ARMBaseRegisterInfo.cpp 34.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
//===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the base ARM implementation of TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARMBaseRegisterInfo.h"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMFrameLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <utility>

#define DEBUG_TYPE "arm-register-info"

#define GET_REGINFO_TARGET_DESC
#include "ARMGenRegisterInfo.inc"

using namespace llvm;

ARMBaseRegisterInfo::ARMBaseRegisterInfo()
    : ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC) {}

static unsigned getFramePointerReg(const ARMSubtarget &STI) {
  return STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
}

const MCPhysReg*
ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  const ARMSubtarget &STI = MF->getSubtarget<ARMSubtarget>();
  bool UseSplitPush = STI.splitFramePushPop(*MF);
  const MCPhysReg *RegList =
      STI.isTargetDarwin()
          ? CSR_iOS_SaveList
          : (UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList);

  const Function &F = MF->getFunction();
  if (F.getCallingConv() == CallingConv::GHC) {
    // GHC set of callee saved regs is empty as all those regs are
    // used for passing STG regs around
    return CSR_NoRegs_SaveList;
  } else if (F.getCallingConv() == CallingConv::CFGuard_Check) {
    return CSR_Win_AAPCS_CFGuard_Check_SaveList;
  } else if (F.hasFnAttribute("interrupt")) {
    if (STI.isMClass()) {
      // M-class CPUs have hardware which saves the registers needed to allow a
      // function conforming to the AAPCS to function as a handler.
      return UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList;
    } else if (F.getFnAttribute("interrupt").getValueAsString() == "FIQ") {
      // Fast interrupt mode gives the handler a private copy of R8-R14, so less
      // need to be saved to restore user-mode state.
      return CSR_FIQ_SaveList;
    } else {
      // Generally only R13-R14 (i.e. SP, LR) are automatically preserved by
      // exception handling.
      return CSR_GenericInt_SaveList;
    }
  }

  if (STI.getTargetLowering()->supportSwiftError() &&
      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
    if (STI.isTargetDarwin())
      return CSR_iOS_SwiftError_SaveList;

    return UseSplitPush ? CSR_AAPCS_SplitPush_SwiftError_SaveList :
      CSR_AAPCS_SwiftError_SaveList;
  }

  if (STI.isTargetDarwin() && F.getCallingConv() == CallingConv::CXX_FAST_TLS)
    return MF->getInfo<ARMFunctionInfo>()->isSplitCSR()
               ? CSR_iOS_CXX_TLS_PE_SaveList
               : CSR_iOS_CXX_TLS_SaveList;
  return RegList;
}

const MCPhysReg *ARMBaseRegisterInfo::getCalleeSavedRegsViaCopy(
    const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
      MF->getInfo<ARMFunctionInfo>()->isSplitCSR())
    return CSR_iOS_CXX_TLS_ViaCopy_SaveList;
  return nullptr;
}

const uint32_t *
ARMBaseRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return CSR_NoRegs_RegMask;
  if (CC == CallingConv::CFGuard_Check)
    return CSR_Win_AAPCS_CFGuard_Check_RegMask;
  if (STI.getTargetLowering()->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return STI.isTargetDarwin() ? CSR_iOS_SwiftError_RegMask
                                : CSR_AAPCS_SwiftError_RegMask;

  if (STI.isTargetDarwin() && CC == CallingConv::CXX_FAST_TLS)
    return CSR_iOS_CXX_TLS_RegMask;
  return STI.isTargetDarwin() ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
}

const uint32_t*
ARMBaseRegisterInfo::getNoPreservedMask() const {
  return CSR_NoRegs_RegMask;
}

const uint32_t *
ARMBaseRegisterInfo::getTLSCallPreservedMask(const MachineFunction &MF) const {
  assert(MF.getSubtarget<ARMSubtarget>().isTargetDarwin() &&
         "only know about special TLS call on Darwin");
  return CSR_iOS_TLSCall_RegMask;
}

const uint32_t *
ARMBaseRegisterInfo::getSjLjDispatchPreservedMask(const MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  if (!STI.useSoftFloat() && STI.hasVFP2Base() && !STI.isThumb1Only())
    return CSR_NoRegs_RegMask;
  else
    return CSR_FPRegs_RegMask;
}

