generator needs to be enhanced to lower these to multiplication trees.
//===---------------------------------------------------------------------===//
Interesting? testcase for add/shift/mul reassoc:
int bar(int x, int y) {
return x*x*x+y+x*x*x*x*x*y*y*y*y;
}
int foo(int z, int n) {
return bar(z, n) + bar(2*z, 2*n);
}
This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue
is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X,
which is the same number of multiplies and is canonical, because the 2*X has
multiple uses. Here's a simple example:
define i32 @test15(i32 %X1) {
%B = mul i32 %X1, 47 ; X1*47
%C = mul i32 %B, %B
ret i32 %C
}
//===---------------------------------------------------------------------===//
Reassociate should handle the example in GCC PR16157:
extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
void f () { /* this can be optimized to four additions... */
b4 = a4 + a3 + a2 + a1 + a0;
b3 = a3 + a2 + a1 + a0;
b2 = a2 + a1 + a0;
b1 = a1 + a0;
}
This requires reassociating to forms of expressions that are already available,
something that reassoc doesn't think about yet.
//===---------------------------------------------------------------------===//
These two functions should generate the same code on big-endian systems:
int g(int *j,int *l) { return memcmp(j,l,4); }
int h(int *j, int *l) { return *j - *l; }
this could be done in SelectionDAGISel.cpp, along with other special cases,
for 1,2,4,8 bytes.
//===---------------------------------------------------------------------===//
It would be nice to revert this patch:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
And teach the dag combiner enough to simplify the code expanded before
legalize. It seems plausible that this knowledge would let it simplify other
stuff too.
//===---------------------------------------------------------------------===//
For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
to the type size. It works but can be overly conservative as the alignment of
specific vector types are target dependent.
//===---------------------------------------------------------------------===//
We should produce an unaligned load from code like this:
v4sf example(float *P) {
return (v4sf){P[0], P[1], P[2], P[3] };
}
//===---------------------------------------------------------------------===//
Add support for conditional increments, and other related patterns. Instead
of:
movl 136(%esp), %eax
cmpl $0, %eax
je LBB16_2 #cond_next
LBB16_1: #cond_true
incl _foo
LBB16_2: #cond_next
emit:
movl _foo, %eax
cmpl $1, %edi
sbbl $-1, %eax
movl %eax, _foo
//===---------------------------------------------------------------------===//
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
Expand these to calls of sin/cos and stores:
double sincos(double x, double *sin, double *cos);
float sincosf(float x, float *sin, float *cos);
long double sincosl(long double x, long double *sin, long double *cos);
Doing so could allow SROA of the destination pointers. See also:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
This is now easily doable with MRVs. We could even make an intrinsic for this
if anyone cared enough about sincos.
//===---------------------------------------------------------------------===//
quantum_sigma_x in 462.libquantum contains the following loop:
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of each basis state */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
}
Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
so cool to turn it into something like:
long long Res = ((MAX_UNSIGNED) 1 << target);
if (target < 32) {
for(i=0; i<reg->size; i++)
reg->node[i].state ^= Res & 0xFFFFFFFFULL;
} else {
for(i=0; i<reg->size; i++)
reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
}
... which would only do one 32-bit XOR per loop iteration instead of two.
It would also be nice to recognize the reg->size doesn't alias reg->node[i],
but this requires TBAA.
//===---------------------------------------------------------------------===//
This isn't recognized as bswap by instcombine (yes, it really is bswap):
unsigned long reverse(unsigned v) {
unsigned t;
t = v ^ ((v << 16) | (v >> 16));
t &= ~0xff0000;
v = (v << 24) | (v >> 8);
return v ^ (t >> 8);
}
//===---------------------------------------------------------------------===//
[LOOP DELETION]
We don't delete this output free loop, because trip count analysis doesn't
realize that it is finite (if it were infinite, it would be undefined). Not
having this blocks Loop Idiom from matching strlen and friends.
void foo(char *C) {
int x = 0;
while (*C)
++x,++C;
}
//===---------------------------------------------------------------------===//
[LOOP RECOGNITION]
These idioms should be recognized as popcount (see PR1488):
unsigned countbits_slow(unsigned v) {
unsigned c;
for (c = 0; v; v >>= 1)
c += v & 1;
return c;
}
unsigned int popcount(unsigned int input) {
unsigned int count = 0;
for (unsigned int i = 0; i < 4 * 8; i++)
count += (input >> i) & i;
return count;
}
This should be recognized as CLZ: rdar://8459039
unsigned clz_a(unsigned a) {
int i;
for (i=0;i<32;i++)
if (a & (1<<(31-i)))
return i;
return 32;
}
This sort of thing should be added to the loop idiom pass.
//===---------------------------------------------------------------------===//
These should turn into single 16-bit (unaligned?) loads on little/big endian
processors.
unsigned short read_16_le(const unsigned char *adr) {
return adr[0] | (adr[1] << 8);
}
unsigned short read_16_be(const unsigned char *adr) {
return (adr[0] << 8) | adr[1];
}
//===---------------------------------------------------------------------===//
-instcombine should handle this transform:
icmp pred (sdiv X / C1 ), C2
when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
Currently InstCombine avoids this transform but will do it when the signs of
the operands and the sign of the divide match. See the FIXME in
InstructionCombining.cpp in the visitSetCondInst method after the switch case
for Instruction::UDiv (around line 4447) for more details.
The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
this construct.
//===---------------------------------------------------------------------===//
[LOOP OPTIMIZATION]
SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
opportunities in its double_array_divs_variable function: it needs loop
interchange, memory promotion (which LICM already does), vectorization and
variable trip count loop unrolling (since it has a constant trip count). ICC
apparently produces this very nice code with -ffast-math:
..B1.70: # Preds ..B1.70 ..B1.69
mulpd %xmm0, %xmm1 #108.2
mulpd %xmm0, %xmm1 #108.2
mulpd %xmm0, %xmm1 #108.2
mulpd %xmm0, %xmm1 #108.2
addl $8, %edx #
cmpl $131072, %edx #108.2
jb ..B1.70 # Prob 99% #108.2
It would be better to count down to zero, but this is a lot better than what we
do.
//===---------------------------------------------------------------------===//
Consider:
typedef unsigned U32;
typedef unsigned long long U64;
int test (U32 *inst, U64 *regs) {
U64 effective_addr2;
U32 temp = *inst;
int r1 = (temp >> 20) & 0xf;
int b2 = (temp >> 16) & 0xf;
effective_addr2 = temp & 0xfff;
if (b2) effective_addr2 += regs[b2];
b2 = (temp >> 12) & 0xf;
if (b2) effective_addr2 += regs[b2];
effective_addr2 &= regs[4];
if ((effective_addr2 & 3) == 0)
return 1;
return 0;
}
Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
we don't eliminate the computation of the top half of effective_addr2 because
we don't have whole-function selection dags. On x86, this means we use one
extra register for the function when effective_addr2 is declared as U64 than
when it is declared U32.
