HexagonBitTracker.cpp 39.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
//===- HexagonBitTracker.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HexagonBitTracker.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <utility>
#include <vector>

using namespace llvm;

using BT = BitTracker;

HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
                                   MachineRegisterInfo &mri,
                                   const HexagonInstrInfo &tii,
                                   MachineFunction &mf)
    : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
  // Populate the VRX map (VR to extension-type).
  // Go over all the formal parameters of the function. If a given parameter
  // P is sign- or zero-extended, locate the virtual register holding that
  // parameter and create an entry in the VRX map indicating the type of ex-
  // tension (and the source type).
  // This is a bit complicated to do accurately, since the memory layout in-
  // formation is necessary to precisely determine whether an aggregate para-
  // meter will be passed in a register or in memory. What is given in MRI
  // is the association between the physical register that is live-in (i.e.
  // holds an argument), and the virtual register that this value will be
  // copied into. This, by itself, is not sufficient to map back the virtual
  // register to a formal parameter from Function (since consecutive live-ins
  // from MRI may not correspond to consecutive formal parameters from Func-
  // tion). To avoid the complications with in-memory arguments, only consi-
  // der the initial sequence of formal parameters that are known to be
  // passed via registers.
  unsigned InVirtReg, InPhysReg = 0;

  for (const Argument &Arg : MF.getFunction().args()) {
    Type *ATy = Arg.getType();
    unsigned Width = 0;
    if (ATy->isIntegerTy())
      Width = ATy->getIntegerBitWidth();
    else if (ATy->isPointerTy())
      Width = 32;
    // If pointer size is not set through target data, it will default to
    // Module::AnyPointerSize.
    if (Width == 0 || Width > 64)
      break;
    if (Arg.hasAttribute(Attribute::ByVal))
      continue;
    InPhysReg = getNextPhysReg(InPhysReg, Width);
    if (!InPhysReg)
      break;
    InVirtReg = getVirtRegFor(InPhysReg);
    if (!InVirtReg)
      continue;
    if (Arg.hasAttribute(Attribute::SExt))
      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
    else if (Arg.hasAttribute(Attribute::ZExt))
      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
  }
}

BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
  if (Sub == 0)
    return MachineEvaluator::mask(Reg, 0);
  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
  unsigned ID = RC.getID();
  uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
  bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
  switch (ID) {
    case Hexagon::DoubleRegsRegClassID:
    case Hexagon::HvxWRRegClassID:
    case Hexagon::HvxVQRRegClassID:
      return IsSubLo ? BT::BitMask(0, RW-1)
                     : BT::BitMask(RW, 2*RW-1);
    default:
      break;
  }
#ifndef NDEBUG
  dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
         << TRI.getRegClassName(&RC) << '\n';
#endif
  llvm_unreachable("Unexpected register/subregister");
}

uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
  assert(Register::isPhysicalRegister(Reg));

  using namespace Hexagon;
  const auto &HST = MF.getSubtarget<HexagonSubtarget>();
  if (HST.useHVXOps()) {
    for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
                     HvxVQRRegClass})
      if (RC.contains(Reg))
        return TRI.getRegSizeInBits(RC);
  }
  // Default treatment for other physical registers.
  if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
    return TRI.getRegSizeInBits(*RC);

  llvm_unreachable(
      (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
}

const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
      const TargetRegisterClass &RC, unsigned Idx) const {
  if (Idx == 0)
    return RC;

#ifndef NDEBUG
  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
  bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
  bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
  assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
#endif

  switch (RC.getID()) {
    case Hexagon::DoubleRegsRegClassID:
      return Hexagon::IntRegsRegClass;
    case Hexagon::HvxWRRegClassID:
      return Hexagon::HvxVRRegClass;
    case Hexagon::HvxVQRRegClassID:
      return Hexagon::HvxWRRegClass;
    default:
      break;
  }
#ifndef NDEBUG
  dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
#endif
  llvm_unreachable("Unimplemented combination of reg class/subreg idx");
}

namespace {

class RegisterRefs {
  std::vector<BT::RegisterRef> Vector;

public:
  RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
    for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
      const MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg())
        Vector[i] = BT::RegisterRef(MO);
      // For indices that don't correspond to registers, the entry will
      // remain constructed via the default constructor.
    }
  }

  size_t size() const { return Vector.size(); }

  const BT::RegisterRef &operator[](unsigned n) const {
    // The main purpose of this operator is to assert with bad argument.
    assert(n < Vector.size());
    return Vector[n];
  }
};

