MipsInstrInfo.cpp 28.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
//===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "MipsInstrInfo.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsSubtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>

using namespace llvm;

#define GET_INSTRINFO_CTOR_DTOR
#include "MipsGenInstrInfo.inc"

// Pin the vtable to this file.
void MipsInstrInfo::anchor() {}

MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
    : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
      Subtarget(STI), UncondBrOpc(UncondBr) {}

const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
  if (STI.inMips16Mode())
    return createMips16InstrInfo(STI);

  return createMipsSEInstrInfo(STI);
}

bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
  return op.isImm() && op.getImm() == 0;
}

/// insertNoop - If data hazard condition is found insert the target nop
/// instruction.
// FIXME: This appears to be dead code.
void MipsInstrInfo::
insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
{
  DebugLoc DL;
  BuildMI(MBB, MI, DL, get(Mips::NOP));
}

MachineMemOperand *
MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
                             MachineMemOperand::Flags Flags) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
                                 Flags, MFI.getObjectSize(FI),
                                 MFI.getObjectAlign(FI));
}

//===----------------------------------------------------------------------===//
// Branch Analysis
//===----------------------------------------------------------------------===//

void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
                                  MachineBasicBlock *&BB,
                                  SmallVectorImpl<MachineOperand> &Cond) const {
  assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
  int NumOp = Inst->getNumExplicitOperands();

  // for both int and fp branches, the last explicit operand is the
  // MBB.
  BB = Inst->getOperand(NumOp-1).getMBB();
  Cond.push_back(MachineOperand::CreateImm(Opc));

  for (int i = 0; i < NumOp-1; i++)
    Cond.push_back(Inst->getOperand(i));
}

bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                  MachineBasicBlock *&TBB,
                                  MachineBasicBlock *&FBB,
                                  SmallVectorImpl<MachineOperand> &Cond,
                                  bool AllowModify) const {
  SmallVector<MachineInstr*, 2> BranchInstrs;
  BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);

  return (BT == BT_None) || (BT == BT_Indirect);
}

void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                const DebugLoc &DL,
                                ArrayRef<MachineOperand> Cond) const {
  unsigned Opc = Cond[0].getImm();
  const MCInstrDesc &MCID = get(Opc);
  MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);

  for (unsigned i = 1; i < Cond.size(); ++i) {
    assert((Cond[i].isImm() || Cond[i].isReg()) &&
           "Cannot copy operand for conditional branch!");
    MIB.add(Cond[i]);
  }
  MIB.addMBB(TBB);
}

unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                     MachineBasicBlock *TBB,
                                     MachineBasicBlock *FBB,
                                     ArrayRef<MachineOperand> Cond,
                                     const DebugLoc &DL,
                                     int *BytesAdded) const {
  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert(!BytesAdded && "code size not handled");

  // # of condition operands:
  //  Unconditional branches: 0
  //  Floating point branches: 1 (opc)
  //  Int BranchZero: 2 (opc, reg)
  //  Int Branch: 3 (opc, reg0, reg1)
  assert((Cond.size() <= 3) &&
         "# of Mips branch conditions must be <= 3!");

  // Two-way Conditional branch.
  if (FBB) {
    BuildCondBr(MBB, TBB, DL, Cond);
    BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
    return 2;
  }

  // One way branch.
  // Unconditional branch.
  if (Cond.empty())
    BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
  else // Conditional branch.
    BuildCondBr(MBB, TBB, DL, Cond);
  return 1;
}

unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                     int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
  unsigned removed = 0;

  // Up to 2 branches are removed.
  // Note that indirect branches are not removed.
  while (I != REnd && removed < 2) {
    // Skip past debug instructions.
    if (I->isDebugInstr()) {
      ++I;
      continue;
    }
    if (!getAnalyzableBrOpc(I->getOpcode()))
      break;
    // Remove the branch.
    I->eraseFromParent();
    I = MBB.rbegin();
    ++removed;
  }

  return removed;
}

/// reverseBranchCondition - Return the inverse opcode of the
/// specified Branch instruction.
bool MipsInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert( (Cond.size() && Cond.size() <= 3) &&
          "Invalid Mips branch condition!");
  Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
  return false;
}

MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch(
    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
    SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
    SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
  MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();

  // Skip all the debug instructions.
  while (I != REnd && I->isDebugInstr())
    ++I;

  if (I == REnd || !isUnpredicatedTerminator(*I)) {
    // This block ends with no branches (it just falls through to its succ).
    // Leave TBB/FBB null.
    TBB = FBB = nullptr;
    return BT_NoBranch;
  }