const uint32_t *
ARMBaseRegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
                                                CallingConv::ID CC) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  // This should return a register mask that is the same as that returned by
  // getCallPreservedMask but that additionally preserves the register used for
  // the first i32 argument (which must also be the register used to return a
  // single i32 return value)
  //
  // In case that the calling convention does not use the same register for
  // both or otherwise does not want to enable this optimization, the function
  // should return NULL
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return nullptr;
  return STI.isTargetDarwin() ? CSR_iOS_ThisReturn_RegMask
                              : CSR_AAPCS_ThisReturn_RegMask;
}

ArrayRef<MCPhysReg> ARMBaseRegisterInfo::getIntraCallClobberedRegs(
    const MachineFunction *MF) const {
  static const MCPhysReg IntraCallClobberedRegs[] = {ARM::R12};
  return ArrayRef<MCPhysReg>(IntraCallClobberedRegs);
}

BitVector ARMBaseRegisterInfo::
getReservedRegs(const MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  // FIXME: avoid re-calculating this every time.
  BitVector Reserved(getNumRegs());
  markSuperRegs(Reserved, ARM::SP);
  markSuperRegs(Reserved, ARM::PC);
  markSuperRegs(Reserved, ARM::FPSCR);
  markSuperRegs(Reserved, ARM::APSR_NZCV);
  if (TFI->hasFP(MF))
    markSuperRegs(Reserved, getFramePointerReg(STI));
  if (hasBasePointer(MF))
    markSuperRegs(Reserved, BasePtr);
  // Some targets reserve R9.
  if (STI.isR9Reserved())
    markSuperRegs(Reserved, ARM::R9);
  // Reserve D16-D31 if the subtarget doesn't support them.
  if (!STI.hasD32()) {
    static_assert(ARM::D31 == ARM::D16 + 15, "Register list not consecutive!");
    for (unsigned R = 0; R < 16; ++R)
      markSuperRegs(Reserved, ARM::D16 + R);
  }
  const TargetRegisterClass &RC = ARM::GPRPairRegClass;
  for (unsigned Reg : RC)
    for (MCSubRegIterator SI(Reg, this); SI.isValid(); ++SI)
      if (Reserved.test(*SI))
        markSuperRegs(Reserved, Reg);
  // For v8.1m architecture
  markSuperRegs(Reserved, ARM::ZR);

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

bool ARMBaseRegisterInfo::
isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const {
  return !getReservedRegs(MF).test(PhysReg);
}

bool ARMBaseRegisterInfo::isInlineAsmReadOnlyReg(const MachineFunction &MF,
                                                 unsigned PhysReg) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  BitVector Reserved(getNumRegs());
  markSuperRegs(Reserved, ARM::PC);
  if (TFI->hasFP(MF))
    markSuperRegs(Reserved, getFramePointerReg(STI));
  if (hasBasePointer(MF))
    markSuperRegs(Reserved, BasePtr);
  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved.test(PhysReg);
}

const TargetRegisterClass *
ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
                                               const MachineFunction &MF) const {
  const TargetRegisterClass *Super = RC;
  TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
  do {
    switch (Super->getID()) {
    case ARM::GPRRegClassID:
    case ARM::SPRRegClassID:
    case ARM::DPRRegClassID:
    case ARM::GPRPairRegClassID:
      return Super;
    case ARM::QPRRegClassID:
    case ARM::QQPRRegClassID:
    case ARM::QQQQPRRegClassID:
      if (MF.getSubtarget<ARMSubtarget>().hasNEON())
        return Super;
    }
    Super = *I++;
  } while (Super);
  return RC;
}

const TargetRegisterClass *
ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
                                                                         const {
  return &ARM::GPRRegClass;
}

const TargetRegisterClass *
ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &ARM::CCRRegClass)
    return &ARM::rGPRRegClass;  // Can't copy CCR registers.
  return RC;
}

unsigned
ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                         MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  switch (RC->getID()) {
  default:
    return 0;
  case ARM::tGPRRegClassID: {
    // hasFP ends up calling getMaxCallFrameComputed() which may not be
    // available when getPressureLimit() is called as part of
    // ScheduleDAGRRList.
    bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed()
                 ? TFI->hasFP(MF) : true;
    return 5 - HasFP;
  }
  case ARM::GPRRegClassID: {
    bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed()
                 ? TFI->hasFP(MF) : true;
    return 10 - HasFP - (STI.isR9Reserved() ? 1 : 0);
  }
  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
  case ARM::DPRRegClassID:
    return 32 - 10;
  }
}

