HexagonSubtarget.cpp 21 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Hexagon specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//

#include "HexagonSubtarget.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <map>

using namespace llvm;

#define DEBUG_TYPE "hexagon-subtarget"

#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "HexagonGenSubtargetInfo.inc"

static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
  cl::Hidden, cl::ZeroOrMore, cl::init(true));

static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
  cl::Hidden, cl::ZeroOrMore, cl::init(false));

static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
  cl::Hidden, cl::ZeroOrMore, cl::init(true),
  cl::desc("Enable the scheduler to generate .cur"));

static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Disable Hexagon MI Scheduling"));

static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
  cl::Hidden, cl::ZeroOrMore, cl::init(true),
  cl::desc("Enable subregister liveness tracking for Hexagon"));

static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("If present, forces/disables the use of long calls"));

static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Consider calls to be predicable"));

static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
  cl::Hidden, cl::ZeroOrMore, cl::init(true));

static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
  cl::Hidden, cl::ZeroOrMore, cl::init(true));

static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
  cl::Hidden, cl::ZeroOrMore, cl::init(true),
  cl::desc("Enable checking for cache bank conflicts"));

HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
                                   StringRef FS, const TargetMachine &TM)
    : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
      OptLevel(TM.getOptLevel()),
      CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
      TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
      RegInfo(getHwMode()), TLInfo(TM, *this),
      InstrItins(getInstrItineraryForCPU(CPUString)) {
  Hexagon_MC::addArchSubtarget(this, FS);
  // Beware of the default constructor of InstrItineraryData: it will
  // reset all members to 0.
  assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
}

HexagonSubtarget &
HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
  Optional<Hexagon::ArchEnum> ArchVer =
      Hexagon::GetCpu(Hexagon::CpuTable, CPUString);
  if (ArchVer)
    HexagonArchVersion = *ArchVer;
  else
    llvm_unreachable("Unrecognized Hexagon processor version");

  UseHVX128BOps = false;
  UseHVX64BOps = false;
  UseAudioOps = false;
  UseLongCalls = false;

  UseBSBScheduling = hasV60Ops() && EnableBSBSched;

  ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);

  if (OverrideLongCalls.getPosition())
    UseLongCalls = OverrideLongCalls;

  if (isTinyCore()) {
    // Tiny core has a single thread, so back-to-back scheduling is enabled by
    // default.
    if (!EnableBSBSched.getPosition())
      UseBSBScheduling = false;
  }

  FeatureBitset Features = getFeatureBits();
  if (HexagonDisableDuplex)
    setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
  setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));

  return *this;
}

void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
  for (SUnit &SU : DAG->SUnits) {
    if (!SU.isInstr())
      continue;
    SmallVector<SDep, 4> Erase;
    for (auto &D : SU.Preds)
      if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
        Erase.push_back(D);
    for (auto &E : Erase)
      SU.removePred(E);
  }
}

void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
  for (SUnit &SU : DAG->SUnits) {
    // Update the latency of chain edges between v60 vector load or store
    // instructions to be 1. These instruction cannot be scheduled in the
    // same packet.
    MachineInstr &MI1 = *SU.getInstr();
    auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
    bool IsStoreMI1 = MI1.mayStore();
    bool IsLoadMI1 = MI1.mayLoad();
    if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
      continue;
    for (SDep &SI : SU.Succs) {
      if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
        continue;
      MachineInstr &MI2 = *SI.getSUnit()->getInstr();
      if (!QII->isHVXVec(MI2))
        continue;
      if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
        SI.setLatency(1);
        SU.setHeightDirty();
        // Change the dependence in the opposite direction too.
        for (SDep &PI : SI.getSUnit()->Preds) {
          if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
            continue;
          PI.setLatency(1);
          SI.getSUnit()->setDepthDirty();
        }
      }
    }
  }
}

