ARCInstrInfo.cpp 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
//===- ARCInstrInfo.cpp - ARC Instruction Information -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARCInstrInfo.h"
#include "ARC.h"
#include "ARCMachineFunctionInfo.h"
#include "ARCSubtarget.h"
#include "MCTargetDesc/ARCInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"

using namespace llvm;

#define GET_INSTRINFO_CTOR_DTOR
#include "ARCGenInstrInfo.inc"

#define DEBUG_TYPE "arc-inst-info"

enum AddrIncType {
    NoAddInc = 0,
    PreInc   = 1,
    PostInc  = 2,
    Scaled   = 3
};

enum TSFlagsConstants {
    TSF_AddrModeOff = 0,
    TSF_AddModeMask = 3
};

// Pin the vtable to this file.
void ARCInstrInfo::anchor() {}

ARCInstrInfo::ARCInstrInfo()
    : ARCGenInstrInfo(ARC::ADJCALLSTACKDOWN, ARC::ADJCALLSTACKUP), RI() {}

static bool isZeroImm(const MachineOperand &Op) {
  return Op.isImm() && Op.getImm() == 0;
}

static bool isLoad(int Opcode) {
  return Opcode == ARC::LD_rs9 || Opcode == ARC::LDH_rs9 ||
         Opcode == ARC::LDB_rs9;
}

static bool isStore(int Opcode) {
  return Opcode == ARC::ST_rs9 || Opcode == ARC::STH_rs9 ||
         Opcode == ARC::STB_rs9;
}

/// If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned ARCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                           int &FrameIndex) const {
  int Opcode = MI.getOpcode();
  if (isLoad(Opcode)) {
    if ((MI.getOperand(1).isFI()) &&  // is a stack slot
        (MI.getOperand(2).isImm()) && // the imm is zero
        (isZeroImm(MI.getOperand(2)))) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

/// If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned ARCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  int Opcode = MI.getOpcode();
  if (isStore(Opcode)) {
    if ((MI.getOperand(1).isFI()) &&  // is a stack slot
        (MI.getOperand(2).isImm()) && // the imm is zero
        (isZeroImm(MI.getOperand(2)))) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

/// Return the inverse of passed condition, i.e. turning COND_E to COND_NE.
static ARCCC::CondCode GetOppositeBranchCondition(ARCCC::CondCode CC) {
  switch (CC) {
  default:
    llvm_unreachable("Illegal condition code!");
  case ARCCC::EQ:
    return ARCCC::NE;
  case ARCCC::NE:
    return ARCCC::EQ;
  case ARCCC::LO:
    return ARCCC::HS;
  case ARCCC::HS:
    return ARCCC::LO;
  case ARCCC::GT:
    return ARCCC::LE;
  case ARCCC::GE:
    return ARCCC::LT;
  case ARCCC::VS:
    return ARCCC::VC;
  case ARCCC::VC:
    return ARCCC::VS;
  case ARCCC::LT:
    return ARCCC::GE;
  case ARCCC::LE:
    return ARCCC::GT;
  case ARCCC::HI:
    return ARCCC::LS;
  case ARCCC::LS:
    return ARCCC::HI;
  case ARCCC::NZ:
    return ARCCC::Z;
  case ARCCC::Z:
    return ARCCC::NZ;
  }
}

static bool isUncondBranchOpcode(int Opc) { return Opc == ARC::BR; }

static bool isCondBranchOpcode(int Opc) {
  return Opc == ARC::BRcc_rr_p || Opc == ARC::BRcc_ru6_p;
}

static bool isJumpOpcode(int Opc) { return Opc == ARC::J; }

/// Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target).  Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
///    just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
///    the destination block.
/// 3. If this block ends with a conditional branch and it falls through to a
///    successor block, it sets TBB to be the branch destination block and a
///    list of operands that evaluate the condition. These operands can be
///    passed to other TargetInstrInfo methods to create new branches.
/// 4. If this block ends with a conditional branch followed by an
///    unconditional branch, it returns the 'true' destination in TBB, the
///    'false' destination in FBB, and a list of operands that evaluate the
///    condition.  These operands can be passed to other TargetInstrInfo
///    methods to create new branches.
///
/// Note that RemoveBranch and insertBranch must be implemented to support
/// cases where this method returns success.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).