// Get the other register in a GPRPair.
static MCPhysReg getPairedGPR(MCPhysReg Reg, bool Odd,
                              const MCRegisterInfo *RI) {
  for (MCSuperRegIterator Supers(Reg, RI); Supers.isValid(); ++Supers)
    if (ARM::GPRPairRegClass.contains(*Supers))
      return RI->getSubReg(*Supers, Odd ? ARM::gsub_1 : ARM::gsub_0);
  return 0;
}

// Resolve the RegPairEven / RegPairOdd register allocator hints.
bool ARMBaseRegisterInfo::getRegAllocationHints(
    Register VirtReg, ArrayRef<MCPhysReg> Order,
    SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
    const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  std::pair<Register, Register> Hint = MRI.getRegAllocationHint(VirtReg);

  unsigned Odd;
  switch (Hint.first) {
  case ARMRI::RegPairEven:
    Odd = 0;
    break;
  case ARMRI::RegPairOdd:
    Odd = 1;
    break;
  default:
    TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM);
    return false;
  }

  // This register should preferably be even (Odd == 0) or odd (Odd == 1).
  // Check if the other part of the pair has already been assigned, and provide
  // the paired register as the first hint.
  Register Paired = Hint.second;
  if (!Paired)
    return false;

  Register PairedPhys;
  if (Paired.isPhysical()) {
    PairedPhys = Paired;
  } else if (VRM && VRM->hasPhys(Paired)) {
    PairedPhys = getPairedGPR(VRM->getPhys(Paired), Odd, this);
  }

  // First prefer the paired physreg.
  if (PairedPhys && is_contained(Order, PairedPhys))
    Hints.push_back(PairedPhys);

  // Then prefer even or odd registers.
  for (MCPhysReg Reg : Order) {
    if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd)
      continue;
    // Don't provide hints that are paired to a reserved register.
    MCPhysReg Paired = getPairedGPR(Reg, !Odd, this);
    if (!Paired || MRI.isReserved(Paired))
      continue;
    Hints.push_back(Reg);
  }
  return false;
}

void ARMBaseRegisterInfo::updateRegAllocHint(Register Reg, Register NewReg,
                                             MachineFunction &MF) const {
  MachineRegisterInfo *MRI = &MF.getRegInfo();
  std::pair<Register, Register> Hint = MRI->getRegAllocationHint(Reg);
  if ((Hint.first == ARMRI::RegPairOdd || Hint.first == ARMRI::RegPairEven) &&
      Hint.second.isVirtual()) {
    // If 'Reg' is one of the even / odd register pair and it's now changed
    // (e.g. coalesced) into a different register. The other register of the
    // pair allocation hint must be updated to reflect the relationship
    // change.
    Register OtherReg = Hint.second;
    Hint = MRI->getRegAllocationHint(OtherReg);
    // Make sure the pair has not already divorced.
    if (Hint.second == Reg) {
      MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
      if (Register::isVirtualRegister(NewReg))
        MRI->setRegAllocationHint(NewReg,
                                  Hint.first == ARMRI::RegPairOdd
                                      ? ARMRI::RegPairEven
                                      : ARMRI::RegPairOdd,
                                  OtherReg);
    }
  }
}

bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  // If we have stack realignment and VLAs, we have no pointer to use to
  // access the stack. If we have stack realignment, and a large call frame,
  // we have no place to allocate the emergency spill slot.
  if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF))
    return true;

  // Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
  // negative range for ldr/str (255), and Thumb1 is positive offsets only.
  //
  // It's going to be better to use the SP or Base Pointer instead. When there
  // are variable sized objects, we can't reference off of the SP, so we
  // reserve a Base Pointer.
  //
  // For Thumb2, estimate whether a negative offset from the frame pointer
  // will be sufficient to reach the whole stack frame. If a function has a
  // smallish frame, it's less likely to have lots of spills and callee saved
  // space, so it's all more likely to be within range of the frame pointer.
  // If it's wrong, the scavenger will still enable access to work, it just
  // won't be optimal.  (We should always be able to reach the emergency
  // spill slot from the frame pointer.)
  if (AFI->isThumb2Function() && MFI.hasVarSizedObjects() &&
      MFI.getLocalFrameSize() >= 128)
    return true;
  // For Thumb1, if sp moves, nothing is in range, so force a base pointer.
  // This is necessary for correctness in cases where we need an emergency
  // spill slot. (In Thumb1, we can't use a negative offset from the frame
  // pointer.)
  if (AFI->isThumb1OnlyFunction() && !TFI->hasReservedCallFrame(MF))
    return true;
  return false;
}

bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
  const MachineRegisterInfo *MRI = &MF.getRegInfo();
  const ARMFrameLowering *TFI = getFrameLowering(MF);
  // We can't realign the stack if:
  // 1. Dynamic stack realignment is explicitly disabled,
  // 2. There are VLAs in the function and the base pointer is disabled.
  if (!TargetRegisterInfo::canRealignStack(MF))
    return false;
  // Stack realignment requires a frame pointer.  If we already started
  // register allocation with frame pointer elimination, it is too late now.
  if (!MRI->canReserveReg(getFramePointerReg(MF.getSubtarget<ARMSubtarget>())))
    return false;
  // We may also need a base pointer if there are dynamic allocas or stack
  // pointer adjustments around calls.
  if (TFI->hasReservedCallFrame(MF))
    return true;
  // A base pointer is required and allowed.  Check that it isn't too late to
  // reserve it.
  return MRI->canReserveReg(BasePtr);
}

bool ARMBaseRegisterInfo::
cannotEliminateFrame(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
    return true;
  return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken()
    || needsStackRealignment(MF);
}

Register
ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  if (TFI->hasFP(MF))
    return getFramePointerReg(STI);
  return ARM::SP;
}

/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void ARMBaseRegisterInfo::emitLoadConstPool(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    const DebugLoc &dl, Register DestReg, unsigned SubIdx, int Val,
    ARMCC::CondCodes Pred, Register PredReg, unsigned MIFlags) const {
  MachineFunction &MF = *MBB.getParent();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  MachineConstantPool *ConstantPool = MF.getConstantPool();
  const Constant *C =
        ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), Val);
  unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align(4));

  BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
      .addReg(DestReg, getDefRegState(true), SubIdx)
      .addConstantPoolIndex(Idx)
      .addImm(0)
      .add(predOps(Pred, PredReg))
      .setMIFlags(MIFlags);
}

bool ARMBaseRegisterInfo::
requiresRegisterScavenging(const MachineFunction &MF) const {
  return true;
}

bool ARMBaseRegisterInfo::
requiresFrameIndexScavenging(const MachineFunction &MF) const {
  return true;
}

bool ARMBaseRegisterInfo::
requiresVirtualBaseRegisters(const MachineFunction &MF) const {
  return true;
}

int64_t ARMBaseRegisterInfo::
getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
  const MCInstrDesc &Desc = MI->getDesc();
  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
  int64_t InstrOffs = 0;
  int Scale = 1;
  unsigned ImmIdx = 0;
  switch (AddrMode) {
  case ARMII::AddrModeT2_i8:
  case ARMII::AddrModeT2_i12:
  case ARMII::AddrMode_i12:
    InstrOffs = MI->getOperand(Idx+1).getImm();
    Scale = 1;
    break;
  case ARMII::AddrMode5: {
    // VFP address mode.
    const MachineOperand &OffOp = MI->getOperand(Idx+1);
    InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
    if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
      InstrOffs = -InstrOffs;
    Scale = 4;
    break;
  }
  case ARMII::AddrMode2:
    ImmIdx = Idx+2;
    InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
    if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
      InstrOffs = -InstrOffs;
    break;
  case ARMII::AddrMode3:
    ImmIdx = Idx+2;
    InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
    if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
      InstrOffs = -InstrOffs;
    break;
  case ARMII::AddrModeT1_s:
    ImmIdx = Idx+1;
    InstrOffs = MI->getOperand(ImmIdx).getImm();
    Scale = 4;
    break;
  default:
    llvm_unreachable("Unsupported addressing mode!");
  }

  return InstrOffs * Scale;
}

/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool ARMBaseRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
  for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
    assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
  }