// Check if a call and subsequent A2_tfrpi instructions should maintain
// scheduling affinity. We are looking for the TFRI to be consumed in
// the next instruction. This should help reduce the instances of
// double register pairs being allocated and scheduled before a call
// when not used until after the call. This situation is exacerbated
// by the fact that we allocate the pair from the callee saves list,
// leading to excess spills and restores.
bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
      const HexagonInstrInfo &HII, const SUnit &Inst1,
      const SUnit &Inst2) const {
  if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
    return false;

  // TypeXTYPE are 64 bit operations.
  unsigned Type = HII.getType(*Inst2.getInstr());
  return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
         Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
}

void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
  ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
  SUnit* LastSequentialCall = nullptr;
  // Map from virtual register to physical register from the copy.
  DenseMap<unsigned, unsigned> VRegHoldingReg;
  // Map from the physical register to the instruction that uses virtual
  // register. This is used to create the barrier edge.
  DenseMap<unsigned, SUnit *> LastVRegUse;
  auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
  auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();

  // Currently we only catch the situation when compare gets scheduled
  // before preceding call.
  for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
    // Remember the call.
    if (DAG->SUnits[su].getInstr()->isCall())
      LastSequentialCall = &DAG->SUnits[su];
    // Look for a compare that defines a predicate.
    else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
      DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
    // Look for call and tfri* instructions.
    else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
             shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
      DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
    // Prevent redundant register copies due to reads and writes of physical
    // registers. The original motivation for this was the code generated
    // between two calls, which are caused both the return value and the
    // argument for the next call being in %r0.
    // Example:
    //   1: <call1>
    //   2: %vreg = COPY %r0
    //   3: <use of %vreg>
    //   4: %r0 = ...
    //   5: <call2>
    // The scheduler would often swap 3 and 4, so an additional register is
    // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
    // this.
    // The code below checks for all the physical registers, not just R0/D0/V0.
    else if (SchedRetvalOptimization) {
      const MachineInstr *MI = DAG->SUnits[su].getInstr();
      if (MI->isCopy() &&
          Register::isPhysicalRegister(MI->getOperand(1).getReg())) {
        // %vregX = COPY %r0
        VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
        LastVRegUse.erase(MI->getOperand(1).getReg());
      } else {
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
          const MachineOperand &MO = MI->getOperand(i);
          if (!MO.isReg())
            continue;
          if (MO.isUse() && !MI->isCopy() &&
              VRegHoldingReg.count(MO.getReg())) {
            // <use of %vregX>
            LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
          } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) {
            for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
                 ++AI) {
              if (LastVRegUse.count(*AI) &&
                  LastVRegUse[*AI] != &DAG->SUnits[su])
                // %r0 = ...
                DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
              LastVRegUse.erase(*AI);
            }
          }
        }
      }
    }
  }
}

void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
  if (!EnableCheckBankConflict)
    return;

  const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);

  // Create artificial edges between loads that could likely cause a bank
  // conflict. Since such loads would normally not have any dependency
  // between them, we cannot rely on existing edges.
  for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
    SUnit &S0 = DAG->SUnits[i];
    MachineInstr &L0 = *S0.getInstr();
    if (!L0.mayLoad() || L0.mayStore() ||
        HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
      continue;
    int64_t Offset0;
    unsigned Size0;
    MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
    // Is the access size is longer than the L1 cache line, skip the check.
    if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
      continue;
    // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
    for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
      SUnit &S1 = DAG->SUnits[j];
      MachineInstr &L1 = *S1.getInstr();
      if (!L1.mayLoad() || L1.mayStore() ||
          HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
        continue;
      int64_t Offset1;
      unsigned Size1;
      MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
      if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
          BaseOp0->getReg() != BaseOp1->getReg())
        continue;
      // Check bits 3 and 4 of the offset: if they differ, a bank conflict
      // is unlikely.
      if (((Offset0 ^ Offset1) & 0x18) != 0)
        continue;
      // Bits 3 and 4 are the same, add an artificial edge and set extra
      // latency.
      SDep A(&S0, SDep::Artificial);
      A.setLatency(1);
      S1.addPred(A, true);
    }
  }
}

