HexagonISelLowering.cpp 135 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Hexagon uses to lower LLVM code
// into a selection DAG.
//
//===----------------------------------------------------------------------===//

#include "HexagonISelLowering.h"
#include "Hexagon.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonTargetObjectFile.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "hexagon-lowering"

static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
  cl::init(true), cl::Hidden,
  cl::desc("Control jump table emission on Hexagon target"));

static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Enable Hexagon SDNode scheduling"));

static cl::opt<bool> EnableFastMath("ffast-math",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Enable Fast Math processing"));

static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
  cl::Hidden, cl::ZeroOrMore, cl::init(5),
  cl::desc("Set minimum jump tables"));

static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
  cl::desc("Max #stores to inline memcpy"));

static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memcpy"));

static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
  cl::desc("Max #stores to inline memmove"));

static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memmove"));

static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
  cl::Hidden, cl::ZeroOrMore, cl::init(8),
  cl::desc("Max #stores to inline memset"));

static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memset"));

static cl::opt<bool> AlignLoads("hexagon-align-loads",
  cl::Hidden, cl::init(false),
  cl::desc("Rewrite unaligned loads as a pair of aligned loads"));

static cl::opt<bool>
    DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
                            cl::init(false),
                            cl::desc("Disable minimum alignment of 1 for "
                                     "arguments passed by value on stack"));

namespace {

  class HexagonCCState : public CCState {
    unsigned NumNamedVarArgParams = 0;

  public:
    HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
                   SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
                   unsigned NumNamedArgs)
        : CCState(CC, IsVarArg, MF, locs, C),
          NumNamedVarArgParams(NumNamedArgs) {}
    unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
  };

} // end anonymous namespace


// Implement calling convention for Hexagon.

static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                       CCValAssign::LocInfo &LocInfo,
                       ISD::ArgFlagsTy &ArgFlags, CCState &State) {
  static const MCPhysReg ArgRegs[] = {
    Hexagon::R0, Hexagon::R1, Hexagon::R2,
    Hexagon::R3, Hexagon::R4, Hexagon::R5
  };
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);

  // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
  if (RegNum != NumArgRegs && RegNum % 2 == 1)
    State.AllocateReg(ArgRegs[RegNum]);

  // Always return false here, as this function only makes sure that the first
  // unallocated register has an even register number and does not actually
  // allocate a register for the current argument.
  return false;
}

#include "HexagonGenCallingConv.inc"


SDValue
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
      const {
  return SDValue();
}

/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size".  Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.  Sometimes what we are copying is the end of a
/// larger object, the part that does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
                                         SelectionDAG &DAG, const SDLoc &dl) {
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
  return DAG.getMemcpy(
      Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
      /*isVolatile=*/false, /*AlwaysInline=*/false,
      /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
}

bool
HexagonTargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);

  if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
    return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
  return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
}

// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
// passed by value, the function prototype is modified to return void and
// the value is stored in memory pointed by a pointer passed by caller.
SDValue
HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                   bool IsVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   const SDLoc &dl, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze return values of ISD::RET
  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
  else
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
}

bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  // If either no tail call or told not to tail call at all, don't.
  return CI->isTailCall();
}

Register HexagonTargetLowering::getRegisterByName(
      const char* RegName, LLT VT, const MachineFunction &) const {
  // Just support r19, the linux kernel uses it.
  Register Reg = StringSwitch<Register>(RegName)
                     .Case("r0", Hexagon::R0)
                     .Case("r1", Hexagon::R1)
                     .Case("r2", Hexagon::R2)
                     .Case("r3", Hexagon::R3)
                     .Case("r4", Hexagon::R4)
                     .Case("r5", Hexagon::R5)
                     .Case("r6", Hexagon::R6)
                     .Case("r7", Hexagon::R7)
                     .Case("r8", Hexagon::R8)
                     .Case("r9", Hexagon::R9)
                     .Case("r10", Hexagon::R10)
                     .Case("r11", Hexagon::R11)
                     .Case("r12", Hexagon::R12)
                     .Case("r13", Hexagon::R13)
                     .Case("r14", Hexagon::R14)
                     .Case("r15", Hexagon::R15)
                     .Case("r16", Hexagon::R16)
                     .Case("r17", Hexagon::R17)
                     .Case("r18", Hexagon::R18)
                     .Case("r19", Hexagon::R19)
                     .Case("r20", Hexagon::R20)
                     .Case("r21", Hexagon::R21)
                     .Case("r22", Hexagon::R22)
                     .Case("r23", Hexagon::R23)
                     .Case("r24", Hexagon::R24)
                     .Case("r25", Hexagon::R25)
                     .Case("r26", Hexagon::R26)
                     .Case("r27", Hexagon::R27)
                     .Case("r28", Hexagon::R28)
                     .Case("r29", Hexagon::R29)
                     .Case("r30", Hexagon::R30)
                     .Case("r31", Hexagon::R31)
                     .Case("r1:0", Hexagon::D0)
                     .Case("r3:2", Hexagon::D1)
                     .Case("r5:4", Hexagon::D2)
                     .Case("r7:6", Hexagon::D3)
                     .Case("r9:8", Hexagon::D4)
                     .Case("r11:10", Hexagon::D5)
                     .Case("r13:12", Hexagon::D6)
                     .Case("r15:14", Hexagon::D7)
                     .Case("r17:16", Hexagon::D8)
                     .Case("r19:18", Hexagon::D9)
                     .Case("r21:20", Hexagon::D10)
                     .Case("r23:22", Hexagon::D11)
                     .Case("r25:24", Hexagon::D12)
                     .Case("r27:26", Hexagon::D13)
                     .Case("r29:28", Hexagon::D14)
                     .Case("r31:30", Hexagon::D15)
                     .Case("sp", Hexagon::R29)
                     .Case("fp", Hexagon::R30)
                     .Case("lr", Hexagon::R31)
                     .Case("p0", Hexagon::P0)
                     .Case("p1", Hexagon::P1)
                     .Case("p2", Hexagon::P2)
                     .Case("p3", Hexagon::P3)
                     .Case("sa0", Hexagon::SA0)
                     .Case("lc0", Hexagon::LC0)
                     .Case("sa1", Hexagon::SA1)
                     .Case("lc1", Hexagon::LC1)
                     .Case("m0", Hexagon::M0)
                     .Case("m1", Hexagon::M1)
                     .Case("usr", Hexagon::USR)
                     .Case("ugp", Hexagon::UGP)
                     .Default(Register());
  if (Reg)
    return Reg;

  report_fatal_error("Invalid register name global variable");
}

/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers.  This assumes that
/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
/// being lowered. Returns a SDNode with the same number of values as the
/// ISD::CALL.
SDValue HexagonTargetLowering::LowerCallResult(
    SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;

  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
  else
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    SDValue RetVal;
    if (RVLocs[i].getValVT() == MVT::i1) {
      // Return values of type MVT::i1 require special handling. The reason
      // is that MVT::i1 is associated with the PredRegs register class, but
      // values of that type are still returned in R0. Generate an explicit
      // copy into a predicate register from R0, and treat the value of the
      // predicate register as the call result.
      auto &MRI = DAG.getMachineFunction().getRegInfo();
      SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                                       MVT::i32, Glue);
      // FR0 = (Value, Chain, Glue)
      Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
      SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
                                     FR0.getValue(0), FR0.getValue(2));
      // TPR = (Chain, Glue)
      // Don't glue this CopyFromReg, because it copies from a virtual
      // register. If it is glued to the call, InstrEmitter will add it
      // as an implicit def to the call (EmitMachineNode).
      RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
      Glue = TPR.getValue(1);
      Chain = TPR.getValue(0);
    } else {
      RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                                  RVLocs[i].getValVT(), Glue);
      Glue = RetVal.getValue(2);
      Chain = RetVal.getValue(1);
    }
    InVals.push_back(RetVal.getValue(0));
  }

  return Chain;
}

/// LowerCall - Functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                 SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool IsVarArg                         = CLI.IsVarArg;
  bool DoesNotReturn                    = CLI.DoesNotReturn;

  bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto PtrVT = getPointerTy(MF.getDataLayout());

  unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
  if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
    Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);

  // Linux ABI treats var-arg calls the same way as regular ones.
  bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
                        NumParams);

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
  else if (DisableArgsMinAlignment)
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
  else
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);

  if (CLI.IsTailCall) {
    bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
    CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
                        IsVarArg, IsStructRet, StructAttrFlag, Outs,
                        OutVals, Ins, DAG);
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
      CCValAssign &VA = ArgLocs[i];
      if (VA.isMemLoc()) {
        CLI.IsTailCall = false;
        break;
      }
    }
    LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
                                         : "Argument must be passed on stack. "
                                           "Not eligible for Tail Call\n"));
  }
  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  SDValue StackPtr =
      DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);

  bool NeedsArgAlign = false;
  Align LargestAlignSeen;
  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    // Record if we need > 8 byte alignment on an argument.
    bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
    NeedsArgAlign |= ArgAlign;

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
      default:
        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::BCvt:
        Arg = DAG.getBitcast(VA.getLocVT(), Arg);
        break;
      case CCValAssign::SExt:
        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::ZExt:
        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::AExt:
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
        break;
    }

    if (VA.isMemLoc()) {
      unsigned LocMemOffset = VA.getLocMemOffset();
      SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
                                        StackPtr.getValueType());
      MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
      if (ArgAlign)
        LargestAlignSeen = std::max(
            LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
      if (Flags.isByVal()) {
        // The argument is a struct passed by value. According to LLVM, "Arg"
        // is a pointer.
        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
                                                        Flags, DAG, dl));
      } else {
        MachinePointerInfo LocPI = MachinePointerInfo::getStack(
            DAG.getMachineFunction(), LocMemOffset);
        SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
        MemOpChains.push_back(S);
      }
      continue;
    }

    // Arguments that can be passed on register must be kept at RegsToPass
    // vector.
    if (VA.isRegLoc())
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
  }

  if (NeedsArgAlign && Subtarget.hasV60Ops()) {
    LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
    Align VecAlign(HRI.getSpillAlignment(Hexagon::HvxVRRegClass));
    LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
    MFI.ensureMaxAlignment(LargestAlignSeen);
  }
  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  SDValue Glue;
  if (!CLI.IsTailCall) {
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
    Glue = Chain.getValue(1);
  }