PHI Slicing could be extended to do this.
//===---------------------------------------------------------------------===//
Tail call elim should be more aggressive, checking to see if the call is
followed by an uncond branch to an exit block.
; This testcase is due to tail-duplication not wanting to copy the return
; instruction into the terminating blocks because there was other code
; optimized out of the function after the taildup happened.
; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
define i32 @t4(i32 %a) {
entry:
%tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
%tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
br i1 %tmp.2, label %then.0, label %else.0
then.0: ; preds = %entry
%tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
%tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
br label %return
else.0: ; preds = %entry
%tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
br i1 %tmp.7, label %then.1, label %return
then.1: ; preds = %else.0
%tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
%tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
br label %return
return: ; preds = %then.1, %else.0, %then.0
%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
[ %tmp.9, %then.1 ]
ret i32 %result.0
}
//===---------------------------------------------------------------------===//
Tail recursion elimination should handle:
int pow2m1(int n) {
if (n == 0)
return 0;
return 2 * pow2m1 (n - 1) + 1;
}
Also, multiplies can be turned into SHL's, so they should be handled as if
they were associative. "return foo() << 1" can be tail recursion eliminated.
//===---------------------------------------------------------------------===//
Argument promotion should promote arguments for recursive functions, like
this:
; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
define internal i32 @foo(i32* %x) {
entry:
%tmp = load i32* %x ; <i32> [#uses=0]
%tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
ret i32 %tmp.foo
}
define i32 @bar(i32* %x) {
entry:
%tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
ret i32 %tmp3
}
//===---------------------------------------------------------------------===//
We should investigate an instruction sinking pass. Consider this silly
example in pic mode:
#include <assert.h>
void foo(int x) {
assert(x);
//...
}
we compile this to:
_foo:
subl $28, %esp
call "L1$pb"
"L1$pb":
popl %eax
cmpl $0, 32(%esp)
je LBB1_2 # cond_true
LBB1_1: # return
# ...
addl $28, %esp
ret
LBB1_2: # cond_true
...
The PIC base computation (call+popl) is only used on one path through the
code, but is currently always computed in the entry block. It would be
better to sink the picbase computation down into the block for the
assertion, as it is the only one that uses it. This happens for a lot of
code with early outs.
Another example is loads of arguments, which are usually emitted into the
entry block on targets like x86. If not used in all paths through a
function, they should be sunk into the ones that do.
In this case, whole-function-isel would also handle this.
//===---------------------------------------------------------------------===//
Investigate lowering of sparse switch statements into perfect hash tables:
http://burtleburtle.net/bob/hash/perfect.html
//===---------------------------------------------------------------------===//
We should turn things like "load+fabs+store" and "load+fneg+store" into the
corresponding integer operations. On a yonah, this loop:
double a[256];
void foo() {
int i, b;
for (b = 0; b < 10000000; b++)
for (i = 0; i < 256; i++)
a[i] = -a[i];
}
is twice as slow as this loop:
long long a[256];
void foo() {
int i, b;
for (b = 0; b < 10000000; b++)
for (i = 0; i < 256; i++)
a[i] ^= (1ULL << 63);
}
and I suspect other processors are similar. On X86 in particular this is a
big win because doing this with integers allows the use of read/modify/write
instructions.
//===---------------------------------------------------------------------===//
DAG Combiner should try to combine small loads into larger loads when
profitable. For example, we compile this C++ example:
struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
extern THotKey m_HotKey;
THotKey GetHotKey () { return m_HotKey; }
into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
__Z9GetHotKeyv: ## @_Z9GetHotKeyv
movq _m_HotKey@GOTPCREL(%rip), %rax
movzwl (%rax), %ecx
movzbl 2(%rax), %edx
shlq $16, %rdx
orq %rcx, %rdx
movzbl 3(%rax), %ecx
shlq $24, %rcx
orq %rdx, %rcx
movzbl 4(%rax), %eax
shlq $32, %rax
orq %rcx, %rax
ret
//===---------------------------------------------------------------------===//
We should add an FRINT node to the DAG to model targets that have legal
implementations of ceil/floor/rint.
//===---------------------------------------------------------------------===//
Consider:
int test() {
long long input[8] = {1,0,1,0,1,0,1,0};
foo(input);
}
Clang compiles this into:
call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
%0 = getelementptr [8 x i64]* %input, i64 0, i64 0
store i64 1, i64* %0, align 16
%1 = getelementptr [8 x i64]* %input, i64 0, i64 2
store i64 1, i64* %1, align 16
%2 = getelementptr [8 x i64]* %input, i64 0, i64 4
store i64 1, i64* %2, align 16
%3 = getelementptr [8 x i64]* %input, i64 0, i64 6
store i64 1, i64* %3, align 16
Which gets codegen'd into:
pxor %xmm0, %xmm0
movaps %xmm0, -16(%rbp)
movaps %xmm0, -32(%rbp)
movaps %xmm0, -48(%rbp)
movaps %xmm0, -64(%rbp)
movq $1, -64(%rbp)
movq $1, -48(%rbp)
movq $1, -32(%rbp)
movq $1, -16(%rbp)
It would be better to have 4 movq's of 0 instead of the movaps's.
//===---------------------------------------------------------------------===//
http://llvm.org/PR717:
The following code should compile into "ret int undef". Instead, LLVM
produces "ret int 0":
int f() {
int x = 4;
int y;
if (x == 3) y = 0;
return y;
}
//===---------------------------------------------------------------------===//
The loop unroller should partially unroll loops (instead of peeling them)
when code growth isn't too bad and when an unroll count allows simplification
of some code within the loop. One trivial example is:
#include <stdio.h>
int main() {
int nRet = 17;
int nLoop;
for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
if ( nLoop & 1 )
nRet += 2;
else
nRet -= 1;
}
return nRet;
}
Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
reduction in code size. The resultant code would then also be suitable for
exit value computation.