/// Enable use of alias analysis during code generation (during MI
/// scheduling, DAGCombine, etc.).
bool HexagonSubtarget::useAA() const {
  if (OptLevel != CodeGenOpt::None)
    return true;
  return false;
}

/// Perform target specific adjustments to the latency of a schedule
/// dependency.
void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
                                             SUnit *Dst, int DstOpIdx,
                                             SDep &Dep) const {
  if (!Src->isInstr() || !Dst->isInstr())
    return;

  MachineInstr *SrcInst = Src->getInstr();
  MachineInstr *DstInst = Dst->getInstr();
  const HexagonInstrInfo *QII = getInstrInfo();

  // Instructions with .new operands have zero latency.
  SmallSet<SUnit *, 4> ExclSrc;
  SmallSet<SUnit *, 4> ExclDst;
  if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
      isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
    Dep.setLatency(0);
    return;
  }

  if (!hasV60Ops())
    return;

  // Set the latency for a copy to zero since we hope that is will get removed.
  if (DstInst->isCopy())
    Dep.setLatency(0);

  // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
  // the correct latency.
  if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
    Register DReg = DstInst->getOperand(0).getReg();
    MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
    unsigned UseIdx = -1;
    for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
      const MachineOperand &MO = DDst->getOperand(OpNum);
      if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
        UseIdx = OpNum;
        break;
      }
    }
    int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
                                                0, *DDst, UseIdx));
    DLatency = std::max(DLatency, 0);
    Dep.setLatency((unsigned)DLatency);
  }

  // Try to schedule uses near definitions to generate .cur.
  ExclSrc.clear();
  ExclDst.clear();
  if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
      isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
    Dep.setLatency(0);
    return;
  }

  updateLatency(*SrcInst, *DstInst, Dep);
}

void HexagonSubtarget::getPostRAMutations(
    std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
  Mutations.push_back(std::make_unique<UsrOverflowMutation>());
  Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
  Mutations.push_back(std::make_unique<BankConflictMutation>());
}

void HexagonSubtarget::getSMSMutations(
    std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
  Mutations.push_back(std::make_unique<UsrOverflowMutation>());
  Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
}

// Pin the vtable to this file.
void HexagonSubtarget::anchor() {}

bool HexagonSubtarget::enableMachineScheduler() const {
  if (DisableHexagonMISched.getNumOccurrences())
    return !DisableHexagonMISched;
  return true;
}

bool HexagonSubtarget::usePredicatedCalls() const {
  return EnablePredicatedCalls;
}

void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
      MachineInstr &DstInst, SDep &Dep) const {
  if (Dep.isArtificial()) {
    Dep.setLatency(1);
    return;
  }

  if (!hasV60Ops())
    return;

  auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());

  // BSB scheduling.
  if (QII.isHVXVec(SrcInst) || useBSBScheduling())
    Dep.setLatency((Dep.getLatency() + 1) >> 1);
}

void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
  MachineInstr *SrcI = Src->getInstr();
  for (auto &I : Src->Succs) {
    if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
      continue;
    unsigned DepR = I.getReg();
    int DefIdx = -1;
    for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
      const MachineOperand &MO = SrcI->getOperand(OpNum);
      bool IsSameOrSubReg = false;
      if (MO.isReg()) {
        unsigned MOReg = MO.getReg();
        if (Register::isVirtualRegister(DepR)) {
          IsSameOrSubReg = (MOReg == DepR);
        } else {
          IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
        }
        if (MO.isDef() && IsSameOrSubReg)
          DefIdx = OpNum;
      }
    }
    assert(DefIdx >= 0 && "Def Reg not found in Src MI");
    MachineInstr *DstI = Dst->getInstr();
    SDep T = I;
    for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
      const MachineOperand &MO = DstI->getOperand(OpNum);
      if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
        int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
                                                   DefIdx, *DstI, OpNum));

        // For some instructions (ex: COPY), we might end up with < 0 latency
        // as they don't have any Itinerary class associated with them.
        Latency = std::max(Latency, 0);