  MachineInstr *LastInst = &*I;
  unsigned LastOpc = LastInst->getOpcode();
  BranchInstrs.push_back(LastInst);

  // Not an analyzable branch (e.g., indirect jump).
  if (!getAnalyzableBrOpc(LastOpc))
    return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;

  // Get the second to last instruction in the block.
  unsigned SecondLastOpc = 0;
  MachineInstr *SecondLastInst = nullptr;

  // Skip past any debug instruction to see if the second last actual
  // is a branch.
  ++I;
  while (I != REnd && I->isDebugInstr())
    ++I;

  if (I != REnd) {
    SecondLastInst = &*I;
    SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());

    // Not an analyzable branch (must be an indirect jump).
    if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc)
      return BT_None;
  }

  // If there is only one terminator instruction, process it.
  if (!SecondLastOpc) {
    // Unconditional branch.
    if (LastInst->isUnconditionalBranch()) {
      TBB = LastInst->getOperand(0).getMBB();
      return BT_Uncond;
    }

    // Conditional branch
    AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
    return BT_Cond;
  }

  // If we reached here, there are two branches.
  // If there are three terminators, we don't know what sort of block this is.
  if (++I != REnd && isUnpredicatedTerminator(*I))
    return BT_None;

  BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);

  // If second to last instruction is an unconditional branch,
  // analyze it and remove the last instruction.
  if (SecondLastInst->isUnconditionalBranch()) {
    // Return if the last instruction cannot be removed.
    if (!AllowModify)
      return BT_None;

    TBB = SecondLastInst->getOperand(0).getMBB();
    LastInst->eraseFromParent();
    BranchInstrs.pop_back();
    return BT_Uncond;
  }

  // Conditional branch followed by an unconditional branch.
  // The last one must be unconditional.
  if (!LastInst->isUnconditionalBranch())
    return BT_None;

  AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
  FBB = LastInst->getOperand(0).getMBB();

  return BT_CondUncond;
}

bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc,
                                          int64_t BrOffset) const {
  switch (BranchOpc) {
  case Mips::B:
  case Mips::BAL:
  case Mips::BAL_BR:
  case Mips::BAL_BR_MM:
  case Mips::BC1F:
  case Mips::BC1FL:
  case Mips::BC1T:
  case Mips::BC1TL:
  case Mips::BEQ:     case Mips::BEQ64:
  case Mips::BEQL:
  case Mips::BGEZ:    case Mips::BGEZ64:
  case Mips::BGEZL:
  case Mips::BGEZAL:
  case Mips::BGEZALL:
  case Mips::BGTZ:    case Mips::BGTZ64:
  case Mips::BGTZL:
  case Mips::BLEZ:    case Mips::BLEZ64:
  case Mips::BLEZL:
  case Mips::BLTZ:    case Mips::BLTZ64:
  case Mips::BLTZL:
  case Mips::BLTZAL:
  case Mips::BLTZALL:
  case Mips::BNE:     case Mips::BNE64:
  case Mips::BNEL:
    return isInt<18>(BrOffset);

  // microMIPSr3 branches
  case Mips::B_MM:
  case Mips::BC1F_MM:
  case Mips::BC1T_MM:
  case Mips::BEQ_MM:
  case Mips::BGEZ_MM:
  case Mips::BGEZAL_MM:
  case Mips::BGTZ_MM:
  case Mips::BLEZ_MM:
  case Mips::BLTZ_MM:
  case Mips::BLTZAL_MM:
  case Mips::BNE_MM:
  case Mips::BEQZC_MM:
  case Mips::BNEZC_MM:
    return isInt<17>(BrOffset);

  // microMIPSR3 short branches.
  case Mips::B16_MM:
    return isInt<11>(BrOffset);

  case Mips::BEQZ16_MM:
  case Mips::BNEZ16_MM:
    return isInt<8>(BrOffset);