//===---------------------------------------------------------------------===//
We miss a bunch of rotate opportunities on various targets, including ppc, x86,
etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
matching code in dag combine doesn't look through truncates aggressively
enough. Here are some testcases reduces from GCC PR17886:
unsigned long long f5(unsigned long long x, unsigned long long y) {
return (x << 8) | ((y >> 48) & 0xffull);
}
unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
switch(z) {
case 1:
return (x << 8) | ((y >> 48) & 0xffull);
case 2:
return (x << 16) | ((y >> 40) & 0xffffull);
case 3:
return (x << 24) | ((y >> 32) & 0xffffffull);
case 4:
return (x << 32) | ((y >> 24) & 0xffffffffull);
default:
return (x << 40) | ((y >> 16) & 0xffffffffffull);
}
}
//===---------------------------------------------------------------------===//
This (and similar related idioms):
unsigned int foo(unsigned char i) {
return i | (i<<8) | (i<<16) | (i<<24);
}
compiles into:
define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
entry:
%conv = zext i8 %i to i32
%shl = shl i32 %conv, 8
%shl5 = shl i32 %conv, 16
%shl9 = shl i32 %conv, 24
%or = or i32 %shl9, %conv
%or6 = or i32 %or, %shl5
%or10 = or i32 %or6, %shl
ret i32 %or10
}
it would be better as:
unsigned int bar(unsigned char i) {
unsigned int j=i | (i << 8);
return j | (j<<16);
}
aka:
define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
entry:
%conv = zext i8 %i to i32
%shl = shl i32 %conv, 8
%or = or i32 %shl, %conv
%shl5 = shl i32 %or, 16
%or6 = or i32 %shl5, %or
ret i32 %or6
}
or even i*0x01010101, depending on the speed of the multiplier. The best way to
handle this is to canonicalize it to a multiply in IR and have codegen handle
lowering multiplies to shifts on cpus where shifts are faster.
//===---------------------------------------------------------------------===//
We do a number of simplifications in simplify libcalls to strength reduce
standard library functions, but we don't currently merge them together. For
example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
be done safely if "b" isn't modified between the strlen and memcpy of course.
//===---------------------------------------------------------------------===//
We compile this program: (from GCC PR11680)
http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
Into code that runs the same speed in fast/slow modes, but both modes run 2x
slower than when compile with GCC (either 4.0 or 4.2):
$ llvm-g++ perf.cpp -O3 -fno-exceptions
$ time ./a.out fast
1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
$ g++ perf.cpp -O3 -fno-exceptions
$ time ./a.out fast
0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
It looks like we are making the same inlining decisions, so this may be raw
codegen badness or something else (haven't investigated).
//===---------------------------------------------------------------------===//
Divisibility by constant can be simplified (according to GCC PR12849) from
being a mulhi to being a mul lo (cheaper). Testcase:
void bar(unsigned n) {
if (n % 3 == 0)
true();
}
This is equivalent to the following, where 2863311531 is the multiplicative
inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
void bar(unsigned n) {
if (n * 2863311531U < 1431655766U)
true();
}
The same transformation can work with an even modulo with the addition of a
rotate: rotate the result of the multiply to the right by the number of bits
which need to be zero for the condition to be true, and shrink the compare RHS
by the same amount. Unless the target supports rotates, though, that
transformation probably isn't worthwhile.
The transformation can also easily be made to work with non-zero equality
comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
//===---------------------------------------------------------------------===//
Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
bunch of other stuff from this example (see PR1604):
#include <cstdio>
struct test {
int val;
virtual ~test() {}
};
int main() {
test t;
std::scanf("%d", &t.val);
std::printf("%d\n", t.val);
}
//===---------------------------------------------------------------------===//
These functions perform the same computation, but produce different assembly.
define i8 @select(i8 %x) readnone nounwind {
%A = icmp ult i8 %x, 250
%B = select i1 %A, i8 0, i8 1
ret i8 %B
}
define i8 @addshr(i8 %x) readnone nounwind {
%A = zext i8 %x to i9
%B = add i9 %A, 6 ;; 256 - 250 == 6
%C = lshr i9 %B, 8
%D = trunc i9 %C to i8
ret i8 %D
}
//===---------------------------------------------------------------------===//
From gcc bug 24696:
int
f (unsigned long a, unsigned long b, unsigned long c)
{
return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
}
int
f (unsigned long a, unsigned long b, unsigned long c)
{
return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
}
Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
"clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
From GCC Bug 20192:
#define PMD_MASK (~((1UL << 23) - 1))
void clear_pmd_range(unsigned long start, unsigned long end)
{
if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
f();
}
The expression should optimize to something like
"!((start|end)&~PMD_MASK). Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
i;}
unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
These should combine to the same thing. Currently, the first function
produces better code on X86.
//===---------------------------------------------------------------------===//
From GCC Bug 15784:
#define abs(x) x>0?x:-x
int f(int x, int y)
{
return (abs(x)) >= 0;
}
This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
From GCC Bug 14753:
void
rotate_cst (unsigned int a)
{
a = (a << 10) | (a >> 22);
if (a == 123)
bar ();
}
void
minus_cst (unsigned int a)
{
unsigned int tem;
tem = 20 - a;
if (tem == 5)
bar ();
}
void
mask_gt (unsigned int a)
{
/* This is equivalent to a > 15. */
if ((a & ~7) > 8)
bar ();
}
void
rshift_gt (unsigned int a)
{
/* This is equivalent to a > 23. */
if ((a >> 2) > 5)
bar ();
}
All should simplify to a single comparison. All of these are
currently not optimized with "clang -emit-llvm-bc | opt
-O3".
//===---------------------------------------------------------------------===//
From GCC Bug 32605:
int c(int* x) {return (char*)x+2 == (char*)x;}
Should combine to 0. Currently not optimized with "clang
-emit-llvm-bc | opt -O3" (although llc can optimize it).
//===---------------------------------------------------------------------===//
int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
Should be combined to "((b >> 1) | b) & 1". Currently not optimized
with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
Should combine to "x | (y & 3)". Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
Should fold to "(~a & c) | (a & b)". Currently not optimized with
"clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int a,int b) {return (~(a|b))|a;}
Should fold to "a|~b". Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int a, int b) {return (a&&b) || (a&&!b);}
Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
| opt -O3".
//===---------------------------------------------------------------------===//
int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
Should fold to "a ? b : c", or at least something sane. Currently not
optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
Should fold to a && (b || c). Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int x) {return x | ((x & 8) ^ 8);}
Should combine to x | 8. Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int x) {return x ^ ((x & 8) ^ 8);}
Should also combine to x | 8. Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int a(int x) {return ((x | -9) ^ 8) & x;}
Should combine to x & -9. Currently not optimized with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
Should combine to "a * 0x88888888 >> 31". Currently not optimized
with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
unsigned a(char* x) {if ((*x & 32) == 0) return b();}
There's an unnecessary zext in the generated code with "clang
-emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
unsigned a(unsigned long long x) {return 40 * (x >> 1);}
Should combine to "20 * (((unsigned)x) & -2)". Currently not
optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int g(int x) { return (x - 10) < 0; }
Should combine to "x <= 9" (the sub has nsw). Currently not
optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int g(int x) { return (x + 10) < 0; }
Should combine to "x < -10" (the add has nsw). Currently not
optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
int f(int i, int j) { return i < j + 1; }
int g(int i, int j) { return j > i - 1; }
Should combine to "i <= j" (the add/sub has nsw). Currently not
optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
The & 15 part should be optimized away, it doesn't change the result. Currently
not optimized with "clang -emit-llvm-bc | opt -O3".