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The Glue is necessary since all emitted instructions must be
  // stuck together.
  if (!CLI.IsTailCall) {
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, Glue);
      Glue = Chain.getValue(1);
    }
  } else {
    // For tail calls lower the arguments to the 'real' stack slot.
    //
    // Force all the incoming stack arguments to be loaded from the stack
    // before any new outgoing arguments are stored to the stack, because the
    // outgoing stack slots may alias the incoming argument stack slots, and
    // the alias isn't otherwise explicit. This is slightly more conservative
    // than necessary, because it means that each store effectively depends
    // on every argument instead of just those arguments it would clobber.
    //
    // Do not flag preceding copytoreg stuff together with the following stuff.
    Glue = SDValue();
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, Glue);
      Glue = Chain.getValue(1);
    }
    Glue = SDValue();
  }

  bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
  unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
  } else if (ExternalSymbolSDNode *S =
             dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));
  }

  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (Glue.getNode())
    Ops.push_back(Glue);

  if (CLI.IsTailCall) {
    MFI.setHasTailCall();
    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
  }

  // Set this here because we need to know this for "hasFP" in frame lowering.
  // The target-independent code calls getFrameRegister before setting it, and
  // getFrameRegister uses hasFP to determine whether the function has FP.
  MFI.setHasCalls(true);

  unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
  Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
  Glue = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), Glue, dl);
  Glue = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
                         InVals, OutVals, Callee);
}

/// Returns true by value, base pointer and offset pointer and addressing
/// mode by reference if this node can be combined with a load / store to
/// form a post-indexed load / store.
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
      SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
      SelectionDAG &DAG) const {
  LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
  if (!LSN)
    return false;
  EVT VT = LSN->getMemoryVT();
  if (!VT.isSimple())
    return false;
  bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
                     VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
                     VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
                     VT == MVT::v4i16 || VT == MVT::v8i8 ||
                     Subtarget.isHVXVectorType(VT.getSimpleVT());
  if (!IsLegalType)
    return false;

  if (Op->getOpcode() != ISD::ADD)
    return false;
  Base = Op->getOperand(0);
  Offset = Op->getOperand(1);
  if (!isa<ConstantSDNode>(Offset.getNode()))
    return false;
  AM = ISD::POST_INC;

  int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
  return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
}

SDValue
HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  unsigned LR = HRI.getRARegister();

  if ((Op.getOpcode() != ISD::INLINEASM &&
       Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
    return Op;

  unsigned NumOps = Op.getNumOperands();
  if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
    --NumOps;  // Ignore the flag operand.

  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    ++i;  // Skip the ID value.

    switch (InlineAsm::getKind(Flags)) {
      default:
        llvm_unreachable("Bad flags!");
      case InlineAsm::Kind_RegUse:
      case InlineAsm::Kind_Imm:
      case InlineAsm::Kind_Mem:
        i += NumVals;
        break;
      case InlineAsm::Kind_Clobber:
      case InlineAsm::Kind_RegDef:
      case InlineAsm::Kind_RegDefEarlyClobber: {
        for (; NumVals; --NumVals, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
          if (Reg != LR)
            continue;
          HMFI.setHasClobberLR(true);
          return Op;
        }
        break;
      }
    }
  }

  return Op;
}

// Need to transform ISD::PREFETCH into something that doesn't inherit
// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
// SDNPMayStore.
SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Addr = Op.getOperand(1);
  // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
  // if the "reg" is fed by an "add".
  SDLoc DL(Op);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
  return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}

// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
// is marked as having side-effects, while the register read on Hexagon does
// not have any. TableGen refuses to accept the direct pattern from that node
// to the A4_tfrcpp.
SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
                                                     SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDLoc dl(Op);
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
}

SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
      SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  // Lower the hexagon_prefetch builtin to DCFETCH, as above.
  if (IntNo == Intrinsic::hexagon_prefetch) {
    SDValue Addr = Op.getOperand(2);
    SDLoc DL(Op);
    SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
    return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
  }
  return SDValue();
}

SDValue
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  SDValue Align = Op.getOperand(2);
  SDLoc dl(Op);

  ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
  assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");

  unsigned A = AlignConst->getSExtValue();
  auto &HFI = *Subtarget.getFrameLowering();
  // "Zero" means natural stack alignment.
  if (A == 0)
    A = HFI.getStackAlign().value();

  LLVM_DEBUG({
    dbgs () << __func__ << " Align: " << A << " Size: ";
    Size.getNode()->dump(&DAG);
    dbgs() << "\n";
  });

  SDValue AC = DAG.getConstant(A, dl, MVT::i32);
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);

  DAG.ReplaceAllUsesOfValueWith(Op, AA);
  return AA;
}

SDValue HexagonTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  // Linux ABI treats var-arg calls the same way as regular ones.
  bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
                        *DAG.getContext(),
                        MF.getFunction().getFunctionType()->getNumParams());

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
  else if (DisableArgsMinAlignment)
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
  else
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);

  // For LLVM, in the case when returning a struct by value (>8byte),
  // the first argument is a pointer that points to the location on caller's
  // stack where the return value will be stored. For Hexagon, the location on
  // caller's stack is passed only when the struct size is smaller than (and
  // equal to) 8 bytes. If not, no address will be passed into callee and
  // callee return the result direclty through R0/R1.
  auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
    switch (RC.getID()) {
    case Hexagon::IntRegsRegClassID:
      return Reg - Hexagon::R0 + 1;
    case Hexagon::DoubleRegsRegClassID:
      return (Reg - Hexagon::D0 + 1) * 2;
    case Hexagon::HvxVRRegClassID:
      return Reg - Hexagon::V0 + 1;
    case Hexagon::HvxWRRegClassID:
      return (Reg - Hexagon::W0 + 1) * 2;
    }
    llvm_unreachable("Unexpected register class");
  };

  auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  HFL.FirstVarArgSavedReg = 0;
  HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
    bool ByVal = Flags.isByVal();

    // Arguments passed in registers:
    // 1. 32- and 64-bit values and HVX vectors are passed directly,
    // 2. Large structs are passed via an address, and the address is
    //    passed in a register.
    if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
      llvm_unreachable("ByValSize must be bigger than 8 bytes");

    bool InReg = VA.isRegLoc() &&
                 (!ByVal || (ByVal && Flags.getByValSize() > 8));

    if (InReg) {
      MVT RegVT = VA.getLocVT();
      if (VA.getLocInfo() == CCValAssign::BCvt)
        RegVT = VA.getValVT();

      const TargetRegisterClass *RC = getRegClassFor(RegVT);
      Register VReg = MRI.createVirtualRegister(RC);
      SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);

      // Treat values of type MVT::i1 specially: they are passed in
      // registers of type i32, but they need to remain as values of
      // type i1 for consistency of the argument lowering.
      if (VA.getValVT() == MVT::i1) {
        assert(RegVT.getSizeInBits() <= 32);
        SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
                                Copy, DAG.getConstant(1, dl, RegVT));
        Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
                            ISD::SETNE);
      } else {
#ifndef NDEBUG
        unsigned RegSize = RegVT.getSizeInBits();
        assert(RegSize == 32 || RegSize == 64 ||
               Subtarget.isHVXVectorType(RegVT));
#endif
      }
      InVals.push_back(Copy);
      MRI.addLiveIn(VA.getLocReg(), VReg);
      HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
    } else {
      assert(VA.isMemLoc() && "Argument should be passed in memory");

      // If it's a byval parameter, then we need to compute the
      // "real" size, not the size of the pointer.
      unsigned ObjSize = Flags.isByVal()
                            ? Flags.getByValSize()
                            : VA.getLocVT().getStoreSizeInBits() / 8;

      // Create the frame index object for this incoming parameter.
      int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
      int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);

      if (Flags.isByVal()) {
        // If it's a pass-by-value aggregate, then do not dereference the stack
        // location. Instead, we should generate a reference to the stack
        // location.
        InVals.push_back(FIN);
      } else {
        SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
                                MachinePointerInfo::getFixedStack(MF, FI, 0));
        InVals.push_back(L);
      }
    }
  }

  if (IsVarArg && Subtarget.isEnvironmentMusl()) {
    for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
      MRI.addLiveIn(Hexagon::R0+i);
  }

  if (IsVarArg && Subtarget.isEnvironmentMusl()) {
    HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
    HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));

    // Create Frame index for the start of register saved area.
    int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
    bool RequiresPadding = (NumVarArgRegs & 1);
    int RegSaveAreaSizePlusPadding = RequiresPadding
                                        ? (NumVarArgRegs + 1) * 4
                                        : NumVarArgRegs * 4;

    if (RegSaveAreaSizePlusPadding > 0) {
      // The offset to saved register area should be 8 byte aligned.
      int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
      if (!(RegAreaStart % 8))
        RegAreaStart = (RegAreaStart + 7) & -8;

      int RegSaveAreaFrameIndex =
        MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
      HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);

      // This will point to the next argument passed via stack.
      int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
      int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
      HMFI.setVarArgsFrameIndex(FI);
    } else {
      // This will point to the next argument passed via stack, when
      // there is no saved register area.
      int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
      int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
      HMFI.setRegSavedAreaStartFrameIndex(FI);
      HMFI.setVarArgsFrameIndex(FI);
    }
  }


  if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
    // This will point to the next argument passed via stack.
    int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
    int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
    HMFI.setVarArgsFrameIndex(FI);
  }

  return Chain;
}

SDValue
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  // VASTART stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  MachineFunction &MF = DAG.getMachineFunction();
  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();

  if (!Subtarget.isEnvironmentMusl()) {
    return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
                        MachinePointerInfo(SV));
  }
  auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
  auto &HFL = *Subtarget.getFrameLowering();
  SDLoc DL(Op);
  SmallVector<SDValue, 8> MemOps;

  // Get frame index of va_list.
  SDValue FIN = Op.getOperand(1);

  // If first Vararg register is odd, add 4 bytes to start of
  // saved register area to point to the first register location.
  // This is because the saved register area has to be 8 byte aligned.
  // Incase of an odd start register, there will be 4 bytes of padding in
  // the beginning of saved register area. If all registers area used up,
  // the following condition will handle it correctly.
  SDValue SavedRegAreaStartFrameIndex =
    DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);

  auto PtrVT = getPointerTy(DAG.getDataLayout());

  if (HFL.FirstVarArgSavedReg & 1)
    SavedRegAreaStartFrameIndex =
      DAG.getNode(ISD::ADD, DL, PtrVT,
                  DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
                                    MVT::i32),
                  DAG.getIntPtrConstant(4, DL));