  // MIPSR6 branches.
  case Mips::BALC:
  case Mips::BC:
    return isInt<28>(BrOffset);

  case Mips::BC1EQZ:
  case Mips::BC1NEZ:
  case Mips::BC2EQZ:
  case Mips::BC2NEZ:
  case Mips::BEQC:   case Mips::BEQC64:
  case Mips::BNEC:   case Mips::BNEC64:
  case Mips::BGEC:   case Mips::BGEC64:
  case Mips::BGEUC:  case Mips::BGEUC64:
  case Mips::BGEZC:  case Mips::BGEZC64:
  case Mips::BGTZC:  case Mips::BGTZC64:
  case Mips::BLEZC:  case Mips::BLEZC64:
  case Mips::BLTC:   case Mips::BLTC64:
  case Mips::BLTUC:  case Mips::BLTUC64:
  case Mips::BLTZC:  case Mips::BLTZC64:
  case Mips::BNVC:
  case Mips::BOVC:
  case Mips::BGEZALC:
  case Mips::BEQZALC:
  case Mips::BGTZALC:
  case Mips::BLEZALC:
  case Mips::BLTZALC:
  case Mips::BNEZALC:
    return isInt<18>(BrOffset);

  case Mips::BEQZC:  case Mips::BEQZC64:
  case Mips::BNEZC:  case Mips::BNEZC64:
    return isInt<23>(BrOffset);

  // microMIPSR6 branches
  case Mips::BC16_MMR6:
    return isInt<11>(BrOffset);

  case Mips::BEQZC16_MMR6:
  case Mips::BNEZC16_MMR6:
    return isInt<8>(BrOffset);

  case Mips::BALC_MMR6:
  case Mips::BC_MMR6:
    return isInt<27>(BrOffset);

  case Mips::BC1EQZC_MMR6:
  case Mips::BC1NEZC_MMR6:
  case Mips::BC2EQZC_MMR6:
  case Mips::BC2NEZC_MMR6:
  case Mips::BGEZALC_MMR6:
  case Mips::BEQZALC_MMR6:
  case Mips::BGTZALC_MMR6:
  case Mips::BLEZALC_MMR6:
  case Mips::BLTZALC_MMR6:
  case Mips::BNEZALC_MMR6:
  case Mips::BNVC_MMR6:
  case Mips::BOVC_MMR6:
    return isInt<17>(BrOffset);

  case Mips::BEQC_MMR6:
  case Mips::BNEC_MMR6:
  case Mips::BGEC_MMR6:
  case Mips::BGEUC_MMR6:
  case Mips::BGEZC_MMR6:
  case Mips::BGTZC_MMR6:
  case Mips::BLEZC_MMR6:
  case Mips::BLTC_MMR6:
  case Mips::BLTUC_MMR6:
  case Mips::BLTZC_MMR6:
    return isInt<18>(BrOffset);

  case Mips::BEQZC_MMR6:
  case Mips::BNEZC_MMR6:
    return isInt<23>(BrOffset);

  // DSP branches.
  case Mips::BPOSGE32:
    return isInt<18>(BrOffset);
  case Mips::BPOSGE32_MM:
  case Mips::BPOSGE32C_MMR3:
    return isInt<17>(BrOffset);

  // cnMIPS branches.
  case Mips::BBIT0:
  case Mips::BBIT032:
  case Mips::BBIT1:
  case Mips::BBIT132:
    return isInt<18>(BrOffset);

  // MSA branches.
  case Mips::BZ_B:
  case Mips::BZ_H:
  case Mips::BZ_W:
  case Mips::BZ_D:
  case Mips::BZ_V:
  case Mips::BNZ_B:
  case Mips::BNZ_H:
  case Mips::BNZ_W:
  case Mips::BNZ_D:
  case Mips::BNZ_V:
    return isInt<18>(BrOffset);
  }

  llvm_unreachable("Unknown branch instruction!");
}

/// Return the corresponding compact (no delay slot) form of a branch.
unsigned MipsInstrInfo::getEquivalentCompactForm(
    const MachineBasicBlock::iterator I) const {
  unsigned Opcode = I->getOpcode();
  bool canUseShortMicroMipsCTI = false;

  if (Subtarget.inMicroMipsMode()) {
    switch (Opcode) {
    case Mips::BNE:
    case Mips::BNE_MM:
    case Mips::BEQ:
    case Mips::BEQ_MM:
    // microMIPS has NE,EQ branches that do not have delay slots provided one
    // of the operands is zero.
      if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg())
        canUseShortMicroMipsCTI = true;
      break;
    // For microMIPS the PseudoReturn and PseudoIndirectBranch are always
    // expanded to JR_MM, so they can be replaced with JRC16_MM.
    case Mips::JR:
    case Mips::PseudoReturn:
    case Mips::PseudoIndirectBranch:
      canUseShortMicroMipsCTI = true;
      break;
    }
  }