//===---------------------------------------------------------------------===//
This was noticed in the entryblock for grokdeclarator in 403.gcc:
%tmp = icmp eq i32 %decl_context, 4
%decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
%tmp1 = icmp eq i32 %decl_context_addr.0, 1
%decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
tmp1 should be simplified to something like:
(!tmp || decl_context == 1)
This allows recursive simplifications, tmp1 is used all over the place in
the function, e.g. by:
%tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
%tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
%or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
later.
//===---------------------------------------------------------------------===//
[STORE SINKING]
Store sinking: This code:
void f (int n, int *cond, int *res) {
int i;
*res = 0;
for (i = 0; i < n; i++)
if (*cond)
*res ^= 234; /* (*) */
}
On this function GVN hoists the fully redundant value of *res, but nothing
moves the store out. This gives us this code:
bb: ; preds = %bb2, %entry
%.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
%i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
%1 = load i32* %cond, align 4
%2 = icmp eq i32 %1, 0
br i1 %2, label %bb2, label %bb1
bb1: ; preds = %bb
%3 = xor i32 %.rle, 234
store i32 %3, i32* %res, align 4
br label %bb2
bb2: ; preds = %bb, %bb1
%.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
%indvar.next = add i32 %i.05, 1
%exitcond = icmp eq i32 %indvar.next, %n
br i1 %exitcond, label %return, label %bb
DSE should sink partially dead stores to get the store out of the loop.
Here's another partial dead case:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
//===---------------------------------------------------------------------===//
Scalar PRE hoists the mul in the common block up to the else:
int test (int a, int b, int c, int g) {
int d, e;
if (a)
d = b * c;
else
d = b - c;
e = b * c + g;
return d + e;
}
It would be better to do the mul once to reduce codesize above the if.
This is GCC PR38204.
//===---------------------------------------------------------------------===//
This simple function from 179.art:
int winner, numf2s;
struct { double y; int reset; } *Y;
void find_match() {
int i;
winner = 0;
for (i=0;i<numf2s;i++)
if (Y[i].y > Y[winner].y)
winner =i;
}
Compiles into (with clang TBAA):
for.body: ; preds = %for.inc, %bb.nph
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
%i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
%tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
%tmp5 = load double* %tmp4, align 8, !tbaa !4
%idxprom7 = sext i32 %i.01718 to i64
%tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
%tmp11 = load double* %tmp10, align 8, !tbaa !4
%cmp12 = fcmp ogt double %tmp5, %tmp11
br i1 %cmp12, label %if.then, label %for.inc
if.then: ; preds = %for.body
%i.017 = trunc i64 %indvar to i32
br label %for.inc
for.inc: ; preds = %for.body, %if.then
%i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %tmp22
br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
It is good that we hoisted the reloads of numf2's, and Y out of the loop and
sunk the store to winner out.
However, this is awful on several levels: the conditional truncate in the loop
(-indvars at fault? why can't we completely promote the IV to i64?).
Beyond that, we have a partially redundant load in the loop: if "winner" (aka
%i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
Similarly, the addressing that feeds it (including the sext) is redundant. In
the end we get this generated assembly:
LBB0_2: ## %for.body
## =>This Inner Loop Header: Depth=1
movsd (%rdi), %xmm0
movslq %edx, %r8
shlq $4, %r8
ucomisd (%rcx,%r8), %xmm0
jbe LBB0_4
movl %esi, %edx
LBB0_4: ## %for.inc
addq $16, %rdi
incq %rsi
cmpq %rsi, %rax
jne LBB0_2
All things considered this isn't too bad, but we shouldn't need the movslq or
the shlq instruction, or the load folded into ucomisd every time through the
loop.
On an x86-specific topic, if the loop can't be restructure, the movl should be a
cmov.
//===---------------------------------------------------------------------===//
[STORE SINKING]
GCC PR37810 is an interesting case where we should sink load/store reload
into the if block and outside the loop, so we don't reload/store it on the
non-call path.
for () {
*P += 1;
if ()
call();
else
...
->
tmp = *P
for () {
tmp += 1;
if () {
*P = tmp;
call();
tmp = *P;
} else ...
}
*P = tmp;
We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
we don't sink the store. We need partially dead store sinking.
//===---------------------------------------------------------------------===//
[LOAD PRE CRIT EDGE SPLITTING]
GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
leading to excess stack traffic. This could be handled by GVN with some crazy
symbolic phi translation. The code we get looks like (g is on the stack):
bb2: ; preds = %bb1
..
%9 = getelementptr %struct.f* %g, i32 0, i32 0
store i32 %8, i32* %9, align bel %bb3
bb3: ; preds = %bb1, %bb2, %bb
%c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
%b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
%10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
%11 = load i32* %10, align 4
%11 is partially redundant, an in BB2 it should have the value %8.
GCC PR33344 and PR35287 are similar cases.
//===---------------------------------------------------------------------===//
[LOAD PRE]
There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
GCC testsuite, ones we don't get yet are (checked through loadpre25):
[CRIT EDGE BREAKING]
predcom-4.c
[PRE OF READONLY CALL]
loadpre5.c
[TURN SELECT INTO BRANCH]
loadpre14.c loadpre15.c
actually a conditional increment: loadpre18.c loadpre19.c
//===---------------------------------------------------------------------===//
[LOAD PRE / STORE SINKING / SPEC HACK]
This is a chunk of code from 456.hmmer:
int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
int *tpdm, int xmb, int *bp, int *ms) {
int k, sc;
for (k = 1; k <= M; k++) {
mc[k] = mpp[k-1] + tpmm[k-1];
if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
mc[k] += ms[k];
}
}
It is very profitable for this benchmark to turn the conditional stores to mc[k]
into a conditional move (select instr in IR) and allow the final store to do the
store. See GCC PR27313 for more details. Note that this is valid to xform even
with the new C++ memory model, since mc[k] is previously loaded and later
stored.
//===---------------------------------------------------------------------===//
[SCALAR PRE]
There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
GCC testsuite.
//===---------------------------------------------------------------------===//
There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
GCC testsuite. For example, we get the first example in predcom-1.c, but
miss the second one:
unsigned fib[1000];
unsigned avg[1000];
__attribute__ ((noinline))
void count_averages(int n) {
int i;
for (i = 1; i < n; i++)
avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
}
which compiles into two loads instead of one in the loop.
predcom-2.c is the same as predcom-1.c
predcom-3.c is very similar but needs loads feeding each other instead of
store->load.