  // It's the load/store FI references that cause issues, as it can be difficult
  // to materialize the offset if it won't fit in the literal field. Estimate
  // based on the size of the local frame and some conservative assumptions
  // about the rest of the stack frame (note, this is pre-regalloc, so
  // we don't know everything for certain yet) whether this offset is likely
  // to be out of range of the immediate. Return true if so.

  // We only generate virtual base registers for loads and stores, so
  // return false for everything else.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
  case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
  case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
  case ARM::t2LDRi12: case ARM::t2LDRi8:
  case ARM::t2STRi12: case ARM::t2STRi8:
  case ARM::VLDRS: case ARM::VLDRD:
  case ARM::VSTRS: case ARM::VSTRD:
  case ARM::tSTRspi: case ARM::tLDRspi:
    break;
  default:
    return false;
  }

  // Without a virtual base register, if the function has variable sized
  // objects, all fixed-size local references will be via the frame pointer,
  // Approximate the offset and see if it's legal for the instruction.
  // Note that the incoming offset is based on the SP value at function entry,
  // so it'll be negative.
  MachineFunction &MF = *MI->getParent()->getParent();
  const ARMFrameLowering *TFI = getFrameLowering(MF);
  MachineFrameInfo &MFI = MF.getFrameInfo();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  // Estimate an offset from the frame pointer.
  // Conservatively assume all callee-saved registers get pushed. R4-R6
  // will be earlier than the FP, so we ignore those.
  // R7, LR
  int64_t FPOffset = Offset - 8;
  // ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
  if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
    FPOffset -= 80;
  // Estimate an offset from the stack pointer.
  // The incoming offset is relating to the SP at the start of the function,
  // but when we access the local it'll be relative to the SP after local
  // allocation, so adjust our SP-relative offset by that allocation size.
  Offset += MFI.getLocalFrameSize();
  // Assume that we'll have at least some spill slots allocated.
  // FIXME: This is a total SWAG number. We should run some statistics
  //        and pick a real one.
  Offset += 128; // 128 bytes of spill slots

  // If there's a frame pointer and the addressing mode allows it, try using it.
  // The FP is only available if there is no dynamic realignment. We
  // don't know for sure yet whether we'll need that, so we guess based
  // on whether there are any local variables that would trigger it.
  if (TFI->hasFP(MF) &&
      !((MFI.getLocalFrameMaxAlign() > TFI->getStackAlign()) &&
        canRealignStack(MF))) {
    if (isFrameOffsetLegal(MI, getFrameRegister(MF), FPOffset))
      return false;
  }
  // If we can reference via the stack pointer, try that.
  // FIXME: This (and the code that resolves the references) can be improved
  //        to only disallow SP relative references in the live range of
  //        the VLA(s). In practice, it's unclear how much difference that
  //        would make, but it may be worth doing.
  if (!MFI.hasVarSizedObjects() && isFrameOffsetLegal(MI, ARM::SP, Offset))
    return false;

  // The offset likely isn't legal, we want to allocate a virtual base register.
  return true;
}

/// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
void ARMBaseRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                                       Register BaseReg,
                                                       int FrameIdx,
                                                       int64_t Offset) const {
  ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
  unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
    (AFI->isThumb1OnlyFunction() ? ARM::tADDframe : ARM::t2ADDri);

  MachineBasicBlock::iterator Ins = MBB->begin();
  DebugLoc DL;                  // Defaults to "unknown"
  if (Ins != MBB->end())
    DL = Ins->getDebugLoc();

  const MachineFunction &MF = *MBB->getParent();
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  const MCInstrDesc &MCID = TII.get(ADDriOpc);
  MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));