} // end anonymous namespace

bool HexagonEvaluator::evaluate(const MachineInstr &MI,
                                const CellMapType &Inputs,
                                CellMapType &Outputs) const {
  using namespace Hexagon;

  unsigned NumDefs = 0;

  // Sanity verification: there should not be any defs with subregisters.
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    NumDefs++;
    assert(MO.getSubReg() == 0);
  }

  if (NumDefs == 0)
    return false;

  unsigned Opc = MI.getOpcode();

  if (MI.mayLoad()) {
    switch (Opc) {
      // These instructions may be marked as mayLoad, but they are generating
      // immediate values, so skip them.
      case CONST32:
      case CONST64:
        break;
      default:
        return evaluateLoad(MI, Inputs, Outputs);
    }
  }

  // Check COPY instructions that copy formal parameters into virtual
  // registers. Such parameters can be sign- or zero-extended at the
  // call site, and we should take advantage of this knowledge. The MRI
  // keeps a list of pairs of live-in physical and virtual registers,
  // which provides information about which virtual registers will hold
  // the argument values. The function will still contain instructions
  // defining those virtual registers, and in practice those are COPY
  // instructions from a physical to a virtual register. In such cases,
  // applying the argument extension to the virtual register can be seen
  // as simply mirroring the extension that had already been applied to
  // the physical register at the call site. If the defining instruction
  // was not a COPY, it would not be clear how to mirror that extension
  // on the callee's side. For that reason, only check COPY instructions
  // for potential extensions.
  if (MI.isCopy()) {
    if (evaluateFormalCopy(MI, Inputs, Outputs))
      return true;
  }

  // Beyond this point, if any operand is a global, skip that instruction.
  // The reason is that certain instructions that can take an immediate
  // operand can also have a global symbol in that operand. To avoid
  // checking what kind of operand a given instruction has individually
  // for each instruction, do it here. Global symbols as operands gene-
  // rally do not provide any useful information.
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
        MO.isCPI())
      return false;
  }

  RegisterRefs Reg(MI);
#define op(i) MI.getOperand(i)
#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
#define im(i) MI.getOperand(i).getImm()

  // If the instruction has no register operands, skip it.
  if (Reg.size() == 0)
    return false;

  // Record result for register in operand 0.
  auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
        -> bool {
    putCell(Reg[0], Val, Outputs);
    return true;
  };
  // Get the cell corresponding to the N-th operand.
  auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
                                        uint16_t W) -> BT::RegisterCell {
    const MachineOperand &Op = MI.getOperand(N);
    if (Op.isImm())
      return eIMM(Op.getImm(), W);
    if (!Op.isReg())
      return RegisterCell::self(0, W);
    assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
    return rc(N);
  };
  // Extract RW low bits of the cell.
  auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
        -> BT::RegisterCell {
    assert(RW <= RC.width());
    return eXTR(RC, 0, RW);
  };
  // Extract RW high bits of the cell.
  auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
        -> BT::RegisterCell {
    uint16_t W = RC.width();
    assert(RW <= W);
    return eXTR(RC, W-RW, W);
  };
  // Extract N-th halfword (counting from the least significant position).
  auto half = [this] (const BT::RegisterCell &RC, unsigned N)
        -> BT::RegisterCell {
    assert(N*16+16 <= RC.width());
    return eXTR(RC, N*16, N*16+16);
  };
  // Shuffle bits (pick even/odd from cells and merge into result).
  auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
                         uint16_t BW, bool Odd) -> BT::RegisterCell {
    uint16_t I = Odd, Ws = Rs.width();
    assert(Ws == Rt.width());
    RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
    I += 2;
    while (I*BW < Ws) {
      RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
      I += 2;
    }
    return RC;
  };