  // Store the saved register area start pointer.
  SDValue Store =
    DAG.getStore(Op.getOperand(0), DL,
                 SavedRegAreaStartFrameIndex,
                 FIN, MachinePointerInfo(SV));
  MemOps.push_back(Store);

  // Store saved register area end pointer.
  FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
                    FIN, DAG.getIntPtrConstant(4, DL));
  Store = DAG.getStore(Op.getOperand(0), DL,
                       DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
                                         PtrVT),
                       FIN, MachinePointerInfo(SV, 4));
  MemOps.push_back(Store);

  // Store overflow area pointer.
  FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
                    FIN, DAG.getIntPtrConstant(4, DL));
  Store = DAG.getStore(Op.getOperand(0), DL,
                       DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
                                         PtrVT),
                       FIN, MachinePointerInfo(SV, 8));
  MemOps.push_back(Store);

  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}

SDValue
HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
  // Assert that the linux ABI is enabled for the current compilation.
  assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
  SDValue Chain = Op.getOperand(0);
  SDValue DestPtr = Op.getOperand(1);
  SDValue SrcPtr = Op.getOperand(2);
  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
  SDLoc DL(Op);
  // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
  // we need to memcopy 12 bytes from va_list to another similar list.
  return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
                       DAG.getIntPtrConstant(12, DL), Align(4),
                       /*isVolatile*/ false, false, false,
                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
}

SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  const SDLoc &dl(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  MVT ResTy = ty(Op);
  MVT OpTy = ty(LHS);

  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
    MVT ElemTy = OpTy.getVectorElementType();
    assert(ElemTy.isScalarInteger());
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
                                  OpTy.getVectorNumElements());
    return DAG.getSetCC(dl, ResTy,
                        DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
                        DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
  }

  // Treat all other vector types as legal.
  if (ResTy.isVector())
    return Op;

  // Comparisons of short integers should use sign-extend, not zero-extend,
  // since we can represent small negative values in the compare instructions.
  // The LLVM default is to use zero-extend arbitrarily in these cases.
  auto isSExtFree = [this](SDValue N) {
    switch (N.getOpcode()) {
      case ISD::TRUNCATE: {
        // A sign-extend of a truncate of a sign-extend is free.
        SDValue Op = N.getOperand(0);
        if (Op.getOpcode() != ISD::AssertSext)
          return false;
        EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
        unsigned ThisBW = ty(N).getSizeInBits();
        unsigned OrigBW = OrigTy.getSizeInBits();
        // The type that was sign-extended to get the AssertSext must be
        // narrower than the type of N (so that N has still the same value
        // as the original).
        return ThisBW >= OrigBW;
      }
      case ISD::LOAD:
        // We have sign-extended loads.
        return true;
    }
    return false;
  };

  if (OpTy == MVT::i8 || OpTy == MVT::i16) {
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
    bool IsNegative = C && C->getAPIntValue().isNegative();
    if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
      return DAG.getSetCC(dl, ResTy,
                          DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
                          DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
  SDValue PredOp = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
  MVT OpTy = ty(Op1);
  const SDLoc &dl(Op);

  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
    MVT ElemTy = OpTy.getVectorElementType();
    assert(ElemTy.isScalarInteger());
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
                                  OpTy.getVectorNumElements());
    // Generate (trunc (select (_, sext, sext))).
    return DAG.getSExtOrTrunc(
              DAG.getSelect(dl, WideTy, PredOp,
                            DAG.getSExtOrTrunc(Op1, dl, WideTy),
                            DAG.getSExtOrTrunc(Op2, dl, WideTy)),
              dl, OpTy);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
  EVT ValTy = Op.getValueType();
  ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
  Constant *CVal = nullptr;
  bool isVTi1Type = false;
  if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
    if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
      IRBuilder<> IRB(CV->getContext());
      SmallVector<Constant*, 128> NewConst;
      unsigned VecLen = CV->getNumOperands();
      assert(isPowerOf2_32(VecLen) &&
             "conversion only supported for pow2 VectorSize");
      for (unsigned i = 0; i < VecLen; ++i)
        NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));

      CVal = ConstantVector::get(NewConst);
      isVTi1Type = true;
    }
  }
  Align Alignment = CPN->getAlign();
  bool IsPositionIndependent = isPositionIndependent();
  unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;

  unsigned Offset = 0;
  SDValue T;
  if (CPN->isMachineConstantPoolEntry())
    T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
                                  Offset, TF);
  else if (isVTi1Type)
    T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
  else
    T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
                                  TF);

  assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
         "Inconsistent target flag encountered");

  if (IsPositionIndependent)
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
  return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
}

SDValue
HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  int Idx = cast<JumpTableSDNode>(Op)->getIndex();
  if (isPositionIndependent()) {
    SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
  }

  SDValue T = DAG.getTargetJumpTable(Idx, VT);
  return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
}

SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
                       MachinePointerInfo());
  }

  // Return LR, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}

SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
                                         HRI.getFrameRegister(), VT);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo());
  return FrameAddr;
}

SDValue
HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
  SDLoc dl(Op);
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
}

SDValue
HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  auto *GAN = cast<GlobalAddressSDNode>(Op);
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  auto *GV = GAN->getGlobal();
  int64_t Offset = GAN->getOffset();

  auto &HLOF = *HTM.getObjFileLowering();
  Reloc::Model RM = HTM.getRelocationModel();

  if (RM == Reloc::Static) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
    const GlobalObject *GO = GV->getBaseObject();
    if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
      return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
    return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
  }

  bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
  if (UsePCRel) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
                                            HexagonII::MO_PCREL);
    return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
  }

  // Use GOT index.
  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
  SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
  return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
}

// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
SDValue
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
  SDLoc dl(Op);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  Reloc::Model RM = HTM.getRelocationModel();
  if (RM == Reloc::Static) {
    SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
    return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
  }

  SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
}

SDValue
HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
      const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
                                               HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
}

SDValue
HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
      GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
      unsigned char OperandFlags) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SDLoc dl(GA);
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
                                           GA->getValueType(0),
                                           GA->getOffset(),
                                           OperandFlags);
  // Create Operands for the call.The Operands should have the following:
  // 1. Chain SDValue
  // 2. Callee which in this case is the Global address value.
  // 3. Registers live into the call.In this case its R0, as we
  //    have just one argument to be passed.
  // 4. Glue.
  // Note: The order is important.

  const auto &HRI = *Subtarget.getRegisterInfo();
  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
  assert(Mask && "Missing call preserved mask for calling convention");
  SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
                    DAG.getRegisterMask(Mask), Glue };
  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);

  // Inform MFI that function has calls.
  MFI.setAdjustsStack(true);

  Glue = Chain.getValue(1);
  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
}

//
// Lower using the intial executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Get the thread pointer.
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);

  bool IsPositionIndependent = isPositionIndependent();
  unsigned char TF =
      IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;

  // First generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
                                           Offset, TF);

  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);

  if (IsPositionIndependent) {
    // Generate the GOT pointer in case of position independent code
    SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);

    // Add the TLS Symbol address to GOT pointer.This gives
    // GOT relative relocation for the symbol.
    Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
  }

  // Load the offset value for TLS symbol.This offset is relative to
  // thread pointer.
  SDValue LoadOffset =
      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());

  // Address of the thread local variable is the add of thread
  // pointer and the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
}

//
// Lower using the local executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Get the thread pointer.
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
  // Generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
                                           HexagonII::MO_TPREL);
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);

  // Address of the thread local variable is the add of thread
  // pointer and the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
}

//
// Lower using the general dynamic model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // First generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
                                           HexagonII::MO_GDGOT);

  // Then, generate the GOT pointer
  SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);

  // Add the TLS symbol and the GOT pointer
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
  SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);

  // Copy over the argument to R0
  SDValue InFlag;
  Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
  InFlag = Chain.getValue(1);

  unsigned Flags =
      static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
          ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
          : HexagonII::MO_GDPLT;

  return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
                           Hexagon::R0, Flags);
}

//
// Lower TLS addresses.
//
// For now for dynamic models, we only support the general dynamic model.
//
SDValue
HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
      SelectionDAG &DAG) const {
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);

  switch (HTM.getTLSModel(GA->getGlobal())) {
    case TLSModel::GeneralDynamic:
    case TLSModel::LocalDynamic:
      return LowerToTLSGeneralDynamicModel(GA, DAG);
    case TLSModel::InitialExec:
      return LowerToTLSInitialExecModel(GA, DAG);
    case TLSModel::LocalExec:
      return LowerToTLSLocalExecModel(GA, DAG);
  }
  llvm_unreachable("Bogus TLS model");
}

//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
                                             const HexagonSubtarget &ST)
    : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
      Subtarget(ST) {
  auto &HRI = *Subtarget.getRegisterInfo();

  setPrefLoopAlignment(Align(16));
  setMinFunctionAlignment(Align(4));
  setPrefFunctionAlignment(Align(16));
  setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
  setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
  setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);

  setMaxAtomicSizeInBitsSupported(64);
  setMinCmpXchgSizeInBits(32);

  if (EnableHexSDNodeSched)
    setSchedulingPreference(Sched::VLIW);
  else
    setSchedulingPreference(Sched::Source);

  // Limits for inline expansion of memcpy/memmove
  MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
  MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
  MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
  MaxStoresPerMemset = MaxStoresPerMemsetCL;
  MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;

  //
  // Set up register classes.
  //

  addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
  addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
  addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
  addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
  addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);

  addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);

  //
  // Handling of scalar operations.
  //
  // All operations default to "legal", except:
  // - indexed loads and stores (pre-/post-incremented),
  // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
  //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
  //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
  //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
  // which default to "expand" for at least one type.