  MachineInstrBuilder MIB = BuildMI(*MBB, Ins, DL, MCID, BaseReg)
    .addFrameIndex(FrameIdx).addImm(Offset);

  if (!AFI->isThumb1OnlyFunction())
    MIB.add(predOps(ARMCC::AL)).add(condCodeOp());
}

void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
                                            int64_t Offset) const {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const ARMBaseInstrInfo &TII =
      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  int Off = Offset; // ARM doesn't need the general 64-bit offsets
  unsigned i = 0;

  assert(!AFI->isThumb1OnlyFunction() &&
         "This resolveFrameIndex does not support Thumb1!");

  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }
  bool Done = false;
  if (!AFI->isThumbFunction())
    Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
  else {
    assert(AFI->isThumb2Function());
    Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII, this);
  }
  assert(Done && "Unable to resolve frame index!");
  (void)Done;
}

bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
                                             Register BaseReg,
                                             int64_t Offset) const {
  const MCInstrDesc &Desc = MI->getDesc();
  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
  unsigned i = 0;
  for (; !MI->getOperand(i).isFI(); ++i)
    assert(i+1 < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!");

  // AddrMode4 and AddrMode6 cannot handle any offset.
  if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
    return Offset == 0;

  unsigned NumBits = 0;
  unsigned Scale = 1;
  bool isSigned = true;
  switch (AddrMode) {
  case ARMII::AddrModeT2_i8:
  case ARMII::AddrModeT2_i12:
    // i8 supports only negative, and i12 supports only positive, so
    // based on Offset sign, consider the appropriate instruction
    Scale = 1;
    if (Offset < 0) {
      NumBits = 8;
      Offset = -Offset;
    } else {
      NumBits = 12;
    }
    break;
  case ARMII::AddrMode5:
    // VFP address mode.
    NumBits = 8;
    Scale = 4;
    break;
  case ARMII::AddrMode_i12:
  case ARMII::AddrMode2:
    NumBits = 12;
    break;
  case ARMII::AddrMode3:
    NumBits = 8;
    break;
  case ARMII::AddrModeT1_s:
    NumBits = (BaseReg == ARM::SP ? 8 : 5);
    Scale = 4;
    isSigned = false;
    break;
  default:
    llvm_unreachable("Unsupported addressing mode!");
  }

  Offset += getFrameIndexInstrOffset(MI, i);
  // Make sure the offset is encodable for instructions that scale the
  // immediate.
  if ((Offset & (Scale-1)) != 0)
    return false;

  if (isSigned && Offset < 0)
    Offset = -Offset;

  unsigned Mask = (1 << NumBits) - 1;
  if ((unsigned)Offset <= Mask * Scale)
    return true;

  return false;
}

void
ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                         int SPAdj, unsigned FIOperandNum,
                                         RegScavenger *RS) const {
  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const ARMBaseInstrInfo &TII =
      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
  const ARMFrameLowering *TFI = getFrameLowering(MF);
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  assert(!AFI->isThumb1OnlyFunction() &&
         "This eliminateFrameIndex does not support Thumb1!");
  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
  Register FrameReg;

  int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);

  // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
  // call frame setup/destroy instructions have already been eliminated.  That
  // means the stack pointer cannot be used to access the emergency spill slot
  // when !hasReservedCallFrame().
#ifndef NDEBUG
  if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){
    assert(TFI->hasReservedCallFrame(MF) &&
           "Cannot use SP to access the emergency spill slot in "
           "functions without a reserved call frame");
    assert(!MF.getFrameInfo().hasVarSizedObjects() &&
           "Cannot use SP to access the emergency spill slot in "
           "functions with variable sized frame objects");
  }
#endif // NDEBUG

  assert(!MI.isDebugValue() && "DBG_VALUEs should be handled in target-independent code");

  // Modify MI as necessary to handle as much of 'Offset' as possible
  bool Done = false;
  if (!AFI->isThumbFunction())
    Done = rewriteARMFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII);
  else {
    assert(AFI->isThumb2Function());
    Done = rewriteT2FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII, this);
  }
  if (Done)
    return;