        I.setLatency(Latency);
        updateLatency(*SrcI, *DstI, I);
      }
    }

    // Update the latency of opposite edge too.
    T.setSUnit(Src);
    auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
    assert(F != Dst->Preds.end());
    F->setLatency(I.getLatency());
  }
}

/// Change the latency between the two SUnits.
void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
      const {
  for (auto &I : Src->Succs) {
    if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
      continue;
    SDep T = I;
    I.setLatency(Lat);

    // Update the latency of opposite edge too.
    T.setSUnit(Src);
    auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
    assert(F != Dst->Preds.end());
    F->setLatency(Lat);
  }
}

/// If the SUnit has a zero latency edge, return the other SUnit.
static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
  for (auto &I : Deps)
    if (I.isAssignedRegDep() && I.getLatency() == 0 &&
        !I.getSUnit()->getInstr()->isPseudo())
      return I.getSUnit();
  return nullptr;
}

// Return true if these are the best two instructions to schedule
// together with a zero latency. Only one dependence should have a zero
// latency. If there are multiple choices, choose the best, and change
// the others, if needed.
bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
      const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
      SmallSet<SUnit*, 4> &ExclDst) const {
  MachineInstr &SrcInst = *Src->getInstr();
  MachineInstr &DstInst = *Dst->getInstr();

  // Ignore Boundary SU nodes as these have null instructions.
  if (Dst->isBoundaryNode())
    return false;

  if (SrcInst.isPHI() || DstInst.isPHI())
    return false;

  if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
      !TII->canExecuteInBundle(SrcInst, DstInst))
    return false;

  // The architecture doesn't allow three dependent instructions in the same
  // packet. So, if the destination has a zero latency successor, then it's
  // not a candidate for a zero latency predecessor.
  if (getZeroLatency(Dst, Dst->Succs) != nullptr)
    return false;

  // Check if the Dst instruction is the best candidate first.
  SUnit *Best = nullptr;
  SUnit *DstBest = nullptr;
  SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
  if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
    // Check that Src doesn't have a better candidate.
    DstBest = getZeroLatency(Src, Src->Succs);
    if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
      Best = Dst;
  }
  if (Best != Dst)
    return false;

  // The caller frequently adds the same dependence twice. If so, then
  // return true for this case too.
  if ((Src == SrcBest && Dst == DstBest ) ||
      (SrcBest == nullptr && Dst == DstBest) ||
      (Src == SrcBest && Dst == nullptr))
    return true;

  // Reassign the latency for the previous bests, which requires setting
  // the dependence edge in both directions.
  if (SrcBest != nullptr) {
    if (!hasV60Ops())
      changeLatency(SrcBest, Dst, 1);
    else
      restoreLatency(SrcBest, Dst);
  }
  if (DstBest != nullptr) {
    if (!hasV60Ops())
      changeLatency(Src, DstBest, 1);
    else
      restoreLatency(Src, DstBest);
  }

  // Attempt to find another opprotunity for zero latency in a different
  // dependence.
  if (SrcBest && DstBest)
    // If there is an edge from SrcBest to DstBst, then try to change that
    // to 0 now.
    changeLatency(SrcBest, DstBest, 0);
  else if (DstBest) {
    // Check if the previous best destination instruction has a new zero
    // latency dependence opportunity.
    ExclSrc.insert(Src);
    for (auto &I : DstBest->Preds)
      if (ExclSrc.count(I.getSUnit()) == 0 &&
          isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
        changeLatency(I.getSUnit(), DstBest, 0);
  } else if (SrcBest) {
    // Check if previous best source instruction has a new zero latency
    // dependence opportunity.
    ExclDst.insert(Dst);
    for (auto &I : SrcBest->Succs)
      if (ExclDst.count(I.getSUnit()) == 0 &&
          isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
        changeLatency(SrcBest, I.getSUnit(), 0);
  }

  return true;
}

unsigned HexagonSubtarget::getL1CacheLineSize() const {
  return 32;
}

unsigned HexagonSubtarget::getL1PrefetchDistance() const {
  return 32;
}

bool HexagonSubtarget::enableSubRegLiveness() const {
  return EnableSubregLiveness;
}