//===---------------------------------------------------------------------===//
[ALIAS ANALYSIS]
Type based alias analysis:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
We should do better analysis of posix_memalign. At the least it should
no-capture its pointer argument, at best, we should know that the out-value
result doesn't point to anything (like malloc). One example of this is in
SingleSource/Benchmarks/Misc/dt.c
//===---------------------------------------------------------------------===//
Interesting missed case because of control flow flattening (should be 2 loads):
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
opt -mem2reg -gvn -instcombine | llvm-dis
we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
//===---------------------------------------------------------------------===//
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
We could eliminate the branch condition here, loading from null is undefined:
struct S { int w, x, y, z; };
struct T { int r; struct S s; };
void bar (struct S, int);
void foo (int a, struct T b)
{
struct S *c = 0;
if (a)
c = &b.s;
bar (*c, a);
}
//===---------------------------------------------------------------------===//
simplifylibcalls should do several optimizations for strspn/strcspn:
strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
int __reject3) {
register size_t __result = 0;
while (__s[__result] != '\0' && __s[__result] != __reject1 &&
__s[__result] != __reject2 && __s[__result] != __reject3)
++__result;
return __result;
}
This should turn into a switch on the character. See PR3253 for some notes on
codegen.
456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
//===---------------------------------------------------------------------===//
simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
char buf1[6], buf2[6], buf3[4], buf4[4];
int i;
int foo (void) {
int ret = snprintf (buf1, sizeof buf1, "abcde");
ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
return ret;
}
//===---------------------------------------------------------------------===//
"gas" uses this idiom:
else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
..
else if (strchr ("<>", *intel_parser.op_string)
Those should be turned into a switch. SimplifyLibCalls only gets the second
case.
//===---------------------------------------------------------------------===//
252.eon contains this interesting code:
%3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
%3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
%strlen = call i32 @strlen(i8* %3072) ; uses = 1
%endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
call void @llvm.memcpy.i32(i8* %endptr,
i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
%3074 = call i32 @strlen(i8* %endptr) nounwind readonly
This is interesting for a couple reasons. First, in this:
The memcpy+strlen strlen can be replaced with:
%3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
Because the destination was just copied into the specified memory buffer. This,
in turn, can be constant folded to "4".
In other code, it contains:
%endptr6978 = bitcast i8* %endptr69 to i32*
store i32 7107374, i32* %endptr6978, align 1
%3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
Which could also be constant folded. Whatever is producing this should probably
be fixed to leave this as a memcpy from a string.
Further, eon also has an interesting partially redundant strlen call:
bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
%682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
%683 = load i8** %682, align 4 ; <i8*> [#uses=4]
%684 = load i8* %683, align 1 ; <i8> [#uses=1]
%685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
br i1 %685, label %bb10, label %bb9
bb9: ; preds = %bb8
%686 = call i32 @strlen(i8* %683) nounwind readonly
%687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
br i1 %687, label %bb10, label %bb11
bb10: ; preds = %bb9, %bb8
%688 = call i32 @strlen(i8* %683) nounwind readonly
This could be eliminated by doing the strlen once in bb8, saving code size and
improving perf on the bb8->9->10 path.
//===---------------------------------------------------------------------===//
I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
which looks like:
%movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
bb62: ; preds = %bb55, %bb53
%promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
%171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
%172 = add i32 %171, -1 ; <i32> [#uses=1]
%173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
... no stores ...
br i1 %or.cond, label %bb65, label %bb72
bb65: ; preds = %bb62
store i8 0, i8* %173, align 1
br label %bb72
bb72: ; preds = %bb65, %bb62
%trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
%177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
Note that on the bb62->bb72 path, that the %177 strlen call is partially
redundant with the %171 call. At worst, we could shove the %177 strlen call
up into the bb65 block moving it out of the bb62->bb72 path. However, note
that bb65 stores to the string, zeroing out the last byte. This means that on
that path the value of %177 is actually just %171-1. A sub is cheaper than a
strlen!
This pattern repeats several times, basically doing:
A = strlen(P);
P[A-1] = 0;
B = strlen(P);
where it is "obvious" that B = A-1.
//===---------------------------------------------------------------------===//
186.crafty has this interesting pattern with the "out.4543" variable:
call void @llvm.memcpy.i32(
i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
%101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
It is basically doing:
memcpy(globalarray, "string");
printf(..., globalarray);
Anyway, by knowing that printf just reads the memory and forward substituting
the string directly into the printf, this eliminates reads from globalarray.
Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
other similar functions) there are many stores to "out". Once all the printfs
stop using "out", all that is left is the memcpy's into it. This should allow
globalopt to remove the "stored only" global.
//===---------------------------------------------------------------------===//
This code:
define inreg i32 @foo(i8* inreg %p) nounwind {
%tmp0 = load i8* %p
%tmp1 = ashr i8 %tmp0, 5
%tmp2 = sext i8 %tmp1 to i32
ret i32 %tmp2
}
could be dagcombine'd to a sign-extending load with a shift.
For example, on x86 this currently gets this:
movb (%eax), %al
sarb $5, %al
movsbl %al, %eax
while it could get this:
movsbl (%eax), %eax
sarl $5, %eax
//===---------------------------------------------------------------------===//
GCC PR31029:
int test(int x) { return 1-x == x; } // --> return false
int test2(int x) { return 2-x == x; } // --> return x == 1 ?
Always foldable for odd constants, what is the rule for even?
//===---------------------------------------------------------------------===//
PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
for next field in struct (which is at same address).
For example: store of float into { {{}}, float } could be turned into a store to
the float directly.
//===---------------------------------------------------------------------===//
The arg promotion pass should make use of nocapture to make its alias analysis
stuff much more precise.
//===---------------------------------------------------------------------===//
The following functions should be optimized to use a select instead of a
branch (from gcc PR40072):
char char_int(int m) {if(m>7) return 0; return m;}
int int_char(char m) {if(m>7) return 0; return m;}
//===---------------------------------------------------------------------===//
int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
Generates this:
define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
entry:
%0 = and i32 %a, 128 ; <i32> [#uses=1]
%1 = icmp eq i32 %0, 0 ; <i1> [#uses=1]
%2 = or i32 %b, 128 ; <i32> [#uses=1]
%3 = and i32 %b, -129 ; <i32> [#uses=1]
%b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1]
ret i32 %b_addr.0
}
However, it's functionally equivalent to:
b = (b & ~0x80) | (a & 0x80);
Which generates this:
define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
entry:
%0 = and i32 %b, -129 ; <i32> [#uses=1]
%1 = and i32 %a, 128 ; <i32> [#uses=1]
%2 = or i32 %0, %1 ; <i32> [#uses=1]
ret i32 %2
}
This can be generalized for other forms:
b = (b & ~0x80) | (a & 0x40) << 1;
//===---------------------------------------------------------------------===//
These two functions produce different code. They shouldn't:
#include <stdint.h>
uint8_t p1(uint8_t b, uint8_t a) {
b = (b & ~0xc0) | (a & 0xc0);
return (b);
}
uint8_t p2(uint8_t b, uint8_t a) {
b = (b & ~0x40) | (a & 0x40);
b = (b & ~0x80) | (a & 0x80);
return (b);
}
define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
entry:
%0 = and i8 %b, 63 ; <i8> [#uses=1]
%1 = and i8 %a, -64 ; <i8> [#uses=1]
%2 = or i8 %1, %0 ; <i8> [#uses=1]
ret i8 %2
}
define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
entry:
%0 = and i8 %b, 63 ; <i8> [#uses=1]
%.masked = and i8 %a, 64 ; <i8> [#uses=1]
%1 = and i8 %a, -128 ; <i8> [#uses=1]
%2 = or i8 %1, %0 ; <i8> [#uses=1]
%3 = or i8 %2, %.masked ; <i8> [#uses=1]
ret i8 %3
}
//===---------------------------------------------------------------------===//
IPSCCP does not currently propagate argument dependent constants through
functions where it does not not all of the callers. This includes functions
with normal external linkage as well as templates, C99 inline functions etc.