  // If we get here, the immediate doesn't fit into the instruction.  We folded
  // as much as possible above, handle the rest, providing a register that is
  // SP+LargeImm.
  assert(
      (Offset ||
       (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
       (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6 ||
       (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7 ||
       (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7s2 ||
       (MI.getDesc().TSFlags & ARMII::AddrModeMask) ==
           ARMII::AddrModeT2_i7s4) &&
      "This code isn't needed if offset already handled!");

  unsigned ScratchReg = 0;
  int PIdx = MI.findFirstPredOperandIdx();
  ARMCC::CondCodes Pred = (PIdx == -1)
    ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
  Register PredReg = (PIdx == -1) ? Register() : MI.getOperand(PIdx+1).getReg();

  const MCInstrDesc &MCID = MI.getDesc();
  const TargetRegisterClass *RegClass =
      TII.getRegClass(MCID, FIOperandNum, this, *MI.getParent()->getParent());

  if (Offset == 0 &&
      (Register::isVirtualRegister(FrameReg) || RegClass->contains(FrameReg)))
    // Must be addrmode4/6.
    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, false);
  else {
    ScratchReg = MF.getRegInfo().createVirtualRegister(RegClass);
    if (!AFI->isThumbFunction())
      emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
                              Offset, Pred, PredReg, TII);
    else {
      assert(AFI->isThumb2Function());
      emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
                             Offset, Pred, PredReg, TII);
    }
    // Update the original instruction to use the scratch register.
    MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false,true);
  }
}

bool ARMBaseRegisterInfo::shouldCoalesce(MachineInstr *MI,
                                  const TargetRegisterClass *SrcRC,
                                  unsigned SubReg,
                                  const TargetRegisterClass *DstRC,
                                  unsigned DstSubReg,
                                  const TargetRegisterClass *NewRC,
                                  LiveIntervals &LIS) const {
  auto MBB = MI->getParent();
  auto MF = MBB->getParent();
  const MachineRegisterInfo &MRI = MF->getRegInfo();
  // If not copying into a sub-register this should be ok because we shouldn't
  // need to split the reg.
  if (!DstSubReg)
    return true;
  // Small registers don't frequently cause a problem, so we can coalesce them.
  if (getRegSizeInBits(*NewRC) < 256 && getRegSizeInBits(*DstRC) < 256 &&
      getRegSizeInBits(*SrcRC) < 256)
    return true;

  auto NewRCWeight =
              MRI.getTargetRegisterInfo()->getRegClassWeight(NewRC);
  auto SrcRCWeight =
              MRI.getTargetRegisterInfo()->getRegClassWeight(SrcRC);
  auto DstRCWeight =
              MRI.getTargetRegisterInfo()->getRegClassWeight(DstRC);
  // If the source register class is more expensive than the destination, the
  // coalescing is probably profitable.
  if (SrcRCWeight.RegWeight > NewRCWeight.RegWeight)
    return true;
  if (DstRCWeight.RegWeight > NewRCWeight.RegWeight)
    return true;

  // If the register allocator isn't constrained, we can always allow coalescing
  // unfortunately we don't know yet if we will be constrained.
  // The goal of this heuristic is to restrict how many expensive registers
  // we allow to coalesce in a given basic block.
  auto AFI = MF->getInfo<ARMFunctionInfo>();
  auto It = AFI->getCoalescedWeight(MBB);

  LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Coalesced Weight: "
                    << It->second << "\n");
  LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Reg Weight: "
                    << NewRCWeight.RegWeight << "\n");

  // This number is the largest round number that which meets the criteria:
  //  (1) addresses PR18825
  //  (2) generates better code in some test cases (like vldm-shed-a9.ll)
  //  (3) Doesn't regress any test cases (in-tree, test-suite, and SPEC)
  // In practice the SizeMultiplier will only factor in for straight line code
  // that uses a lot of NEON vectors, which isn't terribly common.
  unsigned SizeMultiplier = MBB->size()/100;
  SizeMultiplier = SizeMultiplier ? SizeMultiplier : 1;
  if (It->second < NewRCWeight.WeightLimit * SizeMultiplier) {
    It->second += NewRCWeight.RegWeight;
    return true;
  }
  return false;
}