  // The bitwidth of the 0th operand. In most (if not all) of the
  // instructions below, the 0th operand is the defined register.
  // Pre-compute the bitwidth here, because it is needed in many cases
  // cases below.
  uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;

  // Register id of the 0th operand. It can be 0.
  unsigned Reg0 = Reg[0].Reg;

  switch (Opc) {
    // Transfer immediate:

    case A2_tfrsi:
    case A2_tfrpi:
    case CONST32:
    case CONST64:
      return rr0(eIMM(im(1), W0), Outputs);
    case PS_false:
      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
    case PS_true:
      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
    case PS_fi: {
      int FI = op(1).getIndex();
      int Off = op(2).getImm();
      unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
      unsigned L = countTrailingZeros(A);
      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
      RC.fill(0, L, BT::BitValue::Zero);
      return rr0(RC, Outputs);
    }

    // Transfer register:

    case A2_tfr:
    case A2_tfrp:
    case C2_pxfer_map:
      return rr0(rc(1), Outputs);
    case C2_tfrpr: {
      uint16_t RW = W0;
      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      assert(PW <= RW);
      RegisterCell PC = eXTR(rc(1), 0, PW);
      RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
      RC.fill(PW, RW, BT::BitValue::Zero);
      return rr0(RC, Outputs);
    }
    case C2_tfrrp: {
      uint16_t RW = W0;
      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
      RC.fill(PW, RW, BT::BitValue::Zero);
      return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
    }

    // Arithmetic:

    case A2_abs:
    case A2_absp:
      // TODO
      break;

    case A2_addsp: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      assert(W0 == 64 && W1 == 32);
      RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
      RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
      return rr0(RC, Outputs);
    }
    case A2_add:
    case A2_addp:
      return rr0(eADD(rc(1), rc(2)), Outputs);
    case A2_addi:
      return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
    case S4_addi_asl_ri: {
      RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_addi_lsr_ri: {
      RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_addaddi: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addi: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyrr_addi: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addr_u2: {
      RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addr: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyrr_addr: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case S4_subaddi: {
      RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
      return rr0(RC, Outputs);
    }
    case M2_accii: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M2_acci: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    case M2_subacc: {
      RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    case S2_addasl_rrri: {
      RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case C4_addipc: {
      RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
      RPC.fill(0, 2, BT::BitValue::Zero);
      return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
    }
    case A2_sub:
    case A2_subp:
      return rr0(eSUB(rc(1), rc(2)), Outputs);
    case A2_subri:
      return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
    case S4_subi_asl_ri: {
      RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_subi_lsr_ri: {
      RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M2_naccii: {
      RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M2_nacci: {
      RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    // 32-bit negation is done by "Rd = A2_subri 0, Rs"
    case A2_negp:
      return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);

    case M2_mpy_up: {
      RegisterCell M = eMLS(rc(1), rc(2));
      return rr0(hi(M, W0), Outputs);
    }
    case M2_dpmpyss_s0:
      return rr0(eMLS(rc(1), rc(2)), Outputs);
    case M2_dpmpyss_acc_s0:
      return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
    case M2_dpmpyss_nac_s0:
      return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
    case M2_mpyi: {
      RegisterCell M = eMLS(rc(1), rc(2));
      return rr0(lo(M, W0), Outputs);
    }
    case M2_macsip: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_macsin: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eSUB(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_maci: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_mpysmi: {
      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpysin: {
      RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpysip: {
      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpyu_up: {
      RegisterCell M = eMLU(rc(1), rc(2));
      return rr0(hi(M, W0), Outputs);
    }
    case M2_dpmpyuu_s0:
      return rr0(eMLU(rc(1), rc(2)), Outputs);
    case M2_dpmpyuu_acc_s0:
      return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
    case M2_dpmpyuu_nac_s0:
      return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
    //case M2_mpysu_up:

    // Logical/bitwise:

    case A2_andir:
      return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
    case A2_and:
    case A2_andp:
      return rr0(eAND(rc(1), rc(2)), Outputs);
    case A4_andn:
    case A4_andnp:
      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    case S4_andi_asl_ri: {
      RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_andi_lsr_ri: {
      RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M4_and_and:
      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_and_andn:
      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case M4_and_or:
      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_and_xor:
      return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_orir:
      return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
    case A2_or:
    case A2_orp:
      return rr0(eORL(rc(1), rc(2)), Outputs);
    case A4_orn:
    case A4_ornp:
      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    case S4_ori_asl_ri: {
      RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_ori_lsr_ri: {
      RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M4_or_and:
      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_or_andn:
      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case S4_or_andi:
    case S4_or_andix: {
      RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case S4_or_ori: {
      RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M4_or_or:
      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_or_xor:
      return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_xor:
    case A2_xorp:
      return rr0(eXOR(rc(1), rc(2)), Outputs);
    case M4_xor_and:
      return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_xor_andn:
      return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case M4_xor_or:
      return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_xor_xacc:
      return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_not:
    case A2_notp:
      return rr0(eNOT(rc(1)), Outputs);

    case S2_asl_i_r:
    case S2_asl_i_p:
      return rr0(eASL(rc(1), im(2)), Outputs);
    case A2_aslh:
      return rr0(eASL(rc(1), 16), Outputs);
    case S2_asl_i_r_acc:
    case S2_asl_i_p_acc:
      return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_nac:
    case S2_asl_i_p_nac:
      return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_and:
    case S2_asl_i_p_and:
      return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_or:
    case S2_asl_i_p_or:
      return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_xacc:
    case S2_asl_i_p_xacc:
      return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_vh:
    case S2_asl_i_vw:
      // TODO
      break;

    case S2_asr_i_r:
    case S2_asr_i_p:
      return rr0(eASR(rc(1), im(2)), Outputs);
    case A2_asrh:
      return rr0(eASR(rc(1), 16), Outputs);
    case S2_asr_i_r_acc:
    case S2_asr_i_p_acc:
      return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_nac:
    case S2_asr_i_p_nac:
      return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_and:
    case S2_asr_i_p_and:
      return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_or:
    case S2_asr_i_p_or:
      return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_rnd: {
      // The input is first sign-extended to 64 bits, then the output
      // is truncated back to 32 bits.
      assert(W0 == 32);
      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
      RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
      return rr0(eXTR(RC, 0, W0), Outputs);
    }
    case S2_asr_i_r_rnd_goodsyntax: {
      int64_t S = im(2);
      if (S == 0)
        return rr0(rc(1), Outputs);
      // Result: S2_asr_i_r_rnd Rs, u5-1
      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
      RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
      return rr0(eXTR(RC, 0, W0), Outputs);
    }
    case S2_asr_r_vh:
    case S2_asr_i_vw:
    case S2_asr_i_svw_trun:
      // TODO
      break;

    case S2_lsr_i_r:
    case S2_lsr_i_p:
      return rr0(eLSR(rc(1), im(2)), Outputs);
    case S2_lsr_i_r_acc:
    case S2_lsr_i_p_acc:
      return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_nac:
    case S2_lsr_i_p_nac:
      return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_and:
    case S2_lsr_i_p_and:
      return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_or:
    case S2_lsr_i_p_or:
      return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_xacc:
    case S2_lsr_i_p_xacc:
      return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);

    case S2_clrbit_i: {
      RegisterCell RC = rc(1);
      RC[im(2)] = BT::BitValue::Zero;
      return rr0(RC, Outputs);
    }
    case S2_setbit_i: {
      RegisterCell RC = rc(1);
      RC[im(2)] = BT::BitValue::One;
      return rr0(RC, Outputs);
    }
    case S2_togglebit_i: {
      RegisterCell RC = rc(1);
      uint16_t BX = im(2);
      RC[BX] = RC[BX].is(0) ? BT::BitValue::One
                            : RC[BX].is(1) ? BT::BitValue::Zero
                                           : BT::BitValue::self();
      return rr0(RC, Outputs);
    }