  // MIPSR6 forbids both operands being the zero register.
  if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
      (I->getOperand(0).isReg() &&
       (I->getOperand(0).getReg() == Mips::ZERO ||
        I->getOperand(0).getReg() == Mips::ZERO_64)) &&
      (I->getOperand(1).isReg() &&
       (I->getOperand(1).getReg() == Mips::ZERO ||
        I->getOperand(1).getReg() == Mips::ZERO_64)))
    return 0;

  if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
    switch (Opcode) {
    case Mips::B:
      return Mips::BC;
    case Mips::BAL:
      return Mips::BALC;
    case Mips::BEQ:
    case Mips::BEQ_MM:
      if (canUseShortMicroMipsCTI)
        return Mips::BEQZC_MM;
      else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BEQC;
    case Mips::BNE:
    case Mips::BNE_MM:
      if (canUseShortMicroMipsCTI)
        return Mips::BNEZC_MM;
      else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BNEC;
    case Mips::BGE:
      if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BGEC;
    case Mips::BGEU:
      if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BGEUC;
    case Mips::BGEZ:
      return Mips::BGEZC;
    case Mips::BGTZ:
      return Mips::BGTZC;
    case Mips::BLEZ:
      return Mips::BLEZC;
    case Mips::BLT:
      if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BLTC;
    case Mips::BLTU:
      if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BLTUC;
    case Mips::BLTZ:
      return Mips::BLTZC;
    case Mips::BEQ64:
      if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BEQC64;
    case Mips::BNE64:
      if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
        return 0;
      return Mips::BNEC64;
    case Mips::BGTZ64:
      return Mips::BGTZC64;
    case Mips::BGEZ64:
      return Mips::BGEZC64;
    case Mips::BLTZ64:
      return Mips::BLTZC64;
    case Mips::BLEZ64:
      return Mips::BLEZC64;
    // For MIPSR6, the instruction 'jic' can be used for these cases. Some
    // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
    case Mips::JR:
    case Mips::PseudoIndirectBranchR6:
    case Mips::PseudoReturn:
    case Mips::TAILCALLR6REG:
      if (canUseShortMicroMipsCTI)
        return Mips::JRC16_MM;
      return Mips::JIC;
    case Mips::JALRPseudo:
      return Mips::JIALC;
    case Mips::JR64:
    case Mips::PseudoIndirectBranch64R6:
    case Mips::PseudoReturn64:
    case Mips::TAILCALL64R6REG:
      return Mips::JIC64;
    case Mips::JALR64Pseudo:
      return Mips::JIALC64;
    default:
      return 0;
    }
  }

  return 0;
}

/// Predicate for distingushing between control transfer instructions and all
/// other instructions for handling forbidden slots. Consider inline assembly
/// as unsafe as well.
bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const {
  if (MI.isInlineAsm())
    return false;

  return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
}

/// Predicate for distingushing instructions that have forbidden slots.
bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const {
  return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
}

/// Return the number of bytes of code the specified instruction may be.
unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default:
    return MI.getDesc().getSize();
  case  TargetOpcode::INLINEASM:
  case  TargetOpcode::INLINEASM_BR: {       // Inline Asm: Variable size.
    const MachineFunction *MF = MI.getParent()->getParent();
    const char *AsmStr = MI.getOperand(0).getSymbolName();
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
  }
  case Mips::CONSTPOOL_ENTRY:
    // If this machine instr is a constant pool entry, its size is recorded as
    // operand #2.
    return MI.getOperand(2).getImm();
  }
}

MachineInstrBuilder
MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
                                  MachineBasicBlock::iterator I) const {
  MachineInstrBuilder MIB;

  // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest
  // Pick the zero form of the branch for readable assembly and for greater
  // branch distance in non-microMIPS mode.
  // Additional MIPSR6 does not permit the use of register $zero for compact
  // branches.
  // FIXME: Certain atomic sequences on mips64 generate 32bit references to
  // Mips::ZERO, which is incorrect. This test should be updated to use
  // Subtarget.getABI().GetZeroReg() when those atomic sequences and others
  // are fixed.
  int ZeroOperandPosition = -1;
  bool BranchWithZeroOperand = false;
  if (I->isBranch() && !I->isPseudo()) {
    auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo();
    ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI);
    BranchWithZeroOperand = ZeroOperandPosition != -1;
  }

  if (BranchWithZeroOperand) {
    switch (NewOpc) {
    case Mips::BEQC:
      NewOpc = Mips::BEQZC;
      break;
    case Mips::BNEC:
      NewOpc = Mips::BNEZC;
      break;
    case Mips::BGEC:
      NewOpc = Mips::BGEZC;
      break;
    case Mips::BLTC:
      NewOpc = Mips::BLTZC;
      break;
    case Mips::BEQC64:
      NewOpc = Mips::BEQZC64;
      break;
    case Mips::BNEC64:
      NewOpc = Mips::BNEZC64;
      break;
    }
  }

  MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));

  // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
  // immediate 0 as an operand and requires the removal of it's implicit-def %ra
  // implicit operand as copying the implicit operations of the instructio we're
  // looking at will give us the correct flags.
  if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
      NewOpc == Mips::JIALC64) {

    if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
      MIB->RemoveOperand(0);

    for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
      MIB.add(I->getOperand(J));
    }

    MIB.addImm(0);

    // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR),
    // add it to the new instruction.
    for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands();
         J < E; ++J) {
      const MachineOperand &MO = I->getOperand(J);
      if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR))
        MIB.addSym(MO.getMCSymbol(), MipsII::MO_JALR);
    }


  } else {
    for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
      if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J)
        continue;

      MIB.add(I->getOperand(J));
    }
  }

  MIB.copyImplicitOps(*I);
  MIB.cloneMemRefs(*I);
  return MIB;
}

bool MipsInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
                                          unsigned &SrcOpIdx1,
                                          unsigned &SrcOpIdx2) const {
  assert(!MI.isBundle() &&
         "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");

  const MCInstrDesc &MCID = MI.getDesc();
  if (!MCID.isCommutable())
    return false;

  switch (MI.getOpcode()) {
  case Mips::DPADD_U_H:
  case Mips::DPADD_U_W:
  case Mips::DPADD_U_D:
  case Mips::DPADD_S_H:
  case Mips::DPADD_S_W:
  case Mips::DPADD_S_D:
    // The first operand is both input and output, so it should not commute
    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3))
      return false;

    if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
      return false;
    return true;
  }
  return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
}

// ins, ext, dext*, dins have the following constraints:
// X <= pos      <  Y
// X <  size     <= Y
// X <  pos+size <= Y
//
// dinsm and dinsu have the following constraints:
// X <= pos      <  Y
// X <= size     <= Y
// X <  pos+size <= Y
//
// The callee of verifyInsExtInstruction however gives the bounds of
// dins[um] like the other (d)ins (d)ext(um) instructions, so that this
// function doesn't have to vary it's behaviour based on the instruction
// being checked.
static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo,
                                    const int64_t PosLow, const int64_t PosHigh,
                                    const int64_t SizeLow,
                                    const int64_t SizeHigh,
                                    const int64_t BothLow,
                                    const int64_t BothHigh) {
  MachineOperand MOPos = MI.getOperand(2);
  if (!MOPos.isImm()) {
    ErrInfo = "Position is not an immediate!";
    return false;
  }
  int64_t Pos = MOPos.getImm();
  if (!((PosLow <= Pos) && (Pos < PosHigh))) {
    ErrInfo = "Position operand is out of range!";
    return false;
  }

  MachineOperand MOSize = MI.getOperand(3);
  if (!MOSize.isImm()) {
    ErrInfo = "Size operand is not an immediate!";
    return false;
  }
  int64_t Size = MOSize.getImm();
  if (!((SizeLow < Size) && (Size <= SizeHigh))) {
    ErrInfo = "Size operand is out of range!";
    return false;
  }

  if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) {
    ErrInfo = "Position + Size is out of range!";
    return false;
  }

  return true;
}

//  Perform target specific instruction verification.
bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI,
                                      StringRef &ErrInfo) const {
  // Verify that ins and ext instructions are well formed.
  switch (MI.getOpcode()) {
    case Mips::EXT:
    case Mips::EXT_MM:
    case Mips::INS:
    case Mips::INS_MM:
    case Mips::DINS:
      return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32);
    case Mips::DINSM:
      // The ISA spec has a subtle difference between dinsm and dextm
      // in that it says:
      // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64.
      // To make the bounds checks similar, the range 1 < size <= 64 is checked
      // for 'dinsm'.
      return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64);
    case Mips::DINSU:
      // The ISA spec has a subtle difference between dinsu and dextu in that
      // the size range of dinsu is specified as 1 <= size <= 32 whereas size
      // for dextu is 0 < size <= 32. The range checked for dinsu here is
      // 0 < size <= 32, which is equivalent and similar to dextu.
      return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
    case Mips::DEXT:
      return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63);
    case Mips::DEXTM:
      return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64);
    case Mips::DEXTU:
      return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
    case Mips::TAILCALLREG:
    case Mips::PseudoIndirectBranch:
    case Mips::JR:
    case Mips::JR64:
    case Mips::JALR:
    case Mips::JALR64:
    case Mips::JALRPseudo:
      if (!Subtarget.useIndirectJumpsHazard())
        return true;