Specifically, it does nothing to:
define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
entry:
%0 = add nsw i32 %y, %z
%1 = mul i32 %0, %x
%2 = mul i32 %y, %z
%3 = add nsw i32 %1, %2
ret i32 %3
}
define i32 @test2() nounwind {
entry:
%0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
ret i32 %0
}
It would be interesting extend IPSCCP to be able to handle simple cases like
this, where all of the arguments to a call are constant. Because IPSCCP runs
before inlining, trivial templates and inline functions are not yet inlined.
The results for a function + set of constant arguments should be memoized in a
map.
//===---------------------------------------------------------------------===//
The libcall constant folding stuff should be moved out of SimplifyLibcalls into
libanalysis' constantfolding logic. This would allow IPSCCP to be able to
handle simple things like this:
static int foo(const char *X) { return strlen(X); }
int bar() { return foo("abcd"); }
//===---------------------------------------------------------------------===//
function-attrs doesn't know much about memcpy/memset. This function should be
marked readnone rather than readonly, since it only twiddles local memory, but
function-attrs doesn't handle memset/memcpy/memmove aggressively:
struct X { int *p; int *q; };
int foo() {
int i = 0, j = 1;
struct X x, y;
int **p;
y.p = &i;
x.q = &j;
p = __builtin_memcpy (&x, &y, sizeof (int *));
return **p;
}
This can be seen at:
$ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -function-attrs -S
//===---------------------------------------------------------------------===//
Missed instcombine transformation:
define i1 @a(i32 %x) nounwind readnone {
entry:
%cmp = icmp eq i32 %x, 30
%sub = add i32 %x, -30
%cmp2 = icmp ugt i32 %sub, 9
%or = or i1 %cmp, %cmp2
ret i1 %or
}
This should be optimized to a single compare. Testcase derived from gcc.
//===---------------------------------------------------------------------===//
Missed instcombine or reassociate transformation:
int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
The sgt and slt should be combined into a single comparison. Testcase derived
from gcc.
//===---------------------------------------------------------------------===//
Missed instcombine transformation:
%382 = srem i32 %tmp14.i, 64 ; [#uses=1]
%383 = zext i32 %382 to i64 ; [#uses=1]
%384 = shl i64 %381, %383 ; [#uses=1]
%385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1]
The srem can be transformed to an and because if %tmp14.i is negative, the
shift is undefined. Testcase derived from 403.gcc.
//===---------------------------------------------------------------------===//
This is a range comparison on a divided result (from 403.gcc):
%1337 = sdiv i32 %1336, 8 ; [#uses=1]
%.off.i208 = add i32 %1336, 7 ; [#uses=1]
%1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1]
We already catch this (removing the sdiv) if there isn't an add, we should
handle the 'add' as well. This is a common idiom with it's builtin_alloca code.
C testcase:
int a(int x) { return (unsigned)(x/16+7) < 15; }
Another similar case involves truncations on 64-bit targets:
%361 = sdiv i64 %.046, 8 ; [#uses=1]
%362 = trunc i64 %361 to i32 ; [#uses=2]
...
%367 = icmp eq i32 %362, 0 ; [#uses=1]
//===---------------------------------------------------------------------===//
Missed instcombine/dagcombine transformation:
define void @lshift_lt(i8 zeroext %a) nounwind {
entry:
%conv = zext i8 %a to i32
%shl = shl i32 %conv, 3
%cmp = icmp ult i32 %shl, 33
br i1 %cmp, label %if.then, label %if.end
if.then:
tail call void @bar() nounwind
ret void
if.end:
ret void
}
declare void @bar() nounwind
The shift should be eliminated. Testcase derived from gcc.
//===---------------------------------------------------------------------===//
These compile into different code, one gets recognized as a switch and the
other doesn't due to phase ordering issues (PR6212):
int test1(int mainType, int subType) {
if (mainType == 7)
subType = 4;
else if (mainType == 9)
subType = 6;
else if (mainType == 11)
subType = 9;
return subType;
}
int test2(int mainType, int subType) {
if (mainType == 7)
subType = 4;
if (mainType == 9)
subType = 6;
if (mainType == 11)
subType = 9;
return subType;
}
//===---------------------------------------------------------------------===//
The following test case (from PR6576):
define i32 @mul(i32 %a, i32 %b) nounwind readnone {
entry:
%cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1]
br i1 %cond1, label %exit, label %bb.nph
bb.nph: ; preds = %entry
%tmp = mul i32 %b, %a ; <i32> [#uses=1]
ret i32 %tmp
exit: ; preds = %entry
ret i32 0
}
could be reduced to:
define i32 @mul(i32 %a, i32 %b) nounwind readnone {
entry:
%tmp = mul i32 %b, %a
ret i32 %tmp
}
//===---------------------------------------------------------------------===//
We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
See GCC PR34949
Another interesting case is that something related could be used for variables
that go const after their ctor has finished. In these cases, globalopt (which
can statically run the constructor) could mark the global const (so it gets put
in the readonly section). A testcase would be:
#include <complex>
using namespace std;
const complex<char> should_be_in_rodata (42,-42);
complex<char> should_be_in_data (42,-42);
complex<char> should_be_in_bss;
Where we currently evaluate the ctors but the globals don't become const because
the optimizer doesn't know they "become const" after the ctor is done. See
GCC PR4131 for more examples.
//===---------------------------------------------------------------------===//
In this code:
long foo(long x) {
return x > 1 ? x : 1;
}
LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
and cheaper on most targets.
LLVM prefers comparisons with zero over non-zero in general, but in this
case it choses instead to keep the max operation obvious.