    case A4_bitspliti: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      uint16_t BX = im(2);
      // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
      const BT::BitValue Zero = BT::BitValue::Zero;
      RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
                                        .fill(W1+(W1-BX), W0, Zero);
      RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
      RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
      return rr0(RC, Outputs);
    }
    case S4_extract:
    case S4_extractp:
    case S2_extractu:
    case S2_extractup: {
      uint16_t Wd = im(2), Of = im(3);
      assert(Wd <= W0);
      if (Wd == 0)
        return rr0(eIMM(0, W0), Outputs);
      // If the width extends beyond the register size, pad the register
      // with 0 bits.
      RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
      RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
      // Ext is short, need to extend it with 0s or sign bit.
      RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
      if (Opc == S2_extractu || Opc == S2_extractup)
        return rr0(eZXT(RC, Wd), Outputs);
      return rr0(eSXT(RC, Wd), Outputs);
    }
    case S2_insert:
    case S2_insertp: {
      uint16_t Wd = im(3), Of = im(4);
      assert(Wd < W0 && Of < W0);
      // If Wd+Of exceeds W0, the inserted bits are truncated.
      if (Wd+Of > W0)
        Wd = W0-Of;
      if (Wd == 0)
        return rr0(rc(1), Outputs);
      return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
    }

    // Bit permutations:

    case A2_combineii:
    case A4_combineii:
    case A4_combineir:
    case A4_combineri:
    case A2_combinew:
    case V6_vcombine:
      assert(W0 % 2 == 0);
      return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
    case A2_combine_ll:
    case A2_combine_lh:
    case A2_combine_hl:
    case A2_combine_hh: {
      assert(W0 == 32);
      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
      // Low half in the output is 0 for _ll and _hl, 1 otherwise:
      unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
      // High half in the output is 0 for _ll and _lh, 1 otherwise:
      unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
      RegisterCell R1 = rc(1);
      RegisterCell R2 = rc(2);
      RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
      return rr0(RC, Outputs);
    }
    case S2_packhl: {
      assert(W0 == 64);
      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
      RegisterCell R1 = rc(1);
      RegisterCell R2 = rc(2);
      RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
                                   .cat(half(R1, 1));
      return rr0(RC, Outputs);
    }
    case S2_shuffeb: {
      RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
      return rr0(RC, Outputs);
    }
    case S2_shuffeh: {
      RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
      return rr0(RC, Outputs);
    }
    case S2_shuffob: {
      RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
      return rr0(RC, Outputs);
    }
    case S2_shuffoh: {
      RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
      return rr0(RC, Outputs);
    }
    case C2_mask: {
      uint16_t WR = W0;
      uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      assert(WR == 64 && WP == 8);
      RegisterCell R1 = rc(1);
      RegisterCell RC(WR);
      for (uint16_t i = 0; i < WP; ++i) {
        const BT::BitValue &V = R1[i];
        BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
        RC.fill(i*8, i*8+8, F);
      }
      return rr0(RC, Outputs);
    }

    // Mux:

    case C2_muxii:
    case C2_muxir:
    case C2_muxri:
    case C2_mux: {
      BT::BitValue PC0 = rc(1)[0];
      RegisterCell R2 = cop(2, W0);
      RegisterCell R3 = cop(3, W0);
      if (PC0.is(0) || PC0.is(1))
        return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
      R2.meet(R3, Reg[0].Reg);
      return rr0(R2, Outputs);
    }
    case C2_vmux:
      // TODO
      break;

    // Sign- and zero-extension:

    case A2_sxtb:
      return rr0(eSXT(rc(1), 8), Outputs);
    case A2_sxth:
      return rr0(eSXT(rc(1), 16), Outputs);
    case A2_sxtw: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      assert(W0 == 64 && W1 == 32);
      RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
      return rr0(RC, Outputs);
    }
    case A2_zxtb:
      return rr0(eZXT(rc(1), 8), Outputs);
    case A2_zxth:
      return rr0(eZXT(rc(1), 16), Outputs);

    // Saturations

    case A2_satb:
      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
    case A2_sath:
      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
    case A2_satub:
      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
    case A2_satuh:
      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);