      ErrInfo = "invalid instruction when using jump guards!";
      return false;
    default:
      return true;
  }

  return true;
}

std::pair<unsigned, unsigned>
MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  return std::make_pair(TF, 0u);
}

ArrayRef<std::pair<unsigned, const char*>>
MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
 using namespace MipsII;

 static const std::pair<unsigned, const char*> Flags[] = {
    {MO_GOT,          "mips-got"},
    {MO_GOT_CALL,     "mips-got-call"},
    {MO_GPREL,        "mips-gprel"},
    {MO_ABS_HI,       "mips-abs-hi"},
    {MO_ABS_LO,       "mips-abs-lo"},
    {MO_TLSGD,        "mips-tlsgd"},
    {MO_TLSLDM,       "mips-tlsldm"},
    {MO_DTPREL_HI,    "mips-dtprel-hi"},
    {MO_DTPREL_LO,    "mips-dtprel-lo"},
    {MO_GOTTPREL,     "mips-gottprel"},
    {MO_TPREL_HI,     "mips-tprel-hi"},
    {MO_TPREL_LO,     "mips-tprel-lo"},
    {MO_GPOFF_HI,     "mips-gpoff-hi"},
    {MO_GPOFF_LO,     "mips-gpoff-lo"},
    {MO_GOT_DISP,     "mips-got-disp"},
    {MO_GOT_PAGE,     "mips-got-page"},
    {MO_GOT_OFST,     "mips-got-ofst"},
    {MO_HIGHER,       "mips-higher"},
    {MO_HIGHEST,      "mips-highest"},
    {MO_GOT_HI16,     "mips-got-hi16"},
    {MO_GOT_LO16,     "mips-got-lo16"},
    {MO_CALL_HI16,    "mips-call-hi16"},
    {MO_CALL_LO16,    "mips-call-lo16"},
    {MO_JALR,         "mips-jalr"}
  };
  return makeArrayRef(Flags);
}

Optional<ParamLoadedValue>
MipsInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
  DIExpression *Expr =
      DIExpression::get(MI.getMF()->getFunction().getContext(), {});

  // TODO: Special MIPS instructions that need to be described separately.
  if (auto RegImm = isAddImmediate(MI, Reg)) {
    Register SrcReg = RegImm->Reg;
    int64_t Offset = RegImm->Imm;
    // When SrcReg is $zero, treat loaded value as immediate only.
    // Ex. $a2 = ADDiu $zero, 10
    if (SrcReg == Mips::ZERO || SrcReg == Mips::ZERO_64) {
      return ParamLoadedValue(MI.getOperand(2), Expr);
    }
    Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
    return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
  } else if (auto DestSrc = isCopyInstr(MI)) {
    const MachineFunction *MF = MI.getMF();
    const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    Register DestReg = DestSrc->Destination->getReg();
    // TODO: Handle cases where the Reg is sub- or super-register of the
    // DestReg.
    if (TRI->isSuperRegister(Reg, DestReg) || TRI->isSubRegister(Reg, DestReg))
      return None;
  }

  return TargetInstrInfo::describeLoadedValue(MI, Reg);
}

Optional<RegImmPair> MipsInstrInfo::isAddImmediate(const MachineInstr &MI,
                                                   Register Reg) const {
  // TODO: Handle cases where Reg is a super- or sub-register of the
  // destination register.
  const MachineOperand &Op0 = MI.getOperand(0);
  if (!Op0.isReg() || Reg != Op0.getReg())
    return None;

  switch (MI.getOpcode()) {
  case Mips::ADDiu:
  case Mips::DADDiu: {
    const MachineOperand &Dop = MI.getOperand(0);
    const MachineOperand &Sop1 = MI.getOperand(1);
    const MachineOperand &Sop2 = MI.getOperand(2);
    // Value is sum of register and immediate. Immediate value could be
    // global string address which is not supported.
    if (Dop.isReg() && Sop1.isReg() && Sop2.isImm())
      return RegImmPair{Sop1.getReg(), Sop2.getImm()};
    // TODO: Handle case where Sop1 is a frame-index.
  }
  }
  return None;
}