  // Misc operations.
  setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
  setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
  setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
  setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
  setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
  setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
  setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
  setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
  setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
  setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
  setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
  setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
  setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
  setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);

  // Custom legalize GlobalAddress nodes into CONST32.
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);

  // Hexagon needs to optimize cases with negative constants.
  setOperationAction(ISD::SETCC, MVT::i8,    Custom);
  setOperationAction(ISD::SETCC, MVT::i16,   Custom);
  setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
  setOperationAction(ISD::SETCC, MVT::v2i16, Custom);

  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
  setOperationAction(ISD::VAARG,   MVT::Other, Expand);
  if (Subtarget.isEnvironmentMusl())
    setOperationAction(ISD::VACOPY, MVT::Other, Custom);
  else
    setOperationAction(ISD::VACOPY,  MVT::Other, Expand);

  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);

  if (EmitJumpTables)
    setMinimumJumpTableEntries(MinimumJumpTables);
  else
    setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);

  setOperationAction(ISD::ABS, MVT::i32, Legal);
  setOperationAction(ISD::ABS, MVT::i64, Legal);

  // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
  // but they only operate on i64.
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::UADDO,    VT, Custom);
    setOperationAction(ISD::USUBO,    VT, Custom);
    setOperationAction(ISD::SADDO,    VT, Expand);
    setOperationAction(ISD::SSUBO,    VT, Expand);
    setOperationAction(ISD::ADDCARRY, VT, Expand);
    setOperationAction(ISD::SUBCARRY, VT, Expand);
  }
  setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
  setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);

  setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
  setOperationAction(ISD::CTLZ, MVT::i16, Promote);
  setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
  setOperationAction(ISD::CTTZ, MVT::i16, Promote);

  // Popcount can count # of 1s in i64 but returns i32.
  setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
  setOperationAction(ISD::CTPOP, MVT::i16, Promote);
  setOperationAction(ISD::CTPOP, MVT::i32, Promote);
  setOperationAction(ISD::CTPOP, MVT::i64, Legal);

  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
  setOperationAction(ISD::BSWAP, MVT::i64, Legal);

  setOperationAction(ISD::FSHL, MVT::i32, Legal);
  setOperationAction(ISD::FSHL, MVT::i64, Legal);
  setOperationAction(ISD::FSHR, MVT::i32, Legal);
  setOperationAction(ISD::FSHR, MVT::i64, Legal);

  for (unsigned IntExpOp :
       {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
        ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
        ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
        ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
    for (MVT VT : MVT::integer_valuetypes())
      setOperationAction(IntExpOp, VT, Expand);
  }

  for (unsigned FPExpOp :
       {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
        ISD::FPOW, ISD::FCOPYSIGN}) {
    for (MVT VT : MVT::fp_valuetypes())
      setOperationAction(FPExpOp, VT, Expand);
  }

  // No extending loads from i32.
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
  }
  // Turn FP truncstore into trunc + store.
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  // Turn FP extload into load/fpextend.
  for (MVT VT : MVT::fp_valuetypes())
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);

  // Expand BR_CC and SELECT_CC for all integer and fp types.
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::BR_CC,     VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Expand);
  }
  for (MVT VT : MVT::fp_valuetypes()) {
    setOperationAction(ISD::BR_CC,     VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Expand);
  }
  setOperationAction(ISD::BR_CC, MVT::Other, Expand);

  //
  // Handling of vector operations.
  //

  // Set the action for vector operations to "expand", then override it with
  // either "custom" or "legal" for specific cases.
  static const unsigned VectExpOps[] = {
    // Integer arithmetic:
    ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
    ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
    ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
    // Logical/bit:
    ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
    ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
    // Floating point arithmetic/math functions:
    ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
    ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
    ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
    ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
    ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
    ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
    // Misc:
    ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
    // Vector:
    ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
    ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
    ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
    ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
  };

  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    for (unsigned VectExpOp : VectExpOps)
      setOperationAction(VectExpOp, VT, Expand);

    // Expand all extending loads and truncating stores:
    for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
      if (TargetVT == VT)
        continue;
      setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
      setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
      setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
      setTruncStoreAction(VT, TargetVT, Expand);
    }

    // Normalize all inputs to SELECT to be vectors of i32.
    if (VT.getVectorElementType() != MVT::i32) {
      MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
      setOperationAction(ISD::SELECT, VT, Promote);
      AddPromotedToType(ISD::SELECT, VT, VT32);
    }
    setOperationAction(ISD::SRA, VT, Custom);
    setOperationAction(ISD::SHL, VT, Custom);
    setOperationAction(ISD::SRL, VT, Custom);
  }

  // Extending loads from (native) vectors of i8 into (native) vectors of i16
  // are legal.
  setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);

  // Types natively supported:
  for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
                       MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
    setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
    setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
    setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
    setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);

    setOperationAction(ISD::ADD, NativeVT, Legal);
    setOperationAction(ISD::SUB, NativeVT, Legal);
    setOperationAction(ISD::MUL, NativeVT, Legal);
    setOperationAction(ISD::AND, NativeVT, Legal);
    setOperationAction(ISD::OR,  NativeVT, Legal);
    setOperationAction(ISD::XOR, NativeVT, Legal);
  }

  // Custom lower unaligned loads.
  // Also, for both loads and stores, verify the alignment of the address
  // in case it is a compile-time constant. This is a usability feature to
  // provide a meaningful error message to users.
  for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
                 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
    setOperationAction(ISD::LOAD,  VT, Custom);
    setOperationAction(ISD::STORE, VT, Custom);
  }

  for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
                 MVT::v2i32}) {
    setCondCodeAction(ISD::SETNE,  VT, Expand);
    setCondCodeAction(ISD::SETLE,  VT, Expand);
    setCondCodeAction(ISD::SETGE,  VT, Expand);
    setCondCodeAction(ISD::SETLT,  VT, Expand);
    setCondCodeAction(ISD::SETULE, VT, Expand);
    setCondCodeAction(ISD::SETUGE, VT, Expand);
    setCondCodeAction(ISD::SETULT, VT, Expand);
  }

  // Custom-lower bitcasts from i8 to v8i1.
  setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
  setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
  setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
  setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);

  // V5+.
  setOperationAction(ISD::FMA,  MVT::f64, Expand);
  setOperationAction(ISD::FADD, MVT::f64, Expand);
  setOperationAction(ISD::FSUB, MVT::f64, Expand);
  setOperationAction(ISD::FMUL, MVT::f64, Expand);

  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);

  setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
  setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
  setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
  setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
  setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
  setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
  setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
  setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
  setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
  setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
  setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
  setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);

  // Handling of indexed loads/stores: default is "expand".
  //
  for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
                 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
    setIndexedLoadAction(ISD::POST_INC, VT, Legal);
    setIndexedStoreAction(ISD::POST_INC, VT, Legal);
  }

  // Subtarget-specific operation actions.
  //
  if (Subtarget.hasV60Ops()) {
    setOperationAction(ISD::ROTL, MVT::i32, Legal);
    setOperationAction(ISD::ROTL, MVT::i64, Legal);
    setOperationAction(ISD::ROTR, MVT::i32, Legal);
    setOperationAction(ISD::ROTR, MVT::i64, Legal);
  }
  if (Subtarget.hasV66Ops()) {
    setOperationAction(ISD::FADD, MVT::f64, Legal);
    setOperationAction(ISD::FSUB, MVT::f64, Legal);
  }
  if (Subtarget.hasV67Ops()) {
    setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
    setOperationAction(ISD::FMUL,    MVT::f64, Legal);
  }

  setTargetDAGCombine(ISD::VSELECT);

  if (Subtarget.useHVXOps())
    initializeHVXLowering();

  computeRegisterProperties(&HRI);

  //
  // Library calls for unsupported operations
  //
  bool FastMath  = EnableFastMath;

  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");

  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");

  // This is the only fast library function for sqrtd.
  if (FastMath)
    setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");

  // Prefix is: nothing  for "slow-math",
  //            "fast2_" for V5+ fast-math double-precision
  // (actually, keep fast-math and fast-math2 separate for now)
  if (FastMath) {
    setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
    setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
    setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
    setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
    setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
  } else {
    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
  }

  if (FastMath)
    setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
  else
    setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");

  // These cause problems when the shift amount is non-constant.
  setLibcallName(RTLIB::SHL_I128, nullptr);
  setLibcallName(RTLIB::SRL_I128, nullptr);
  setLibcallName(RTLIB::SRA_I128, nullptr);
}

const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((HexagonISD::NodeType)Opcode) {
  case HexagonISD::ADDC:          return "HexagonISD::ADDC";
  case HexagonISD::SUBC:          return "HexagonISD::SUBC";
  case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
  case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
  case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
  case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
  case HexagonISD::CALL:          return "HexagonISD::CALL";
  case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
  case HexagonISD::CALLR:         return "HexagonISD::CALLR";
  case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
  case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
  case HexagonISD::CONST32:       return "HexagonISD::CONST32";
  case HexagonISD::CP:            return "HexagonISD::CP";
  case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
  case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
  case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
  case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
  case HexagonISD::INSERT:        return "HexagonISD::INSERT";
  case HexagonISD::JT:            return "HexagonISD::JT";
  case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
  case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
  case HexagonISD::VASL:          return "HexagonISD::VASL";
  case HexagonISD::VASR:          return "HexagonISD::VASR";
  case HexagonISD::VLSR:          return "HexagonISD::VLSR";
  case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
  case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
  case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
  case HexagonISD::VROR:          return "HexagonISD::VROR";
  case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
  case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
  case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
  case HexagonISD::VZERO:         return "HexagonISD::VZERO";
  case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
  case HexagonISD::D2P:           return "HexagonISD::D2P";
  case HexagonISD::P2D:           return "HexagonISD::P2D";
  case HexagonISD::V2Q:           return "HexagonISD::V2Q";
  case HexagonISD::Q2V:           return "HexagonISD::Q2V";
  case HexagonISD::QCAT:          return "HexagonISD::QCAT";
  case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
  case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
  case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
  case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
  case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
  case HexagonISD::VPACKL:        return "HexagonISD::VPACKL";
  case HexagonISD::VUNPACK:       return "HexagonISD::VUNPACK";
  case HexagonISD::VUNPACKU:      return "HexagonISD::VUNPACKU";
  case HexagonISD::OP_END:        break;
  }
  return nullptr;
}

void
HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
      unsigned NeedAlign) const {
  auto *CA = dyn_cast<ConstantSDNode>(Ptr);
  if (!CA)
    return;
  unsigned Addr = CA->getZExtValue();
  unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
  if (HaveAlign < NeedAlign) {
    std::string ErrMsg;
    raw_string_ostream O(ErrMsg);
    O << "Misaligned constant address: " << format_hex(Addr, 10)
      << " has alignment " << HaveAlign
      << ", but the memory access requires " << NeedAlign;
    if (DebugLoc DL = dl.getDebugLoc())
      DL.print(O << ", at ");
    report_fatal_error(O.str());
  }
}

// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
// intrinsic.
static bool isBrevLdIntrinsic(const Value *Inst) {
  unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
  return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
          ID == Intrinsic::hexagon_L2_loadri_pbr ||
          ID == Intrinsic::hexagon_L2_loadrh_pbr ||
          ID == Intrinsic::hexagon_L2_loadruh_pbr ||
          ID == Intrinsic::hexagon_L2_loadrb_pbr ||
          ID == Intrinsic::hexagon_L2_loadrub_pbr);
}

// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
// instruction. So far we only handle bitcast, extract value and bit reverse
// load intrinsic instructions. Should we handle CGEP ?
static Value *getBrevLdObject(Value *V) {
  if (Operator::getOpcode(V) == Instruction::ExtractValue ||
      Operator::getOpcode(V) == Instruction::BitCast)
    V = cast<Operator>(V)->getOperand(0);
  else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
    V = cast<Instruction>(V)->getOperand(0);
  return V;
}

// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
// a back edge. If the back edge comes from the intrinsic itself, the incoming
// edge is returned.
static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
  const BasicBlock *Parent = PN->getParent();
  int Idx = -1;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
    BasicBlock *Blk = PN->getIncomingBlock(i);
    // Determine if the back edge is originated from intrinsic.
    if (Blk == Parent) {
      Value *BackEdgeVal = PN->getIncomingValue(i);
      Value *BaseVal;
      // Loop over till we return the same Value or we hit the IntrBaseVal.
      do {
        BaseVal = BackEdgeVal;
        BackEdgeVal = getBrevLdObject(BackEdgeVal);
      } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
      // If the getBrevLdObject returns IntrBaseVal, we should return the
      // incoming edge.
      if (IntrBaseVal == BackEdgeVal)
        continue;
      Idx = i;
      break;
    } else // Set the node to incoming edge.
      Idx = i;
  }
  assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
  return PN->getIncomingValue(Idx);
}

// Bit-reverse Load Intrinsic: Figure out the underlying object the base
// pointer points to, for the bit-reverse load intrinsic. Setting this to
// memoperand might help alias analysis to figure out the dependencies.
static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
  Value *IntrBaseVal = V;
  Value *BaseVal;
  // Loop over till we return the same Value, implies we either figure out
  // the object or we hit a PHI
  do {
    BaseVal = V;
    V = getBrevLdObject(V);
  } while (BaseVal != V);

  // Identify the object from PHINode.
  if (const PHINode *PN = dyn_cast<PHINode>(V))
    return returnEdge(PN, IntrBaseVal);
  // For non PHI nodes, the object is the last value returned by getBrevLdObject
  else
    return V;
}

/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and store the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                               const CallInst &I,
                                               MachineFunction &MF,
                                               unsigned Intrinsic) const {
  switch (Intrinsic) {
  case Intrinsic::hexagon_L2_loadrd_pbr:
  case Intrinsic::hexagon_L2_loadri_pbr:
  case Intrinsic::hexagon_L2_loadrh_pbr:
  case Intrinsic::hexagon_L2_loadruh_pbr:
  case Intrinsic::hexagon_L2_loadrb_pbr:
  case Intrinsic::hexagon_L2_loadrub_pbr: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    auto &Cont = I.getCalledFunction()->getParent()->getContext();
    // The intrinsic function call is of the form { ElTy, i8* }
    // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
    // should be derived from ElTy.
    Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
    Info.memVT = MVT::getVT(ElTy);
    llvm::Value *BasePtrVal = I.getOperand(0);
    Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
    // The offset value comes through Modifier register. For now, assume the
    // offset is 0.
    Info.offset = 0;
    Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::hexagon_V6_vgathermw:
  case Intrinsic::hexagon_V6_vgathermw_128B:
  case Intrinsic::hexagon_V6_vgathermh:
  case Intrinsic::hexagon_V6_vgathermh_128B:
  case Intrinsic::hexagon_V6_vgathermhw:
  case Intrinsic::hexagon_V6_vgathermhw_128B:
  case Intrinsic::hexagon_V6_vgathermwq:
  case Intrinsic::hexagon_V6_vgathermwq_128B:
  case Intrinsic::hexagon_V6_vgathermhq:
  case Intrinsic::hexagon_V6_vgathermhq_128B:
  case Intrinsic::hexagon_V6_vgathermhwq:
  case Intrinsic::hexagon_V6_vgathermhwq_128B: {
    const Module &M = *I.getParent()->getParent()->getParent();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Type *VecTy = I.getArgOperand(1)->getType();
    Info.memVT = MVT::getVT(VecTy);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align =
        MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MOVolatile;
    return true;
  }
  default:
    break;
  }
  return false;
}

bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
  return X.getValueType().isScalarInteger(); // 'tstbit'
}

bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
}

bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (!VT1.isSimple() || !VT2.isSimple())
    return false;
  return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
}

bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
    const MachineFunction &MF, EVT VT) const {
  return isOperationLegalOrCustom(ISD::FMA, VT);
}

// Should we expand the build vector with shuffles?
bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
      unsigned DefinedValues) const {
  return false;
}

bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
                                               EVT VT) const {
  return true;
}

TargetLoweringBase::LegalizeTypeAction
HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
  unsigned VecLen = VT.getVectorNumElements();
  MVT ElemTy = VT.getVectorElementType();

  if (VecLen == 1 || VT.isScalableVector())
    return TargetLoweringBase::TypeScalarizeVector;

  if (Subtarget.useHVXOps()) {
    unsigned Action = getPreferredHvxVectorAction(VT);
    if (Action != ~0u)
      return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
  }

  // Always widen (remaining) vectors of i1.
  if (ElemTy == MVT::i1)
    return TargetLoweringBase::TypeWidenVector;

  return TargetLoweringBase::TypeSplitVector;
}

std::pair<SDValue, int>
HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
  if (Addr.getOpcode() == ISD::ADD) {
    SDValue Op1 = Addr.getOperand(1);
    if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
      return { Addr.getOperand(0), CN->getSExtValue() };
  }
  return { Addr, 0 };
}

// Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
// to select data from, V3 is the permutation.
SDValue
HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
      const {
  const auto *SVN = cast<ShuffleVectorSDNode>(Op);
  ArrayRef<int> AM = SVN->getMask();
  assert(AM.size() <= 8 && "Unexpected shuffle mask");
  unsigned VecLen = AM.size();

  MVT VecTy = ty(Op);
  assert(!Subtarget.isHVXVectorType(VecTy, true) &&
         "HVX shuffles should be legal");
  assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");

  SDValue Op0 = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  const SDLoc &dl(Op);

  // If the inputs are not the same as the output, bail. This is not an
  // error situation, but complicates the handling and the default expansion
  // (into BUILD_VECTOR) should be adequate.
  if (ty(Op0) != VecTy || ty(Op1) != VecTy)
    return SDValue();

  // Normalize the mask so that the first non-negative index comes from
  // the first operand.
  SmallVector<int,8> Mask(AM.begin(), AM.end());
  unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
  if (F == AM.size())
    return DAG.getUNDEF(VecTy);
  if (AM[F] >= int(VecLen)) {
    ShuffleVectorSDNode::commuteMask(Mask);
    std::swap(Op0, Op1);
  }

  // Express the shuffle mask in terms of bytes.
  SmallVector<int,8> ByteMask;
  unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    int M = Mask[i];
    if (M < 0) {
      for (unsigned j = 0; j != ElemBytes; ++j)
        ByteMask.push_back(-1);
    } else {
      for (unsigned j = 0; j != ElemBytes; ++j)
        ByteMask.push_back(M*ElemBytes + j);
    }
  }
  assert(ByteMask.size() <= 8);

  // All non-undef (non-negative) indexes are well within [0..127], so they
  // fit in a single byte. Build two 64-bit words:
  // - MaskIdx where each byte is the corresponding index (for non-negative
  //   indexes), and 0xFF for negative indexes, and
  // - MaskUnd that has 0xFF for each negative index.
  uint64_t MaskIdx = 0;
  uint64_t MaskUnd = 0;
  for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
    unsigned S = 8*i;
    uint64_t M = ByteMask[i] & 0xFF;
    if (M == 0xFF)
      MaskUnd |= M << S;
    MaskIdx |= M << S;
  }

  if (ByteMask.size() == 4) {
    // Identity.
    if (MaskIdx == (0x03020100 | MaskUnd))
      return Op0;
    // Byte swap.
    if (MaskIdx == (0x00010203 | MaskUnd)) {
      SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
      return DAG.getBitcast(VecTy, T1);
    }

    // Byte packs.
    SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
                                   typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
    if (MaskIdx == (0x06040200 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
    if (MaskIdx == (0x07050301 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);

    SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
                                   typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
    if (MaskIdx == (0x02000604 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
    if (MaskIdx == (0x03010705 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
  }

  if (ByteMask.size() == 8) {
    // Identity.
    if (MaskIdx == (0x0706050403020100ull | MaskUnd))
      return Op0;
    // Byte swap.
    if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
      SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
      return DAG.getBitcast(VecTy, T1);
    }

    // Halfword picks.
    if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
      return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
      return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
      VectorPair P = opSplit(Op0, dl, DAG);
      return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
    }

    // Byte packs.
    if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
  }

  return SDValue();
}

// Create a Hexagon-specific node for shifting a vector by an integer.
SDValue
HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
      const {
  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
    if (SDValue S = BVN->getSplatValue()) {
      unsigned NewOpc;
      switch (Op.getOpcode()) {
        case ISD::SHL:
          NewOpc = HexagonISD::VASL;
          break;
        case ISD::SRA:
          NewOpc = HexagonISD::VASR;
          break;
        case ISD::SRL:
          NewOpc = HexagonISD::VLSR;
          break;
        default:
          llvm_unreachable("Unexpected shift opcode");
      }
      return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
    }
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
  return getVectorShiftByInt(Op, DAG);
}

SDValue
HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
  if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
    return Op;
  return SDValue();
}

SDValue
HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  MVT InpTy = ty(InpV);
  assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
  const SDLoc &dl(Op);

  // Handle conversion from i8 to v8i1.
  if (InpTy == MVT::i8) {
    if (ResTy == MVT::v8i1) {
      SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
      SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
      return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
    }
    return SDValue();
  }

  return Op;
}

bool
HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
      MVT VecTy, SelectionDAG &DAG,
      MutableArrayRef<ConstantInt*> Consts) const {
  MVT ElemTy = VecTy.getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();
  IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
  bool AllConst = true;