//===---------------------------------------------------------------------===//
define void @a(i32 %x) nounwind {
entry:
switch i32 %x, label %if.end [
i32 0, label %if.then
i32 1, label %if.then
i32 2, label %if.then
i32 3, label %if.then
i32 5, label %if.then
]
if.then:
tail call void @foo() nounwind
ret void
if.end:
ret void
}
declare void @foo()
Generated code on x86-64 (other platforms give similar results):
a:
cmpl $5, %edi
ja LBB2_2
cmpl $4, %edi
jne LBB2_3
.LBB0_2:
ret
.LBB0_3:
jmp foo # TAILCALL
If we wanted to be really clever, we could simplify the whole thing to
something like the following, which eliminates a branch:
xorl $1, %edi
cmpl $4, %edi
ja .LBB0_2
ret
.LBB0_2:
jmp foo # TAILCALL
//===---------------------------------------------------------------------===//
We compile this:
int foo(int a) { return (a & (~15)) / 16; }
Into:
define i32 @foo(i32 %a) nounwind readnone ssp {
entry:
%and = and i32 %a, -16
%div = sdiv i32 %and, 16
ret i32 %div
}
but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
should be instcombined into just "a >> 4".
We do get this at the codegen level, so something knows about it, but
instcombine should catch it earlier:
_foo: ## @foo
## %bb.0: ## %entry
movl %edi, %eax
sarl $4, %eax
ret
//===---------------------------------------------------------------------===//
This code (from GCC PR28685):
int test(int a, int b) {
int lt = a < b;
int eq = a == b;
if (lt)
return 1;
return eq;
}
Is compiled to:
define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
entry:
%cmp = icmp slt i32 %a, %b
br i1 %cmp, label %return, label %if.end
if.end: ; preds = %entry
%cmp5 = icmp eq i32 %a, %b
%conv6 = zext i1 %cmp5 to i32
ret i32 %conv6
return: ; preds = %entry
ret i32 1
}
it could be:
define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
entry:
%0 = icmp sle i32 %a, %b
%retval = zext i1 %0 to i32
ret i32 %retval
}
//===---------------------------------------------------------------------===//
This code can be seen in viterbi:
%64 = call noalias i8* @malloc(i64 %62) nounwind
...
%67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
%68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
fold to %62. This is a security win (overflows of malloc will get caught)
and also a performance win by exposing more memsets to the optimizer.
This occurs several times in viterbi.
Note that this would change the semantics of @llvm.objectsize which by its
current definition always folds to a constant. We also should make sure that
we remove checking in code like
char *p = malloc(strlen(s)+1);
__strcpy_chk(p, s, __builtin_objectsize(p, 0));
//===---------------------------------------------------------------------===//
clang -O3 currently compiles this code
int g(unsigned int a) {
unsigned int c[100];
c[10] = a;
c[11] = a;
unsigned int b = c[10] + c[11];
if(b > a*2) a = 4;
else a = 8;
return a + 7;
}
into
define i32 @g(i32 a) nounwind readnone {
%add = shl i32 %a, 1
%mul = shl i32 %a, 1
%cmp = icmp ugt i32 %add, %mul
%a.addr.0 = select i1 %cmp, i32 11, i32 15
ret i32 %a.addr.0
}
The icmp should fold to false. This CSE opportunity is only available
after GVN and InstCombine have run.
//===---------------------------------------------------------------------===//
memcpyopt should turn this:
define i8* @test10(i32 %x) {
%alloc = call noalias i8* @malloc(i32 %x) nounwind
call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
ret i8* %alloc
}
into a call to calloc. We should make sure that we analyze calloc as
aggressively as malloc though.
//===---------------------------------------------------------------------===//
clang -O3 doesn't optimize this:
void f1(int* begin, int* end) {
std::fill(begin, end, 0);
}
into a memset. This is PR8942.
//===---------------------------------------------------------------------===//
clang -O3 -fno-exceptions currently compiles this code:
void f(int N) {
std::vector<int> v(N);
extern void sink(void*); sink(&v);
}
into
define void @_Z1fi(i32 %N) nounwind {
entry:
%v2 = alloca [3 x i32*], align 8
%v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
%tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
%conv = sext i32 %N to i64
store i32* null, i32** %v2.sub, align 8, !tbaa !0
%tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
%tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
%cmp.i.i.i.i = icmp eq i32 %N, 0
br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
store i32* null, i32** %v2.sub, align 8, !tbaa !0
store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
%add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
cond.true.i.i.i.i: ; preds = %entry
%cmp.i.i.i.i.i = icmp slt i32 %N, 0
br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i
call void @_ZSt17__throw_bad_allocv() noreturn nounwind
unreachable
_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i
%mul.i.i.i.i.i = shl i64 %conv, 2
%call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
%0 = bitcast i8* %call3.i.i.i.i.i to i32*
store i32* %0, i32** %v2.sub, align 8, !tbaa !0
store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
%add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
This is just the handling the construction of the vector. Most surprising here
is the fact that all three null stores in %entry are dead (because we do no
cross-block DSE).
Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
This is a because the client of LazyValueInfo doesn't simplify all instruction
operands, just selected ones.
//===---------------------------------------------------------------------===//
clang -O3 -fno-exceptions currently compiles this code:
void f(char* a, int n) {
__builtin_memset(a, 0, n);
for (int i = 0; i < n; ++i)
a[i] = 0;
}
into:
define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
entry:
%conv = sext i32 %n to i64
tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
%cmp8 = icmp sgt i32 %n, 0
br i1 %cmp8, label %for.body.lr.ph, label %for.end
for.body.lr.ph: ; preds = %entry
%tmp10 = add i32 %n, -1
%tmp11 = zext i32 %tmp10 to i64
%tmp12 = add i64 %tmp11, 1
call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
ret void
for.end: ; preds = %entry
ret void
}
This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
the two memset's together.
The issue with the addition only occurs in 64-bit mode, and appears to be at
least partially caused by Scalar Evolution not keeping its cache updated: it
returns the "wrong" result immediately after indvars runs, but figures out the
expected result if it is run from scratch on IR resulting from running indvars.
//===---------------------------------------------------------------------===//
clang -O3 -fno-exceptions currently compiles this code:
struct S {
unsigned short m1, m2;
unsigned char m3, m4;
};
void f(int N) {
std::vector<S> v(N);
extern void sink(void*); sink(&v);
}
into poor code for zero-initializing 'v' when N is >0. The problem is that
S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
4 stores on each iteration. If the struct were 8 bytes, this gets turned into
a memset.
In order to handle this we have to:
A) Teach clang to generate metadata for memsets of structs that have holes in
them.
B) Teach clang to use such a memset for zero init of this struct (since it has
a hole), instead of doing elementwise zeroing.