bool ARCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  TBB = FBB = nullptr;
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin())
    return false;
  --I;

  while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
    // Flag to be raised on unanalyzeable instructions. This is useful in cases
    // where we want to clean up on the end of the basic block before we bail
    // out.
    bool CantAnalyze = false;

    // Skip over DEBUG values and predicated nonterminators.
    while (I->isDebugInstr() || !I->isTerminator()) {
      if (I == MBB.begin())
        return false;
      --I;
    }

    if (isJumpOpcode(I->getOpcode())) {
      // Indirect branches and jump tables can't be analyzed, but we still want
      // to clean up any instructions at the tail of the basic block.
      CantAnalyze = true;
    } else if (isUncondBranchOpcode(I->getOpcode())) {
      TBB = I->getOperand(0).getMBB();
    } else if (isCondBranchOpcode(I->getOpcode())) {
      // Bail out if we encounter multiple conditional branches.
      if (!Cond.empty())
        return true;

      assert(!FBB && "FBB should have been null.");
      FBB = TBB;
      TBB = I->getOperand(0).getMBB();
      Cond.push_back(I->getOperand(1));
      Cond.push_back(I->getOperand(2));
      Cond.push_back(I->getOperand(3));
    } else if (I->isReturn()) {
      // Returns can't be analyzed, but we should run cleanup.
      CantAnalyze = !isPredicated(*I);
    } else {
      // We encountered other unrecognized terminator. Bail out immediately.
      return true;
    }

    // Cleanup code - to be run for unpredicated unconditional branches and
    //                returns.
    if (!isPredicated(*I) && (isUncondBranchOpcode(I->getOpcode()) ||
                              isJumpOpcode(I->getOpcode()) || I->isReturn())) {
      // Forget any previous condition branch information - it no longer
      // applies.
      Cond.clear();
      FBB = nullptr;

      // If we can modify the function, delete everything below this
      // unconditional branch.
      if (AllowModify) {
        MachineBasicBlock::iterator DI = std::next(I);
        while (DI != MBB.end()) {
          MachineInstr &InstToDelete = *DI;
          ++DI;
          InstToDelete.eraseFromParent();
        }
      }
    }

    if (CantAnalyze)
      return true;

    if (I == MBB.begin())
      return false;

    --I;
  }

  // We made it past the terminators without bailing out - we must have
  // analyzed this branch successfully.
  return false;
}

unsigned ARCInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                    int *BytesRemoved) const {
  assert(!BytesRemoved && "Code size not handled");
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (!isUncondBranchOpcode(I->getOpcode()) &&
      !isCondBranchOpcode(I->getOpcode()))
    return 0;

  // Remove the branch.
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin())
    return 1;
  --I;
  if (!isCondBranchOpcode(I->getOpcode()))
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

void ARCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator I,
                               const DebugLoc &dl, MCRegister DestReg,
                               MCRegister SrcReg, bool KillSrc) const {
  assert(ARC::GPR32RegClass.contains(SrcReg) &&
         "Only GPR32 src copy supported.");
  assert(ARC::GPR32RegClass.contains(DestReg) &&
         "Only GPR32 dest copy supported.");
  BuildMI(MBB, I, dl, get(ARC::MOV_rr), DestReg)
      .addReg(SrcReg, getKillRegState(KillSrc));
}

void ARCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator I,
                                       Register SrcReg, bool isKill,
                                       int FrameIndex,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  DebugLoc dl = MBB.findDebugLoc(I);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIndex),
      MFI.getObjectAlign(FrameIndex));

  assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
  assert(TRI->getSpillSize(*RC) == 4 &&
         "Only support 4-byte stores to stack now.");
  assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
         "Only support GPR32 stores to stack now.");
  LLVM_DEBUG(dbgs() << "Created store reg=" << printReg(SrcReg, TRI)
                    << " to FrameIndex=" << FrameIndex << "\n");
  BuildMI(MBB, I, dl, get(ARC::ST_rs9))
      .addReg(SrcReg, getKillRegState(isKill))
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addMemOperand(MMO);
}

void ARCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator I,
                                        Register DestReg, int FrameIndex,
                                        const TargetRegisterClass *RC,
                                        const TargetRegisterInfo *TRI) const {
  DebugLoc dl = MBB.findDebugLoc(I);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex),
      MFI.getObjectAlign(FrameIndex));

  assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
  assert(TRI->getSpillSize(*RC) == 4 &&
         "Only support 4-byte loads from stack now.");
  assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
         "Only support GPR32 stores to stack now.");
  LLVM_DEBUG(dbgs() << "Created load reg=" << printReg(DestReg, TRI)
                    << " from FrameIndex=" << FrameIndex << "\n");
  BuildMI(MBB, I, dl, get(ARC::LD_rs9))
      .addReg(DestReg, RegState::Define)
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addMemOperand(MMO);
}

/// Return the inverse opcode of the specified Branch instruction.
bool ARCInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert((Cond.size() == 3) && "Invalid ARC branch condition!");
  Cond[2].setImm(GetOppositeBranchCondition((ARCCC::CondCode)Cond[2].getImm()));
  return false;
}

MachineBasicBlock::iterator
ARCInstrInfo::loadImmediate(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI, unsigned Reg,
                            uint64_t Value) const {
  DebugLoc dl = MBB.findDebugLoc(MI);
  if (isInt<12>(Value)) {
    return BuildMI(MBB, MI, dl, get(ARC::MOV_rs12), Reg)
        .addImm(Value)
        .getInstr();
  }
  llvm_unreachable("Need Arc long immediate instructions.");
}

unsigned ARCInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    ArrayRef<MachineOperand> Cond,
                                    const DebugLoc &dl, int *BytesAdded) const {
  assert(!BytesAdded && "Code size not handled.");

  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 3 || Cond.size() == 0) &&
         "ARC branch conditions have two components!");

  if (Cond.empty()) {
    BuildMI(&MBB, dl, get(ARC::BR)).addMBB(TBB);
    return 1;
  }
  int BccOpc = Cond[1].isImm() ? ARC::BRcc_ru6_p : ARC::BRcc_rr_p;
  MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(BccOpc));
  MIB.addMBB(TBB);
  for (unsigned i = 0; i < 3; i++) {
    MIB.add(Cond[i]);
  }

  // One-way conditional branch.
  if (!FBB) {
    return 1;
  }

  // Two-way conditional branch.
  BuildMI(&MBB, dl, get(ARC::BR)).addMBB(FBB);
  return 2;
}

unsigned ARCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  if (MI.isInlineAsm()) {
    const MachineFunction *MF = MI.getParent()->getParent();
    const char *AsmStr = MI.getOperand(0).getSymbolName();
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
  }
  return MI.getDesc().getSize();
}

bool ARCInstrInfo::isPostIncrement(const MachineInstr &MI) const {
  const MCInstrDesc &MID = MI.getDesc();
  const uint64_t F = MID.TSFlags;
  return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PostInc;
}

bool ARCInstrInfo::isPreIncrement(const MachineInstr &MI) const {
  const MCInstrDesc &MID = MI.getDesc();
  const uint64_t F = MID.TSFlags;
  return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PreInc;
}

bool ARCInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
                                        unsigned &BasePos,
                                        unsigned &OffsetPos) const {
  if (!MI.mayLoad() && !MI.mayStore())
    return false;

  BasePos = 1;
  OffsetPos = 2;

  if (isPostIncrement(MI) || isPreIncrement(MI)) {
    BasePos++;
    OffsetPos++;
  }

  if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
    return false;

  return true;
}