  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    SDValue V = Values[i];
    if (V.isUndef()) {
      Consts[i] = ConstantInt::get(IntTy, 0);
      continue;
    }
    // Make sure to always cast to IntTy.
    if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
      const ConstantInt *CI = CN->getConstantIntValue();
      Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
    } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
      const ConstantFP *CF = CN->getConstantFPValue();
      APInt A = CF->getValueAPF().bitcastToAPInt();
      Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
    } else {
      AllConst = false;
    }
  }
  return AllConst;
}

SDValue
HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
                                     MVT VecTy, SelectionDAG &DAG) const {
  MVT ElemTy = VecTy.getVectorElementType();
  assert(VecTy.getVectorNumElements() == Elem.size());

  SmallVector<ConstantInt*,4> Consts(Elem.size());
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);

  unsigned First, Num = Elem.size();
  for (First = 0; First != Num; ++First)
    if (!isUndef(Elem[First]))
      break;
  if (First == Num)
    return DAG.getUNDEF(VecTy);

  if (AllConst &&
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
    return getZero(dl, VecTy, DAG);

  if (ElemTy == MVT::i16) {
    assert(Elem.size() == 2);
    if (AllConst) {
      uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
                   Consts[1]->getZExtValue() << 16;
      return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
    }
    SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
                         {Elem[1], Elem[0]}, DAG);
    return DAG.getBitcast(MVT::v2i16, N);
  }

  if (ElemTy == MVT::i8) {
    // First try generating a constant.
    if (AllConst) {
      int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
                  (Consts[1]->getZExtValue() & 0xFF) << 8 |
                  (Consts[1]->getZExtValue() & 0xFF) << 16 |
                  Consts[2]->getZExtValue() << 24;
      return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
    }

    // Then try splat.
    bool IsSplat = true;
    for (unsigned i = 0; i != Num; ++i) {
      if (i == First)
        continue;
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
        continue;
      IsSplat = false;
      break;
    }
    if (IsSplat) {
      // Legalize the operand to VSPLAT.
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
    }

    // Generate
    //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
    //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
    assert(Elem.size() == 4);
    SDValue Vs[4];
    for (unsigned i = 0; i != 4; ++i) {
      Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
      Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
    }
    SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
    SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
    SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
    SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
    SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});

    SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
    return DAG.getBitcast(MVT::v4i8, R);
  }

#ifndef NDEBUG
  dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
#endif
  llvm_unreachable("Unexpected vector element type");
}

SDValue
HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
                                     MVT VecTy, SelectionDAG &DAG) const {
  MVT ElemTy = VecTy.getVectorElementType();
  assert(VecTy.getVectorNumElements() == Elem.size());

  SmallVector<ConstantInt*,8> Consts(Elem.size());
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);

  unsigned First, Num = Elem.size();
  for (First = 0; First != Num; ++First)
    if (!isUndef(Elem[First]))
      break;
  if (First == Num)
    return DAG.getUNDEF(VecTy);

  if (AllConst &&
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
    return getZero(dl, VecTy, DAG);

  // First try splat if possible.
  if (ElemTy == MVT::i16) {
    bool IsSplat = true;
    for (unsigned i = 0; i != Num; ++i) {
      if (i == First)
        continue;
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
        continue;
      IsSplat = false;
      break;
    }
    if (IsSplat) {
      // Legalize the operand to VSPLAT.
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
    }
  }

  // Then try constant.
  if (AllConst) {
    uint64_t Val = 0;
    unsigned W = ElemTy.getSizeInBits();
    uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
                  : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
    for (unsigned i = 0; i != Num; ++i)
      Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
    SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
    return DAG.getBitcast(VecTy, V0);
  }

  // Build two 32-bit vectors and concatenate.
  MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
  SDValue L = (ElemTy == MVT::i32)
                ? Elem[0]
                : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
  SDValue H = (ElemTy == MVT::i32)
                ? Elem[1]
                : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
  return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
}

SDValue
HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
                                     const SDLoc &dl, MVT ValTy, MVT ResTy,
                                     SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  assert(!ValTy.isVector() ||
         VecTy.getVectorElementType() == ValTy.getVectorElementType());
  unsigned VecWidth = VecTy.getSizeInBits();
  unsigned ValWidth = ValTy.getSizeInBits();
  unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
  assert((VecWidth % ElemWidth) == 0);
  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);

  // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
  // without any coprocessors).
  if (ElemWidth == 1) {
    assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
    assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
    // Check if this is an extract of the lowest bit.
    if (IdxN) {
      // Extracting the lowest bit is a no-op, but it changes the type,
      // so it must be kept as an operation to avoid errors related to
      // type mismatches.
      if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
        return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
    }

    // If the value extracted is a single bit, use tstbit.
    if (ValWidth == 1) {
      SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
      SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
      SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
      return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
    }

    // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
    // a predicate register. The elements of the vector are repeated
    // in the register (if necessary) so that the total number is 8.
    // The extracted subvector will need to be expanded in such a way.
    unsigned Scale = VecWidth / ValWidth;

    // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
    // position 0.
    assert(ty(IdxV) == MVT::i32);
    unsigned VecRep = 8 / VecWidth;
    SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                             DAG.getConstant(8*VecRep, dl, MVT::i32));
    SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
    SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
    while (Scale > 1) {
      // The longest possible subvector is at most 32 bits, so it is always
      // contained in the low subregister.
      T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
      T1 = expandPredicate(T1, dl, DAG);
      Scale /= 2;
    }

    return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
  }

  assert(VecWidth == 32 || VecWidth == 64);

  // Cast everything to scalar integer types.
  MVT ScalarTy = tyScalar(VecTy);
  VecV = DAG.getBitcast(ScalarTy, VecV);

  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
  SDValue ExtV;

  if (IdxN) {
    unsigned Off = IdxN->getZExtValue() * ElemWidth;
    if (VecWidth == 64 && ValWidth == 32) {
      assert(Off == 0 || Off == 32);
      unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
      ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
    } else if (Off == 0 && (ValWidth % 8) == 0) {
      ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
    } else {
      SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
      // The return type of EXTRACTU must be the same as the type of the
      // input vector.
      ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
                         {VecV, WidthV, OffV});
    }
  } else {
    if (ty(IdxV) != MVT::i32)
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                               DAG.getConstant(ElemWidth, dl, MVT::i32));
    ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
                       {VecV, WidthV, OffV});
  }

  // Cast ExtV to the requested result type.
  ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
  ExtV = DAG.getBitcast(ResTy, ExtV);
  return ExtV;
}

SDValue
HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
                                    const SDLoc &dl, MVT ValTy,
                                    SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  if (VecTy.getVectorElementType() == MVT::i1) {
    MVT ValTy = ty(ValV);
    assert(ValTy.getVectorElementType() == MVT::i1);
    SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
    unsigned VecLen = VecTy.getVectorNumElements();
    unsigned Scale = VecLen / ValTy.getVectorNumElements();
    assert(Scale > 1);

    for (unsigned R = Scale; R > 1; R /= 2) {
      ValR = contractPredicate(ValR, dl, DAG);
      ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                         DAG.getUNDEF(MVT::i32), ValR);
    }
    // The longest possible subvector is at most 32 bits, so it is always
    // contained in the low subregister.
    ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);

    unsigned ValBytes = 64 / Scale;
    SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
    SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                              DAG.getConstant(8, dl, MVT::i32));
    SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
    SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
                              {VecR, ValR, Width, Idx});
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
  }

  unsigned VecWidth = VecTy.getSizeInBits();
  unsigned ValWidth = ValTy.getSizeInBits();
  assert(VecWidth == 32 || VecWidth == 64);
  assert((VecWidth % ValWidth) == 0);

  // Cast everything to scalar integer types.
  MVT ScalarTy = MVT::getIntegerVT(VecWidth);
  // The actual type of ValV may be different than ValTy (which is related
  // to the vector type).
  unsigned VW = ty(ValV).getSizeInBits();
  ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
  VecV = DAG.getBitcast(ScalarTy, VecV);
  if (VW != VecWidth)
    ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);

  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
  SDValue InsV;

  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
    unsigned W = C->getZExtValue() * ValWidth;
    SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
                       {VecV, ValV, WidthV, OffV});
  } else {
    if (ty(IdxV) != MVT::i32)
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
                       {VecV, ValV, WidthV, OffV});
  }

  return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
}

SDValue
HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
                                       SelectionDAG &DAG) const {
  assert(ty(Vec32).getSizeInBits() == 32);
  if (isUndef(Vec32))
    return DAG.getUNDEF(MVT::i64);
  return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
}

SDValue
HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
                                         SelectionDAG &DAG) const {
  assert(ty(Vec64).getSizeInBits() == 64);
  if (isUndef(Vec64))
    return DAG.getUNDEF(MVT::i32);
  return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
}

SDValue
HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
      const {
  if (Ty.isVector()) {
    assert(Ty.isInteger() && "Only integer vectors are supported here");
    unsigned W = Ty.getSizeInBits();
    if (W <= 64)
      return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
    return DAG.getNode(HexagonISD::VZERO, dl, Ty);
  }

  if (Ty.isInteger())
    return DAG.getConstant(0, dl, Ty);
  if (Ty.isFloatingPoint())
    return DAG.getConstantFP(0.0, dl, Ty);
  llvm_unreachable("Invalid type for zero");
}

SDValue
HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
      const {
  MVT ValTy = ty(Val);
  assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());

  unsigned ValLen = ValTy.getVectorNumElements();
  unsigned ResLen = ResTy.getVectorNumElements();
  if (ValLen == ResLen)
    return Val;

  const SDLoc &dl(Val);
  assert(ValLen < ResLen);
  assert(ResLen % ValLen == 0);

  SmallVector<SDValue, 4> Concats = {Val};
  for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
    Concats.push_back(DAG.getUNDEF(ValTy));

  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
}

SDValue
HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
  MVT VecTy = ty(Op);
  unsigned BW = VecTy.getSizeInBits();
  const SDLoc &dl(Op);
  SmallVector<SDValue,8> Ops;
  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
    Ops.push_back(Op.getOperand(i));

  if (BW == 32)
    return buildVector32(Ops, dl, VecTy, DAG);
  if (BW == 64)
    return buildVector64(Ops, dl, VecTy, DAG);

  if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
    // Check if this is a special case or all-0 or all-1.
    bool All0 = true, All1 = true;
    for (SDValue P : Ops) {
      auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
      if (CN == nullptr) {
        All0 = All1 = false;
        break;
      }
      uint32_t C = CN->getZExtValue();
      All0 &= (C == 0);
      All1 &= (C == 1);
    }
    if (All0)
      return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
    if (All1)
      return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);