//===---------------------------------------------------------------------===//
clang -O3 currently compiles this code:
extern const int magic;
double f() { return 0.0 * magic; }
into
@magic = external constant i32
define double @_Z1fv() nounwind readnone {
entry:
%tmp = load i32* @magic, align 4, !tbaa !0
%conv = sitofp i32 %tmp to double
%mul = fmul double %conv, 0.000000e+00
ret double %mul
}
We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0)
can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
not an INF. The CannotBeNegativeZero predicate in value tracking should be
extended to support general "fpclassify" operations that can return
yes/no/unknown for each of these predicates.
In this predicate, we know that uitofp is trivially never NaN or -0.0, and
we know that it isn't +/-Inf if the floating point type has enough exponent bits
to represent the largest integer value as < inf.
//===---------------------------------------------------------------------===//
When optimizing a transformation that can change the sign of 0.0 (such as the
0.0*val -> 0.0 transformation above), it might be provable that the sign of the
expression doesn't matter. For example, by the above rules, we can't transform
fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
expression is defined to be -0.0.
If we look at the uses of the fmul for example, we might be able to prove that
all uses don't care about the sign of zero. For example, if we have:
fadd(fmul(sitofp(x), 0.0), 2.0)
Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
transform the fmul to 0.0, and then the fadd to 2.0.
//===---------------------------------------------------------------------===//
We should enhance memcpy/memcpy/memset to allow a metadata node on them
indicating that some bytes of the transfer are undefined. This is useful for
frontends like clang when lowering struct copies, when some elements of the
struct are undefined. Consider something like this:
struct x {
char a;
int b[4];
};
void foo(struct x*P);
struct x testfunc() {
struct x V1, V2;
foo(&V1);
V2 = V1;
return V2;
}
We currently compile this to:
$ clang t.c -S -o - -O0 -emit-llvm | opt -sroa -S
%struct.x = type { i8, [4 x i32] }
define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
entry:
%V1 = alloca %struct.x, align 4
call void @foo(%struct.x* %V1)
%tmp1 = bitcast %struct.x* %V1 to i8*
%0 = bitcast %struct.x* %V1 to i160*
%srcval1 = load i160* %0, align 4
%tmp2 = bitcast %struct.x* %agg.result to i8*
%1 = bitcast %struct.x* %agg.result to i160*
store i160 %srcval1, i160* %1, align 4
ret void
}
This happens because SRoA sees that the temp alloca has is being memcpy'd into
and out of and it has holes and it has to be conservative. If we knew about the
holes, then this could be much much better.
Having information about these holes would also improve memcpy (etc) lowering at
llc time when it gets inlined, because we can use smaller transfers. This also
avoids partial register stalls in some important cases.
//===---------------------------------------------------------------------===//
We don't fold (icmp (add) (add)) unless the two adds only have a single use.
There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
example:
%indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses
%tmp96 = add i64 %tmp95, 1 ;; Has 1 use
%exitcond97 = icmp eq i64 %indvar.next90, %tmp96
We don't fold this because we don't want to introduce an overlapped live range
of the ivar. However if we can make this more aggressive without causing
performance issues in two ways:
1. If *either* the LHS or RHS has a single use, we can definitely do the
transformation. In the overlapping liverange case we're trading one register
use for one fewer operation, which is a reasonable trade. Before doing this
we should verify that the llc output actually shrinks for some benchmarks.
2. If both ops have multiple uses, we can still fold it if the operations are
both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
increase register pressure.
There are a ton of icmp's we aren't simplifying because of the reg pressure
concern. Care is warranted here though because many of these are induction
variables and other cases that matter a lot to performance, like the above.
Here's a blob of code that you can drop into the bottom of visitICmp to see some
missed cases:
{ Value *A, *B, *C, *D;
if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
match(Op1, m_Add(m_Value(C), m_Value(D))) &&
(A == C || A == D || B == C || B == D)) {
errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n";
errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n";
errs() << "CMP = " << I << "\n\n";
}
}
//===---------------------------------------------------------------------===//
define i1 @test1(i32 %x) nounwind {
%and = and i32 %x, 3
%cmp = icmp ult i32 %and, 2
ret i1 %cmp
}
Can be folded to (x & 2) == 0.
define i1 @test2(i32 %x) nounwind {
%and = and i32 %x, 3
%cmp = icmp ugt i32 %and, 1
ret i1 %cmp
}
Can be folded to (x & 2) != 0.
SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
icmp transform.
//===---------------------------------------------------------------------===//
This code:
typedef struct {
int f1:1;
int f2:1;
int f3:1;
int f4:29;
} t1;
typedef struct {
int f1:1;
int f2:1;
int f3:30;
} t2;
t1 s1;
t2 s2;
void func1(void)
{
s1.f1 = s2.f1;
s1.f2 = s2.f2;
}
Compiles into this IR (on x86-64 at least):
%struct.t1 = type { i8, [3 x i8] }
@s2 = global %struct.t1 zeroinitializer, align 4
@s1 = global %struct.t1 zeroinitializer, align 4
define void @func1() nounwind ssp noredzone {
entry:
%0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
%bf.val.sext5 = and i32 %0, 1
%1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
%2 = and i32 %1, -4
%3 = or i32 %2, %bf.val.sext5
%bf.val.sext26 = and i32 %0, 2
%4 = or i32 %3, %bf.val.sext26
store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
ret void
}
The two or/and's should be merged into one each.
//===---------------------------------------------------------------------===//
Machine level code hoisting can be useful in some cases. For example, PR9408
is about:
typedef union {
void (*f1)(int);
void (*f2)(long);
} funcs;
void foo(funcs f, int which) {
int a = 5;
if (which) {
f.f1(a);
} else {
f.f2(a);
}
}
which we compile to:
foo: # @foo
# %bb.0: # %entry
pushq %rbp
movq %rsp, %rbp
testl %esi, %esi
movq %rdi, %rax
je .LBB0_2
# %bb.1: # %if.then
movl $5, %edi
callq *%rax
popq %rbp
ret
.LBB0_2: # %if.else
movl $5, %edi
callq *%rax
popq %rbp
ret
Note that bb1 and bb2 are the same. This doesn't happen at the IR level
because one call is passing an i32 and the other is passing an i64.
//===---------------------------------------------------------------------===//
I see this sort of pattern in 176.gcc in a few places (e.g. the start of
store_bit_field). The rem should be replaced with a multiply and subtract:
%3 = sdiv i32 %A, %B
%4 = srem i32 %A, %B
Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM,
which can do this in a single operation (instruction or libcall). It is
probably best to do this in the code generator.
//===---------------------------------------------------------------------===//
unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
should fold to (x & y) == 0.
//===---------------------------------------------------------------------===//
unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
should fold to x > y.
//===---------------------------------------------------------------------===//