    // Bit count:

    case S2_cl0:
    case S2_cl0p:
      // Always produce a 32-bit result.
      return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
    case S2_cl1:
    case S2_cl1p:
      return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
    case S2_clb:
    case S2_clbp: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      RegisterCell R1 = rc(1);
      BT::BitValue TV = R1[W1-1];
      if (TV.is(0) || TV.is(1))
        return rr0(eCLB(R1, TV, 32), Outputs);
      break;
    }
    case S2_ct0:
    case S2_ct0p:
      return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
    case S2_ct1:
    case S2_ct1p:
      return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
    case S5_popcountp:
      // TODO
      break;

    case C2_all8: {
      RegisterCell P1 = rc(1);
      bool Has0 = false, All1 = true;
      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
        if (!P1[i].is(1))
          All1 = false;
        if (!P1[i].is(0))
          continue;
        Has0 = true;
        break;
      }
      if (!Has0 && !All1)
        break;
      RegisterCell RC(W0);
      RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
      return rr0(RC, Outputs);
    }
    case C2_any8: {
      RegisterCell P1 = rc(1);
      bool Has1 = false, All0 = true;
      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
        if (!P1[i].is(0))
          All0 = false;
        if (!P1[i].is(1))
          continue;
        Has1 = true;
        break;
      }
      if (!Has1 && !All0)
        break;
      RegisterCell RC(W0);
      RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
      return rr0(RC, Outputs);
    }
    case C2_and:
      return rr0(eAND(rc(1), rc(2)), Outputs);
    case C2_andn:
      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    case C2_not:
      return rr0(eNOT(rc(1)), Outputs);
    case C2_or:
      return rr0(eORL(rc(1), rc(2)), Outputs);
    case C2_orn:
      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    case C2_xor:
      return rr0(eXOR(rc(1), rc(2)), Outputs);
    case C4_and_and:
      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    case C4_and_andn:
      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case C4_and_or:
      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    case C4_and_orn:
      return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    case C4_or_and:
      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    case C4_or_andn:
      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case C4_or_or:
      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    case C4_or_orn:
      return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    case C2_bitsclr:
    case C2_bitsclri:
    case C2_bitsset:
    case C4_nbitsclr:
    case C4_nbitsclri:
    case C4_nbitsset:
      // TODO
      break;
    case S2_tstbit_i:
    case S4_ntstbit_i: {
      BT::BitValue V = rc(1)[im(2)];
      if (V.is(0) || V.is(1)) {
        // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
        bool TV = (Opc == S2_tstbit_i);
        BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
        return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
      }
      break;
    }

    default:
      // For instructions that define a single predicate registers, store
      // the low 8 bits of the register only.
      if (unsigned DefR = getUniqueDefVReg(MI)) {
        if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
          BT::RegisterRef PD(DefR, 0);
          uint16_t RW = getRegBitWidth(PD);
          uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
          RegisterCell RC = RegisterCell::self(DefR, RW);
          RC.fill(PW, RW, BT::BitValue::Zero);
          putCell(PD, RC, Outputs);
          return true;
        }
      }
      return MachineEvaluator::evaluate(MI, Inputs, Outputs);
  }
  #undef im
  #undef rc
  #undef op
  return false;
}

bool HexagonEvaluator::evaluate(const MachineInstr &BI,
                                const CellMapType &Inputs,
                                BranchTargetList &Targets,
                                bool &FallsThru) const {
  // We need to evaluate one branch at a time. TII::analyzeBranch checks
  // all the branches in a basic block at once, so we cannot use it.
  unsigned Opc = BI.getOpcode();
  bool SimpleBranch = false;
  bool Negated = false;
  switch (Opc) {
    case Hexagon::J2_jumpf:
    case Hexagon::J2_jumpfpt:
    case Hexagon::J2_jumpfnew:
    case Hexagon::J2_jumpfnewpt:
      Negated = true;
      LLVM_FALLTHROUGH;
    case Hexagon::J2_jumpt:
    case Hexagon::J2_jumptpt:
    case Hexagon::J2_jumptnew:
    case Hexagon::J2_jumptnewpt:
      // Simple branch:  if([!]Pn) jump ...
      // i.e. Op0 = predicate, Op1 = branch target.
      SimpleBranch = true;
      break;
    case Hexagon::J2_jump:
      Targets.insert(BI.getOperand(0).getMBB());
      FallsThru = false;
      return true;
    default:
      // If the branch is of unknown type, assume that all successors are
      // executable.
      return false;
  }

  if (!SimpleBranch)
    return false;