    // For each i1 element in the resulting predicate register, put 1
    // shifted by the index of the element into a general-purpose register,
    // then or them together and transfer it back into a predicate register.
    SDValue Rs[8];
    SDValue Z = getZero(dl, MVT::i32, DAG);
    // Always produce 8 bits, repeat inputs if necessary.
    unsigned Rep = 8 / VecTy.getVectorNumElements();
    for (unsigned i = 0; i != 8; ++i) {
      SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
      Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
    }
    for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
      for (unsigned i = 0, e = A.size()/2; i != e; ++i)
        Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
    }
    // Move the value directly to a predicate register.
    return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
                                           SelectionDAG &DAG) const {
  MVT VecTy = ty(Op);
  const SDLoc &dl(Op);
  if (VecTy.getSizeInBits() == 64) {
    assert(Op.getNumOperands() == 2);
    return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
                       Op.getOperand(0));
  }

  MVT ElemTy = VecTy.getVectorElementType();
  if (ElemTy == MVT::i1) {
    assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
    MVT OpTy = ty(Op.getOperand(0));
    // Scale is how many times the operands need to be contracted to match
    // the representation in the target register.
    unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
    assert(Scale == Op.getNumOperands() && Scale > 1);

    // First, convert all bool vectors to integers, then generate pairwise
    // inserts to form values of doubled length. Up until there are only
    // two values left to concatenate, all of these values will fit in a
    // 32-bit integer, so keep them as i32 to use 32-bit inserts.
    SmallVector<SDValue,4> Words[2];
    unsigned IdxW = 0;

    for (SDValue P : Op.getNode()->op_values()) {
      SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
      for (unsigned R = Scale; R > 1; R /= 2) {
        W = contractPredicate(W, dl, DAG);
        W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                        DAG.getUNDEF(MVT::i32), W);
      }
      W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
      Words[IdxW].push_back(W);
    }

    while (Scale > 2) {
      SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
      Words[IdxW ^ 1].clear();

      for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
        SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
        // Insert W1 into W0 right next to the significant bits of W0.
        SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
                                {W0, W1, WidthV, WidthV});
        Words[IdxW ^ 1].push_back(T);
      }
      IdxW ^= 1;
      Scale /= 2;
    }

    // Another sanity check. At this point there should only be two words
    // left, and Scale should be 2.
    assert(Scale == 2 && Words[IdxW].size() == 2);

    SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                             Words[IdxW][1], Words[IdxW][0]);
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Vec = Op.getOperand(0);
  MVT ElemTy = ty(Vec).getVectorElementType();
  return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
                                              SelectionDAG &DAG) const {
  return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
                       ty(Op), ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                              SelectionDAG &DAG) const {
  return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
                      SDLoc(Op), ty(Op).getVectorElementType(), DAG);
}

SDValue
HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDValue ValV = Op.getOperand(1);
  return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
                      SDLoc(Op), ty(ValV), DAG);
}

bool
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
  // Assuming the caller does not have either a signext or zeroext modifier, and
  // only one value is accepted, any reasonable truncation is allowed.
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;

  // FIXME: in principle up to 64-bit could be made safe, but it would be very
  // fragile at the moment: any support for multiple value returns would be
  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
  return Ty1->getPrimitiveSizeInBits() <= 32;
}

SDValue
HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
  unsigned ClaimAlign = LN->getAlignment();
  validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
  // Call LowerUnalignedLoad for all loads, it recognizes loads that
  // don't need extra aligning.
  return LowerUnalignedLoad(Op, DAG);
}

SDValue
HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
  unsigned ClaimAlign = SN->getAlignment();
  SDValue Ptr = SN->getBasePtr();
  const SDLoc &dl(Op);
  validateConstPtrAlignment(Ptr, dl, ClaimAlign);

  MVT StoreTy = SN->getMemoryVT().getSimpleVT();
  unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
  if (ClaimAlign < NeedAlign)
    return expandUnalignedStore(SN, DAG);
  return Op;
}

SDValue
HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
      const {
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
  MVT LoadTy = ty(Op);
  unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
  unsigned HaveAlign = LN->getAlignment();
  if (HaveAlign >= NeedAlign)
    return Op;

  const SDLoc &dl(Op);
  const DataLayout &DL = DAG.getDataLayout();
  LLVMContext &Ctx = *DAG.getContext();

  // If the load aligning is disabled or the load can be broken up into two
  // smaller legal loads, do the default (target-independent) expansion.
  bool DoDefault = false;
  // Handle it in the default way if this is an indexed load.
  if (!LN->isUnindexed())
    DoDefault = true;

  if (!AlignLoads) {
    if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
                                       *LN->getMemOperand()))
      return Op;
    DoDefault = true;
  }
  if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
    // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
    MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
                                : MVT::getVectorVT(MVT::i8, HaveAlign);
    DoDefault =
        allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
  }
  if (DoDefault) {
    std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
    return DAG.getMergeValues({P.first, P.second}, dl);
  }

  // The code below generates two loads, both aligned as NeedAlign, and
  // with the distance of NeedAlign between them. For that to cover the
  // bits that need to be loaded (and without overlapping), the size of
  // the loads should be equal to NeedAlign. This is true for all loadable
  // types, but add an assertion in case something changes in the future.
  assert(LoadTy.getSizeInBits() == 8*NeedAlign);

  unsigned LoadLen = NeedAlign;
  SDValue Base = LN->getBasePtr();
  SDValue Chain = LN->getChain();
  auto BO = getBaseAndOffset(Base);
  unsigned BaseOpc = BO.first.getOpcode();
  if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
    return Op;

  if (BO.second % LoadLen != 0) {
    BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
                           DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
    BO.second -= BO.second % LoadLen;
  }
  SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
      ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
                    DAG.getConstant(NeedAlign, dl, MVT::i32))
      : BO.first;
  SDValue Base0 =
      DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::Fixed(BO.second), dl);
  SDValue Base1 = DAG.getMemBasePlusOffset(
      BaseNoOff, TypeSize::Fixed(BO.second + LoadLen), dl);

  MachineMemOperand *WideMMO = nullptr;
  if (MachineMemOperand *MMO = LN->getMemOperand()) {
    MachineFunction &MF = DAG.getMachineFunction();
    WideMMO = MF.getMachineMemOperand(
        MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
        MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
        MMO->getOrdering(), MMO->getFailureOrdering());
  }

  SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
  SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);

  SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
                                {Load1, Load0, BaseNoOff.getOperand(0)});
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                                 Load0.getValue(1), Load1.getValue(1));
  SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
  return M;
}

SDValue
HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
  SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
  auto *CY = dyn_cast<ConstantSDNode>(Y);
  if (!CY)
    return SDValue();

  const SDLoc &dl(Op);
  SDVTList VTs = Op.getNode()->getVTList();
  assert(VTs.NumVTs == 2);
  assert(VTs.VTs[1] == MVT::i1);
  unsigned Opc = Op.getOpcode();

  if (CY) {
    uint32_t VY = CY->getZExtValue();
    assert(VY != 0 && "This should have been folded");
    // X +/- 1
    if (VY != 1)
      return SDValue();

    if (Opc == ISD::UADDO) {
      SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
                                ISD::SETEQ);
      return DAG.getMergeValues({Op, Ov}, dl);
    }
    if (Opc == ISD::USUBO) {
      SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
                                DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
      return DAG.getMergeValues({Op, Ov}, dl);
    }
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
  const SDLoc &dl(Op);
  unsigned Opc = Op.getOpcode();
  SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);

  if (Opc == ISD::ADDCARRY)
    return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
                       { X, Y, C });

  EVT CarryTy = C.getValueType();
  SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
                             { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
  SDValue Out[] = { SubC.getValue(0),
                    DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
  return DAG.getMergeValues(Out, dl);
}

SDValue
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain     = Op.getOperand(0);
  SDValue Offset    = Op.getOperand(1);
  SDValue Handler   = Op.getOperand(2);
  SDLoc dl(Op);
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Mark function as containing a call to EH_RETURN.
  HexagonMachineFunctionInfo *FuncInfo =
    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
  FuncInfo->setHasEHReturn();

  unsigned OffsetReg = Hexagon::R28;

  SDValue StoreAddr =
      DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
                  DAG.getIntPtrConstant(4, dl));
  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);

  // Not needed we already use it as explict input to EH_RETURN.
  // MF.getRegInfo().addLiveOut(OffsetReg);

  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
}

SDValue
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  unsigned Opc = Op.getOpcode();

  // Handle INLINEASM first.
  if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
    return LowerINLINEASM(Op, DAG);

  if (isHvxOperation(Op.getNode(), DAG)) {
    // If HVX lowering returns nothing, try the default lowering.
    if (SDValue V = LowerHvxOperation(Op, DAG))
      return V;
  }

  switch (Opc) {
    default:
#ifndef NDEBUG
      Op.getNode()->dumpr(&DAG);
      if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
        errs() << "Error: check for a non-legal type in this operation\n";
#endif
      llvm_unreachable("Should not custom lower this!");
    case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
    case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
    case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
    case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
    case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
    case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
    case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
    case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
    case ISD::LOAD:                 return LowerLoad(Op, DAG);
    case ISD::STORE:                return LowerStore(Op, DAG);
    case ISD::UADDO:
    case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
    case ISD::ADDCARRY:
    case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
    case ISD::SRA:
    case ISD::SHL:
    case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
    case ISD::ROTL:                 return LowerROTL(Op, DAG);
    case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
    case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
    case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
    case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
    case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
    case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
    case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
    case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
    case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
    case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
    case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
    case ISD::VASTART:              return LowerVASTART(Op, DAG);
    case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
    case ISD::SETCC:                return LowerSETCC(Op, DAG);
    case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
    case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
    case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
    case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
      break;
  }

  return SDValue();
}

void
HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
                                             SmallVectorImpl<SDValue> &Results,
                                             SelectionDAG &DAG) const {
  if (isHvxOperation(N, DAG)) {
    LowerHvxOperationWrapper(N, Results, DAG);
    if (!Results.empty())
      return;
  }