  // BI is a conditional branch if we got here.
  RegisterRef PR = BI.getOperand(0);
  RegisterCell PC = getCell(PR, Inputs);
  const BT::BitValue &Test = PC[0];

  // If the condition is neither true nor false, then it's unknown.
  if (!Test.is(0) && !Test.is(1))
    return false;

  // "Test.is(!Negated)" means "branch condition is true".
  if (!Test.is(!Negated)) {
    // Condition known to be false.
    FallsThru = true;
    return true;
  }

  Targets.insert(BI.getOperand(1).getMBB());
  FallsThru = false;
  return true;
}

unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
  unsigned DefReg = 0;
  for (const MachineOperand &Op : MI.operands()) {
    if (!Op.isReg() || !Op.isDef())
      continue;
    Register R = Op.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    if (DefReg != 0)
      return 0;
    DefReg = R;
  }
  return DefReg;
}

bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
                                    const CellMapType &Inputs,
                                    CellMapType &Outputs) const {
  using namespace Hexagon;

  if (TII.isPredicated(MI))
    return false;
  assert(MI.mayLoad() && "A load that mayn't?");
  unsigned Opc = MI.getOpcode();

  uint16_t BitNum;
  bool SignEx;

  switch (Opc) {
    default:
      return false;

#if 0
    // memb_fifo
    case L2_loadalignb_pbr:
    case L2_loadalignb_pcr:
    case L2_loadalignb_pi:
    // memh_fifo
    case L2_loadalignh_pbr:
    case L2_loadalignh_pcr:
    case L2_loadalignh_pi:
    // membh
    case L2_loadbsw2_pbr:
    case L2_loadbsw2_pci:
    case L2_loadbsw2_pcr:
    case L2_loadbsw2_pi:
    case L2_loadbsw4_pbr:
    case L2_loadbsw4_pci:
    case L2_loadbsw4_pcr:
    case L2_loadbsw4_pi:
    // memubh
    case L2_loadbzw2_pbr:
    case L2_loadbzw2_pci:
    case L2_loadbzw2_pcr:
    case L2_loadbzw2_pi:
    case L2_loadbzw4_pbr:
    case L2_loadbzw4_pci:
    case L2_loadbzw4_pcr:
    case L2_loadbzw4_pi:
#endif

    case L2_loadrbgp:
    case L2_loadrb_io:
    case L2_loadrb_pbr:
    case L2_loadrb_pci:
    case L2_loadrb_pcr:
    case L2_loadrb_pi:
    case PS_loadrbabs:
    case L4_loadrb_ap:
    case L4_loadrb_rr:
    case L4_loadrb_ur:
      BitNum = 8;
      SignEx = true;
      break;

    case L2_loadrubgp:
    case L2_loadrub_io:
    case L2_loadrub_pbr:
    case L2_loadrub_pci:
    case L2_loadrub_pcr:
    case L2_loadrub_pi:
    case PS_loadrubabs:
    case L4_loadrub_ap:
    case L4_loadrub_rr:
    case L4_loadrub_ur:
      BitNum = 8;
      SignEx = false;
      break;

    case L2_loadrhgp:
    case L2_loadrh_io:
    case L2_loadrh_pbr:
    case L2_loadrh_pci:
    case L2_loadrh_pcr:
    case L2_loadrh_pi:
    case PS_loadrhabs:
    case L4_loadrh_ap:
    case L4_loadrh_rr:
    case L4_loadrh_ur:
      BitNum = 16;
      SignEx = true;
      break;

    case L2_loadruhgp:
    case L2_loadruh_io:
    case L2_loadruh_pbr:
    case L2_loadruh_pci:
    case L2_loadruh_pcr:
    case L2_loadruh_pi:
    case L4_loadruh_rr:
    case PS_loadruhabs:
    case L4_loadruh_ap:
    case L4_loadruh_ur:
      BitNum = 16;
      SignEx = false;
      break;