  // We are only custom-lowering stores to verify the alignment of the
  // address if it is a compile-time constant. Since a store can be modified
  // during type-legalization (the value being stored may need legalization),
  // return empty Results here to indicate that we don't really make any
  // changes in the custom lowering.
  if (N->getOpcode() != ISD::STORE)
    return TargetLowering::LowerOperationWrapper(N, Results, DAG);
}

void
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
                                          SmallVectorImpl<SDValue> &Results,
                                          SelectionDAG &DAG) const {
  if (isHvxOperation(N, DAG)) {
    ReplaceHvxNodeResults(N, Results, DAG);
    if (!Results.empty())
      return;
  }

  const SDLoc &dl(N);
  switch (N->getOpcode()) {
    case ISD::SRL:
    case ISD::SRA:
    case ISD::SHL:
      return;
    case ISD::BITCAST:
      // Handle a bitcast from v8i1 to i8.
      if (N->getValueType(0) == MVT::i8) {
        SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
                             N->getOperand(0), DAG);
        SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
        Results.push_back(T);
      }
      break;
  }
}

SDValue
HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
      const {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();
  if (isHvxOperation(N, DCI.DAG)) {
    if (SDValue V = PerformHvxDAGCombine(N, DCI))
      return V;
    return SDValue();
  }

  SDValue Op(N, 0);
  const SDLoc &dl(Op);
  unsigned Opc = Op.getOpcode();

  if (Opc == HexagonISD::P2D) {
    SDValue P = Op.getOperand(0);
    switch (P.getOpcode()) {
      case HexagonISD::PTRUE:
        return DCI.DAG.getConstant(-1, dl, ty(Op));
      case HexagonISD::PFALSE:
        return getZero(dl, ty(Op), DCI.DAG);
      default:
        break;
    }
  } else if (Opc == ISD::VSELECT) {
    // This is pretty much duplicated in HexagonISelLoweringHVX...
    //
    // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
    SDValue Cond = Op.getOperand(0);
    if (Cond->getOpcode() == ISD::XOR) {
      SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
      if (C1->getOpcode() == HexagonISD::PTRUE) {
        SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
                                       Op.getOperand(2), Op.getOperand(1));
        return VSel;
      }
    }
  }

  return SDValue();
}

/// Returns relocation base for the given PIC jumptable.
SDValue
HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
                                                SelectionDAG &DAG) const {
  int Idx = cast<JumpTableSDNode>(Table)->getIndex();
  EVT VT = Table.getValueType();
  SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
}

//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//

TargetLowering::ConstraintType
HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
      case 'q':
      case 'v':
        if (Subtarget.useHVXOps())
          return C_RegisterClass;
        break;
      case 'a':
        return C_RegisterClass;
      default:
        break;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

std::pair<unsigned, const TargetRegisterClass*>
HexagonTargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {

  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':   // R0-R31
      switch (VT.SimpleTy) {
      default:
        return {0u, nullptr};
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
      case MVT::f32:
        return {0u, &Hexagon::IntRegsRegClass};
      case MVT::i64:
      case MVT::f64:
        return {0u, &Hexagon::DoubleRegsRegClass};
      }
      break;
    case 'a': // M0-M1
      if (VT != MVT::i32)
        return {0u, nullptr};
      return {0u, &Hexagon::ModRegsRegClass};
    case 'q': // q0-q3
      switch (VT.getSizeInBits()) {
      default:
        return {0u, nullptr};
      case 64:
      case 128:
        return {0u, &Hexagon::HvxQRRegClass};
      }
      break;
    case 'v': // V0-V31
      switch (VT.getSizeInBits()) {
      default:
        return {0u, nullptr};
      case 512:
        return {0u, &Hexagon::HvxVRRegClass};
      case 1024:
        if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
          return {0u, &Hexagon::HvxVRRegClass};
        return {0u, &Hexagon::HvxWRRegClass};
      case 2048:
        return {0u, &Hexagon::HvxWRRegClass};
      }
      break;
    default:
      return {0u, nullptr};
    }
  }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                         bool ForCodeSize) const {
  return true;
}

/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                  const AddrMode &AM, Type *Ty,
                                                  unsigned AS, Instruction *I) const {
  if (Ty->isSized()) {
    // When LSR detects uses of the same base address to access different
    // types (e.g. unions), it will assume a conservative type for these
    // uses:
    //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
    // The type Ty passed here would then be "void". Skip the alignment
    // checks, but do not return false right away, since that confuses
    // LSR into crashing.
    Align A = DL.getABITypeAlign(Ty);
    // The base offset must be a multiple of the alignment.
    if (!isAligned(A, AM.BaseOffs))
      return false;
    // The shifted offset must fit in 11 bits.
    if (!isInt<11>(AM.BaseOffs >> Log2(A)))
      return false;
  }

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  int Scale = AM.Scale;
  if (Scale < 0)
    Scale = -Scale;
  switch (Scale) {
  case 0:  // No scale reg, "r+i", "r", or just "i".
    break;
  default: // No scaled addressing mode.
    return false;
  }
  return true;
}

/// Return true if folding a constant offset with the given GlobalAddress is
/// legal.  It is frequently not legal in PIC relocation models.
bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
      const {
  return HTM.getRelocationModel() == Reloc::Static;
}

/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
  return Imm >= -512 && Imm <= 511;
}

/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
                                 SDValue Callee,
                                 CallingConv::ID CalleeCC,
                                 bool IsVarArg,
                                 bool IsCalleeStructRet,
                                 bool IsCallerStructRet,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
                                 SelectionDAG& DAG) const {
  const Function &CallerF = DAG.getMachineFunction().getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;

  // ***************************************************************************
  //  Look for obvious safe cases to perform tail call optimization that do not
  //  require ABI changes.
  // ***************************************************************************

  // If this is a tail call via a function pointer, then don't do it!
  if (!isa<GlobalAddressSDNode>(Callee) &&
      !isa<ExternalSymbolSDNode>(Callee)) {
    return false;
  }

  // Do not optimize if the calling conventions do not match and the conventions
  // used are not C or Fast.
  if (!CCMatch) {
    bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
    bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
    // If R & E, then ok.
    if (!R || !E)
      return false;
  }

  // Do not tail call optimize vararg calls.
  if (IsVarArg)
    return false;

  // Also avoid tail call optimization if either caller or callee uses struct
  // return semantics.
  if (IsCalleeStructRet || IsCallerStructRet)
    return false;

  // In addition to the cases above, we also disable Tail Call Optimization if
  // the calling convention code that at least one outgoing argument needs to
  // go on the stack. We cannot check that here because at this point that
  // information is not available.
  return true;
}

/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
///
/// If DstAlign is zero that means it's safe to destination alignment can
/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
/// a need to check it against alignment requirement, probably because the
/// source does not need to be loaded. If 'IsMemset' is true, that means it's
/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
/// does not need to be loaded.  It returns EVT::Other if the type should be
/// determined using generic target-independent logic.
EVT HexagonTargetLowering::getOptimalMemOpType(
    const MemOp &Op, const AttributeList &FuncAttributes) const {
  if (Op.size() >= 8 && Op.isAligned(Align(8)))
    return MVT::i64;
  if (Op.size() >= 4 && Op.isAligned(Align(4)))
    return MVT::i32;
  if (Op.size() >= 2 && Op.isAligned(Align(2)))
    return MVT::i16;
  return MVT::Other;
}

bool HexagonTargetLowering::allowsMemoryAccess(
    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
    Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
  MVT SVT = VT.getSimpleVT();
  if (Subtarget.isHVXVectorType(SVT, true))
    return allowsHvxMemoryAccess(SVT, Flags, Fast);
  return TargetLoweringBase::allowsMemoryAccess(
              Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
}

bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
      EVT VT, unsigned AddrSpace, unsigned Alignment,
      MachineMemOperand::Flags Flags, bool *Fast) const {
  MVT SVT = VT.getSimpleVT();
  if (Subtarget.isHVXVectorType(SVT, true))
    return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
  if (Fast)
    *Fast = false;
  return false;
}

std::pair<const TargetRegisterClass*, uint8_t>
HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
      MVT VT) const {
  if (Subtarget.isHVXVectorType(VT, true)) {
    unsigned BitWidth = VT.getSizeInBits();
    unsigned VecWidth = Subtarget.getVectorLength() * 8;

    if (VT.getVectorElementType() == MVT::i1)
      return std::make_pair(&Hexagon::HvxQRRegClass, 1);
    if (BitWidth == VecWidth)
      return std::make_pair(&Hexagon::HvxVRRegClass, 1);
    assert(BitWidth == 2 * VecWidth);
    return std::make_pair(&Hexagon::HvxWRRegClass, 1);
  }

  return TargetLowering::findRepresentativeClass(TRI, VT);
}

bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
      ISD::LoadExtType ExtTy, EVT NewVT) const {
  // TODO: This may be worth removing. Check regression tests for diffs.
  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
    return false;

  auto *L = cast<LoadSDNode>(Load);
  std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
  // Small-data object, do not shrink.
  if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
    return false;
  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
    auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
    const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
    return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
  }
  return true;
}

Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
      AtomicOrdering Ord) const {
  BasicBlock *BB = Builder.GetInsertBlock();
  Module *M = BB->getParent()->getParent();
  auto PT = cast<PointerType>(Addr->getType());
  Type *Ty = PT->getElementType();
  unsigned SZ = Ty->getPrimitiveSizeInBits();
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
                                   : Intrinsic::hexagon_L4_loadd_locked;
  Function *Fn = Intrinsic::getDeclaration(M, IntID);

  PointerType *NewPtrTy
    = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
  Addr = Builder.CreateBitCast(Addr, NewPtrTy);

  Value *Call = Builder.CreateCall(Fn, Addr, "larx");

  return Builder.CreateBitCast(Call, Ty);
}

/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
      Value *Val, Value *Addr, AtomicOrdering Ord) const {
  BasicBlock *BB = Builder.GetInsertBlock();
  Module *M = BB->getParent()->getParent();
  Type *Ty = Val->getType();
  unsigned SZ = Ty->getPrimitiveSizeInBits();

  Type *CastTy = Builder.getIntNTy(SZ);
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
                                   : Intrinsic::hexagon_S4_stored_locked;
  Function *Fn = Intrinsic::getDeclaration(M, IntID);

  unsigned AS = Addr->getType()->getPointerAddressSpace();
  Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
  Val = Builder.CreateBitCast(Val, CastTy);

  Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
  Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
  Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
  return Ext;
}

TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
  // Do not expand loads and stores that don't exceed 64 bits.
  return LI->getType()->getPrimitiveSizeInBits() > 64
             ? AtomicExpansionKind::LLOnly
             : AtomicExpansionKind::None;
}

bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
  // Do not expand loads and stores that don't exceed 64 bits.
  return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
}

TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
    AtomicCmpXchgInst *AI) const {
  return AtomicExpansionKind::LLSC;
}