    case L2_loadrigp:
    case L2_loadri_io:
    case L2_loadri_pbr:
    case L2_loadri_pci:
    case L2_loadri_pcr:
    case L2_loadri_pi:
    case L2_loadw_locked:
    case PS_loadriabs:
    case L4_loadri_ap:
    case L4_loadri_rr:
    case L4_loadri_ur:
    case LDriw_pred:
      BitNum = 32;
      SignEx = true;
      break;

    case L2_loadrdgp:
    case L2_loadrd_io:
    case L2_loadrd_pbr:
    case L2_loadrd_pci:
    case L2_loadrd_pcr:
    case L2_loadrd_pi:
    case L4_loadd_locked:
    case PS_loadrdabs:
    case L4_loadrd_ap:
    case L4_loadrd_rr:
    case L4_loadrd_ur:
      BitNum = 64;
      SignEx = true;
      break;
  }

  const MachineOperand &MD = MI.getOperand(0);
  assert(MD.isReg() && MD.isDef());
  RegisterRef RD = MD;

  uint16_t W = getRegBitWidth(RD);
  assert(W >= BitNum && BitNum > 0);
  RegisterCell Res(W);

  for (uint16_t i = 0; i < BitNum; ++i)
    Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));

  if (SignEx) {
    const BT::BitValue &Sign = Res[BitNum-1];
    for (uint16_t i = BitNum; i < W; ++i)
      Res[i] = BT::BitValue::ref(Sign);
  } else {
    for (uint16_t i = BitNum; i < W; ++i)
      Res[i] = BT::BitValue::Zero;
  }

  putCell(RD, Res, Outputs);
  return true;
}

bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
                                          const CellMapType &Inputs,
                                          CellMapType &Outputs) const {
  // If MI defines a formal parameter, but is not a copy (loads are handled
  // in evaluateLoad), then it's not clear what to do.
  assert(MI.isCopy());

  RegisterRef RD = MI.getOperand(0);
  RegisterRef RS = MI.getOperand(1);
  assert(RD.Sub == 0);
  if (!Register::isPhysicalRegister(RS.Reg))
    return false;
  RegExtMap::const_iterator F = VRX.find(RD.Reg);
  if (F == VRX.end())
    return false;

  uint16_t EW = F->second.Width;
  // Store RD's cell into the map. This will associate the cell with a virtual
  // register, and make zero-/sign-extends possible (otherwise we would be ex-
  // tending "self" bit values, which will have no effect, since "self" values
  // cannot be references to anything).
  putCell(RD, getCell(RS, Inputs), Outputs);

  RegisterCell Res;
  // Read RD's cell from the outputs instead of RS's cell from the inputs:
  if (F->second.Type == ExtType::SExt)
    Res = eSXT(getCell(RD, Outputs), EW);
  else if (F->second.Type == ExtType::ZExt)
    Res = eZXT(getCell(RD, Outputs), EW);

  putCell(RD, Res, Outputs);
  return true;
}

unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
  using namespace Hexagon;

  bool Is64 = DoubleRegsRegClass.contains(PReg);
  assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));

  static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
  static const unsigned Phys64[] = { D0, D1, D2 };
  const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
  const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);

  // Return the first parameter register of the required width.
  if (PReg == 0)
    return (Width <= 32) ? Phys32[0] : Phys64[0];

  // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
  // next register.
  unsigned Idx32 = 0, Idx64 = 0;
  if (!Is64) {
    while (Idx32 < Num32) {
      if (Phys32[Idx32] == PReg)
        break;
      Idx32++;
    }
    Idx64 = Idx32/2;
  } else {
    while (Idx64 < Num64) {
      if (Phys64[Idx64] == PReg)
        break;
      Idx64++;
    }
    Idx32 = Idx64*2+1;
  }

  if (Width <= 32)
    return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
  return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
}

unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
  for (std::pair<unsigned,unsigned> P : MRI.liveins())
    if (P.first == PReg)
      return P.second;
  return 0;
}